8592 ZFS channel programs - rollback
[unleashed.git] / usr / src / uts / common / fs / zfs / zil.c
blobe11ac1c3573c8f1f05ce14fda8ca7d8d839cdb40
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
27 /* Portions Copyright 2010 Robert Milkowski */
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/abd.h>
45 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
46 * calls that change the file system. Each itx has enough information to
47 * be able to replay them after a system crash, power loss, or
48 * equivalent failure mode. These are stored in memory until either:
50 * 1. they are committed to the pool by the DMU transaction group
51 * (txg), at which point they can be discarded; or
52 * 2. they are committed to the on-disk ZIL for the dataset being
53 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
54 * requirement).
56 * In the event of a crash or power loss, the itxs contained by each
57 * dataset's on-disk ZIL will be replayed when that dataset is first
58 * instantianted (e.g. if the dataset is a normal fileystem, when it is
59 * first mounted).
61 * As hinted at above, there is one ZIL per dataset (both the in-memory
62 * representation, and the on-disk representation). The on-disk format
63 * consists of 3 parts:
65 * - a single, per-dataset, ZIL header; which points to a chain of
66 * - zero or more ZIL blocks; each of which contains
67 * - zero or more ZIL records
69 * A ZIL record holds the information necessary to replay a single
70 * system call transaction. A ZIL block can hold many ZIL records, and
71 * the blocks are chained together, similarly to a singly linked list.
73 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
74 * block in the chain, and the ZIL header points to the first block in
75 * the chain.
77 * Note, there is not a fixed place in the pool to hold these ZIL
78 * blocks; they are dynamically allocated and freed as needed from the
79 * blocks available on the pool, though they can be preferentially
80 * allocated from a dedicated "log" vdev.
84 * This controls the amount of time that a ZIL block (lwb) will remain
85 * "open" when it isn't "full", and it has a thread waiting for it to be
86 * committed to stable storage. Please refer to the zil_commit_waiter()
87 * function (and the comments within it) for more details.
89 int zfs_commit_timeout_pct = 5;
92 * Disable intent logging replay. This global ZIL switch affects all pools.
94 int zil_replay_disable = 0;
97 * Tunable parameter for debugging or performance analysis. Setting
98 * zfs_nocacheflush will cause corruption on power loss if a volatile
99 * out-of-order write cache is enabled.
101 boolean_t zfs_nocacheflush = B_FALSE;
104 * Limit SLOG write size per commit executed with synchronous priority.
105 * Any writes above that will be executed with lower (asynchronous) priority
106 * to limit potential SLOG device abuse by single active ZIL writer.
108 uint64_t zil_slog_bulk = 768 * 1024;
110 static kmem_cache_t *zil_lwb_cache;
111 static kmem_cache_t *zil_zcw_cache;
113 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
115 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
116 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
118 static int
119 zil_bp_compare(const void *x1, const void *x2)
121 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
122 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
124 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
125 return (-1);
126 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
127 return (1);
129 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
130 return (-1);
131 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
132 return (1);
134 return (0);
137 static void
138 zil_bp_tree_init(zilog_t *zilog)
140 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
141 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
144 static void
145 zil_bp_tree_fini(zilog_t *zilog)
147 avl_tree_t *t = &zilog->zl_bp_tree;
148 zil_bp_node_t *zn;
149 void *cookie = NULL;
151 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
152 kmem_free(zn, sizeof (zil_bp_node_t));
154 avl_destroy(t);
158 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
160 avl_tree_t *t = &zilog->zl_bp_tree;
161 const dva_t *dva;
162 zil_bp_node_t *zn;
163 avl_index_t where;
165 if (BP_IS_EMBEDDED(bp))
166 return (0);
168 dva = BP_IDENTITY(bp);
170 if (avl_find(t, dva, &where) != NULL)
171 return (SET_ERROR(EEXIST));
173 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
174 zn->zn_dva = *dva;
175 avl_insert(t, zn, where);
177 return (0);
180 static zil_header_t *
181 zil_header_in_syncing_context(zilog_t *zilog)
183 return ((zil_header_t *)zilog->zl_header);
186 static void
187 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
189 zio_cksum_t *zc = &bp->blk_cksum;
191 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
192 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
193 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
194 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
198 * Read a log block and make sure it's valid.
200 static int
201 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
202 char **end)
204 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
205 arc_flags_t aflags = ARC_FLAG_WAIT;
206 arc_buf_t *abuf = NULL;
207 zbookmark_phys_t zb;
208 int error;
210 if (zilog->zl_header->zh_claim_txg == 0)
211 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
213 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
214 zio_flags |= ZIO_FLAG_SPECULATIVE;
216 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
217 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
219 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
220 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
222 if (error == 0) {
223 zio_cksum_t cksum = bp->blk_cksum;
226 * Validate the checksummed log block.
228 * Sequence numbers should be... sequential. The checksum
229 * verifier for the next block should be bp's checksum plus 1.
231 * Also check the log chain linkage and size used.
233 cksum.zc_word[ZIL_ZC_SEQ]++;
235 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
236 zil_chain_t *zilc = abuf->b_data;
237 char *lr = (char *)(zilc + 1);
238 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
240 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
241 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
242 error = SET_ERROR(ECKSUM);
243 } else {
244 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
245 bcopy(lr, dst, len);
246 *end = (char *)dst + len;
247 *nbp = zilc->zc_next_blk;
249 } else {
250 char *lr = abuf->b_data;
251 uint64_t size = BP_GET_LSIZE(bp);
252 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
254 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
255 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
256 (zilc->zc_nused > (size - sizeof (*zilc)))) {
257 error = SET_ERROR(ECKSUM);
258 } else {
259 ASSERT3U(zilc->zc_nused, <=,
260 SPA_OLD_MAXBLOCKSIZE);
261 bcopy(lr, dst, zilc->zc_nused);
262 *end = (char *)dst + zilc->zc_nused;
263 *nbp = zilc->zc_next_blk;
267 arc_buf_destroy(abuf, &abuf);
270 return (error);
274 * Read a TX_WRITE log data block.
276 static int
277 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
279 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
280 const blkptr_t *bp = &lr->lr_blkptr;
281 arc_flags_t aflags = ARC_FLAG_WAIT;
282 arc_buf_t *abuf = NULL;
283 zbookmark_phys_t zb;
284 int error;
286 if (BP_IS_HOLE(bp)) {
287 if (wbuf != NULL)
288 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
289 return (0);
292 if (zilog->zl_header->zh_claim_txg == 0)
293 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
295 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
296 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
298 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
299 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
301 if (error == 0) {
302 if (wbuf != NULL)
303 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
304 arc_buf_destroy(abuf, &abuf);
307 return (error);
311 * Parse the intent log, and call parse_func for each valid record within.
314 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
315 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
317 const zil_header_t *zh = zilog->zl_header;
318 boolean_t claimed = !!zh->zh_claim_txg;
319 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
320 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
321 uint64_t max_blk_seq = 0;
322 uint64_t max_lr_seq = 0;
323 uint64_t blk_count = 0;
324 uint64_t lr_count = 0;
325 blkptr_t blk, next_blk;
326 char *lrbuf, *lrp;
327 int error = 0;
330 * Old logs didn't record the maximum zh_claim_lr_seq.
332 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
333 claim_lr_seq = UINT64_MAX;
336 * Starting at the block pointed to by zh_log we read the log chain.
337 * For each block in the chain we strongly check that block to
338 * ensure its validity. We stop when an invalid block is found.
339 * For each block pointer in the chain we call parse_blk_func().
340 * For each record in each valid block we call parse_lr_func().
341 * If the log has been claimed, stop if we encounter a sequence
342 * number greater than the highest claimed sequence number.
344 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
345 zil_bp_tree_init(zilog);
347 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
348 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
349 int reclen;
350 char *end;
352 if (blk_seq > claim_blk_seq)
353 break;
354 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
355 break;
356 ASSERT3U(max_blk_seq, <, blk_seq);
357 max_blk_seq = blk_seq;
358 blk_count++;
360 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
361 break;
363 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
364 if (error != 0)
365 break;
367 for (lrp = lrbuf; lrp < end; lrp += reclen) {
368 lr_t *lr = (lr_t *)lrp;
369 reclen = lr->lrc_reclen;
370 ASSERT3U(reclen, >=, sizeof (lr_t));
371 if (lr->lrc_seq > claim_lr_seq)
372 goto done;
373 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
374 goto done;
375 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
376 max_lr_seq = lr->lrc_seq;
377 lr_count++;
380 done:
381 zilog->zl_parse_error = error;
382 zilog->zl_parse_blk_seq = max_blk_seq;
383 zilog->zl_parse_lr_seq = max_lr_seq;
384 zilog->zl_parse_blk_count = blk_count;
385 zilog->zl_parse_lr_count = lr_count;
387 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
388 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
390 zil_bp_tree_fini(zilog);
391 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
393 return (error);
396 static int
397 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
400 * Claim log block if not already committed and not already claimed.
401 * If tx == NULL, just verify that the block is claimable.
403 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
404 zil_bp_tree_add(zilog, bp) != 0)
405 return (0);
407 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
408 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
409 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
412 static int
413 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
415 lr_write_t *lr = (lr_write_t *)lrc;
416 int error;
418 if (lrc->lrc_txtype != TX_WRITE)
419 return (0);
422 * If the block is not readable, don't claim it. This can happen
423 * in normal operation when a log block is written to disk before
424 * some of the dmu_sync() blocks it points to. In this case, the
425 * transaction cannot have been committed to anyone (we would have
426 * waited for all writes to be stable first), so it is semantically
427 * correct to declare this the end of the log.
429 if (lr->lr_blkptr.blk_birth >= first_txg &&
430 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
431 return (error);
432 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
435 /* ARGSUSED */
436 static int
437 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
439 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
441 return (0);
444 static int
445 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
447 lr_write_t *lr = (lr_write_t *)lrc;
448 blkptr_t *bp = &lr->lr_blkptr;
451 * If we previously claimed it, we need to free it.
453 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
454 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
455 !BP_IS_HOLE(bp))
456 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
458 return (0);
461 static int
462 zil_lwb_vdev_compare(const void *x1, const void *x2)
464 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
465 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
467 if (v1 < v2)
468 return (-1);
469 if (v1 > v2)
470 return (1);
472 return (0);
475 static lwb_t *
476 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
478 lwb_t *lwb;
480 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
481 lwb->lwb_zilog = zilog;
482 lwb->lwb_blk = *bp;
483 lwb->lwb_slog = slog;
484 lwb->lwb_state = LWB_STATE_CLOSED;
485 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
486 lwb->lwb_max_txg = txg;
487 lwb->lwb_write_zio = NULL;
488 lwb->lwb_root_zio = NULL;
489 lwb->lwb_tx = NULL;
490 lwb->lwb_issued_timestamp = 0;
491 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
492 lwb->lwb_nused = sizeof (zil_chain_t);
493 lwb->lwb_sz = BP_GET_LSIZE(bp);
494 } else {
495 lwb->lwb_nused = 0;
496 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
499 mutex_enter(&zilog->zl_lock);
500 list_insert_tail(&zilog->zl_lwb_list, lwb);
501 mutex_exit(&zilog->zl_lock);
503 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
504 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
505 ASSERT(list_is_empty(&lwb->lwb_waiters));
507 return (lwb);
510 static void
511 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
513 ASSERT(MUTEX_HELD(&zilog->zl_lock));
514 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
515 ASSERT(list_is_empty(&lwb->lwb_waiters));
517 if (lwb->lwb_state == LWB_STATE_OPENED) {
518 avl_tree_t *t = &lwb->lwb_vdev_tree;
519 void *cookie = NULL;
520 zil_vdev_node_t *zv;
522 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
523 kmem_free(zv, sizeof (*zv));
525 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
526 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
528 zio_cancel(lwb->lwb_root_zio);
529 zio_cancel(lwb->lwb_write_zio);
531 lwb->lwb_root_zio = NULL;
532 lwb->lwb_write_zio = NULL;
533 } else {
534 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
537 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
538 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
539 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
542 * Clear the zilog's field to indicate this lwb is no longer
543 * valid, and prevent use-after-free errors.
545 if (zilog->zl_last_lwb_opened == lwb)
546 zilog->zl_last_lwb_opened = NULL;
548 kmem_cache_free(zil_lwb_cache, lwb);
552 * Called when we create in-memory log transactions so that we know
553 * to cleanup the itxs at the end of spa_sync().
555 void
556 zilog_dirty(zilog_t *zilog, uint64_t txg)
558 dsl_pool_t *dp = zilog->zl_dmu_pool;
559 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
561 ASSERT(spa_writeable(zilog->zl_spa));
563 if (ds->ds_is_snapshot)
564 panic("dirtying snapshot!");
566 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
567 /* up the hold count until we can be written out */
568 dmu_buf_add_ref(ds->ds_dbuf, zilog);
570 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
575 * Determine if the zil is dirty in the specified txg. Callers wanting to
576 * ensure that the dirty state does not change must hold the itxg_lock for
577 * the specified txg. Holding the lock will ensure that the zil cannot be
578 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
579 * state.
581 boolean_t
582 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
584 dsl_pool_t *dp = zilog->zl_dmu_pool;
586 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
587 return (B_TRUE);
588 return (B_FALSE);
592 * Determine if the zil is dirty. The zil is considered dirty if it has
593 * any pending itx records that have not been cleaned by zil_clean().
595 boolean_t
596 zilog_is_dirty(zilog_t *zilog)
598 dsl_pool_t *dp = zilog->zl_dmu_pool;
600 for (int t = 0; t < TXG_SIZE; t++) {
601 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
602 return (B_TRUE);
604 return (B_FALSE);
608 * Create an on-disk intent log.
610 static lwb_t *
611 zil_create(zilog_t *zilog)
613 const zil_header_t *zh = zilog->zl_header;
614 lwb_t *lwb = NULL;
615 uint64_t txg = 0;
616 dmu_tx_t *tx = NULL;
617 blkptr_t blk;
618 int error = 0;
619 boolean_t slog = FALSE;
622 * Wait for any previous destroy to complete.
624 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
626 ASSERT(zh->zh_claim_txg == 0);
627 ASSERT(zh->zh_replay_seq == 0);
629 blk = zh->zh_log;
632 * Allocate an initial log block if:
633 * - there isn't one already
634 * - the existing block is the wrong endianess
636 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
637 tx = dmu_tx_create(zilog->zl_os);
638 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
639 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
640 txg = dmu_tx_get_txg(tx);
642 if (!BP_IS_HOLE(&blk)) {
643 zio_free_zil(zilog->zl_spa, txg, &blk);
644 BP_ZERO(&blk);
647 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
648 ZIL_MIN_BLKSZ, &slog);
650 if (error == 0)
651 zil_init_log_chain(zilog, &blk);
655 * Allocate a log write block (lwb) for the first log block.
657 if (error == 0)
658 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
661 * If we just allocated the first log block, commit our transaction
662 * and wait for zil_sync() to stuff the block poiner into zh_log.
663 * (zh is part of the MOS, so we cannot modify it in open context.)
665 if (tx != NULL) {
666 dmu_tx_commit(tx);
667 txg_wait_synced(zilog->zl_dmu_pool, txg);
670 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
672 return (lwb);
676 * In one tx, free all log blocks and clear the log header. If keep_first
677 * is set, then we're replaying a log with no content. We want to keep the
678 * first block, however, so that the first synchronous transaction doesn't
679 * require a txg_wait_synced() in zil_create(). We don't need to
680 * txg_wait_synced() here either when keep_first is set, because both
681 * zil_create() and zil_destroy() will wait for any in-progress destroys
682 * to complete.
684 void
685 zil_destroy(zilog_t *zilog, boolean_t keep_first)
687 const zil_header_t *zh = zilog->zl_header;
688 lwb_t *lwb;
689 dmu_tx_t *tx;
690 uint64_t txg;
693 * Wait for any previous destroy to complete.
695 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
697 zilog->zl_old_header = *zh; /* debugging aid */
699 if (BP_IS_HOLE(&zh->zh_log))
700 return;
702 tx = dmu_tx_create(zilog->zl_os);
703 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
704 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
705 txg = dmu_tx_get_txg(tx);
707 mutex_enter(&zilog->zl_lock);
709 ASSERT3U(zilog->zl_destroy_txg, <, txg);
710 zilog->zl_destroy_txg = txg;
711 zilog->zl_keep_first = keep_first;
713 if (!list_is_empty(&zilog->zl_lwb_list)) {
714 ASSERT(zh->zh_claim_txg == 0);
715 VERIFY(!keep_first);
716 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
717 list_remove(&zilog->zl_lwb_list, lwb);
718 if (lwb->lwb_buf != NULL)
719 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
720 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
721 zil_free_lwb(zilog, lwb);
723 } else if (!keep_first) {
724 zil_destroy_sync(zilog, tx);
726 mutex_exit(&zilog->zl_lock);
728 dmu_tx_commit(tx);
731 void
732 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
734 ASSERT(list_is_empty(&zilog->zl_lwb_list));
735 (void) zil_parse(zilog, zil_free_log_block,
736 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
740 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
742 dmu_tx_t *tx = txarg;
743 uint64_t first_txg = dmu_tx_get_txg(tx);
744 zilog_t *zilog;
745 zil_header_t *zh;
746 objset_t *os;
747 int error;
749 error = dmu_objset_own_obj(dp, ds->ds_object,
750 DMU_OST_ANY, B_FALSE, FTAG, &os);
751 if (error != 0) {
753 * EBUSY indicates that the objset is inconsistent, in which
754 * case it can not have a ZIL.
756 if (error != EBUSY) {
757 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
758 (unsigned long long)ds->ds_object, error);
760 return (0);
763 zilog = dmu_objset_zil(os);
764 zh = zil_header_in_syncing_context(zilog);
766 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
767 if (!BP_IS_HOLE(&zh->zh_log))
768 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
769 BP_ZERO(&zh->zh_log);
770 dsl_dataset_dirty(dmu_objset_ds(os), tx);
771 dmu_objset_disown(os, FTAG);
772 return (0);
776 * Claim all log blocks if we haven't already done so, and remember
777 * the highest claimed sequence number. This ensures that if we can
778 * read only part of the log now (e.g. due to a missing device),
779 * but we can read the entire log later, we will not try to replay
780 * or destroy beyond the last block we successfully claimed.
782 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
783 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
784 (void) zil_parse(zilog, zil_claim_log_block,
785 zil_claim_log_record, tx, first_txg);
786 zh->zh_claim_txg = first_txg;
787 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
788 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
789 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
790 zh->zh_flags |= ZIL_REPLAY_NEEDED;
791 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
792 dsl_dataset_dirty(dmu_objset_ds(os), tx);
795 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
796 dmu_objset_disown(os, FTAG);
797 return (0);
801 * Check the log by walking the log chain.
802 * Checksum errors are ok as they indicate the end of the chain.
803 * Any other error (no device or read failure) returns an error.
805 /* ARGSUSED */
807 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
809 zilog_t *zilog;
810 objset_t *os;
811 blkptr_t *bp;
812 int error;
814 ASSERT(tx == NULL);
816 error = dmu_objset_from_ds(ds, &os);
817 if (error != 0) {
818 cmn_err(CE_WARN, "can't open objset %llu, error %d",
819 (unsigned long long)ds->ds_object, error);
820 return (0);
823 zilog = dmu_objset_zil(os);
824 bp = (blkptr_t *)&zilog->zl_header->zh_log;
827 * Check the first block and determine if it's on a log device
828 * which may have been removed or faulted prior to loading this
829 * pool. If so, there's no point in checking the rest of the log
830 * as its content should have already been synced to the pool.
832 if (!BP_IS_HOLE(bp)) {
833 vdev_t *vd;
834 boolean_t valid = B_TRUE;
836 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
837 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
838 if (vd->vdev_islog && vdev_is_dead(vd))
839 valid = vdev_log_state_valid(vd);
840 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
842 if (!valid)
843 return (0);
847 * Because tx == NULL, zil_claim_log_block() will not actually claim
848 * any blocks, but just determine whether it is possible to do so.
849 * In addition to checking the log chain, zil_claim_log_block()
850 * will invoke zio_claim() with a done func of spa_claim_notify(),
851 * which will update spa_max_claim_txg. See spa_load() for details.
853 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
854 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
856 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
860 * When an itx is "skipped", this function is used to properly mark the
861 * waiter as "done, and signal any thread(s) waiting on it. An itx can
862 * be skipped (and not committed to an lwb) for a variety of reasons,
863 * one of them being that the itx was committed via spa_sync(), prior to
864 * it being committed to an lwb; this can happen if a thread calling
865 * zil_commit() is racing with spa_sync().
867 static void
868 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
870 mutex_enter(&zcw->zcw_lock);
871 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
872 zcw->zcw_done = B_TRUE;
873 cv_broadcast(&zcw->zcw_cv);
874 mutex_exit(&zcw->zcw_lock);
878 * This function is used when the given waiter is to be linked into an
879 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
880 * At this point, the waiter will no longer be referenced by the itx,
881 * and instead, will be referenced by the lwb.
883 static void
884 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
886 mutex_enter(&zcw->zcw_lock);
887 ASSERT(!list_link_active(&zcw->zcw_node));
888 ASSERT3P(zcw->zcw_lwb, ==, NULL);
889 ASSERT3P(lwb, !=, NULL);
890 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
891 lwb->lwb_state == LWB_STATE_ISSUED);
893 list_insert_tail(&lwb->lwb_waiters, zcw);
894 zcw->zcw_lwb = lwb;
895 mutex_exit(&zcw->zcw_lock);
899 * This function is used when zio_alloc_zil() fails to allocate a ZIL
900 * block, and the given waiter must be linked to the "nolwb waiters"
901 * list inside of zil_process_commit_list().
903 static void
904 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
906 mutex_enter(&zcw->zcw_lock);
907 ASSERT(!list_link_active(&zcw->zcw_node));
908 ASSERT3P(zcw->zcw_lwb, ==, NULL);
909 list_insert_tail(nolwb, zcw);
910 mutex_exit(&zcw->zcw_lock);
913 void
914 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
916 avl_tree_t *t = &lwb->lwb_vdev_tree;
917 avl_index_t where;
918 zil_vdev_node_t *zv, zvsearch;
919 int ndvas = BP_GET_NDVAS(bp);
920 int i;
922 if (zfs_nocacheflush)
923 return;
925 mutex_enter(&lwb->lwb_vdev_lock);
926 for (i = 0; i < ndvas; i++) {
927 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
928 if (avl_find(t, &zvsearch, &where) == NULL) {
929 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
930 zv->zv_vdev = zvsearch.zv_vdev;
931 avl_insert(t, zv, where);
934 mutex_exit(&lwb->lwb_vdev_lock);
937 void
938 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
940 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
944 * This function is a called after all VDEVs associated with a given lwb
945 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
946 * as the lwb write completes, if "zfs_nocacheflush" is set.
948 * The intention is for this function to be called as soon as the
949 * contents of an lwb are considered "stable" on disk, and will survive
950 * any sudden loss of power. At this point, any threads waiting for the
951 * lwb to reach this state are signalled, and the "waiter" structures
952 * are marked "done".
954 static void
955 zil_lwb_flush_vdevs_done(zio_t *zio)
957 lwb_t *lwb = zio->io_private;
958 zilog_t *zilog = lwb->lwb_zilog;
959 dmu_tx_t *tx = lwb->lwb_tx;
960 zil_commit_waiter_t *zcw;
962 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
964 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
966 mutex_enter(&zilog->zl_lock);
969 * Ensure the lwb buffer pointer is cleared before releasing the
970 * txg. If we have had an allocation failure and the txg is
971 * waiting to sync then we want zil_sync() to remove the lwb so
972 * that it's not picked up as the next new one in
973 * zil_process_commit_list(). zil_sync() will only remove the
974 * lwb if lwb_buf is null.
976 lwb->lwb_buf = NULL;
977 lwb->lwb_tx = NULL;
979 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
980 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
982 lwb->lwb_root_zio = NULL;
983 lwb->lwb_state = LWB_STATE_DONE;
985 if (zilog->zl_last_lwb_opened == lwb) {
987 * Remember the highest committed log sequence number
988 * for ztest. We only update this value when all the log
989 * writes succeeded, because ztest wants to ASSERT that
990 * it got the whole log chain.
992 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
995 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
996 mutex_enter(&zcw->zcw_lock);
998 ASSERT(list_link_active(&zcw->zcw_node));
999 list_remove(&lwb->lwb_waiters, zcw);
1001 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1002 zcw->zcw_lwb = NULL;
1004 zcw->zcw_zio_error = zio->io_error;
1006 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1007 zcw->zcw_done = B_TRUE;
1008 cv_broadcast(&zcw->zcw_cv);
1010 mutex_exit(&zcw->zcw_lock);
1013 mutex_exit(&zilog->zl_lock);
1016 * Now that we've written this log block, we have a stable pointer
1017 * to the next block in the chain, so it's OK to let the txg in
1018 * which we allocated the next block sync.
1020 dmu_tx_commit(tx);
1024 * This is called when an lwb write completes. This means, this specific
1025 * lwb was written to disk, and all dependent lwb have also been
1026 * written to disk.
1028 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1029 * the VDEVs involved in writing out this specific lwb. The lwb will be
1030 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1031 * zio completion callback for the lwb's root zio.
1033 static void
1034 zil_lwb_write_done(zio_t *zio)
1036 lwb_t *lwb = zio->io_private;
1037 spa_t *spa = zio->io_spa;
1038 zilog_t *zilog = lwb->lwb_zilog;
1039 avl_tree_t *t = &lwb->lwb_vdev_tree;
1040 void *cookie = NULL;
1041 zil_vdev_node_t *zv;
1043 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1045 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1046 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1047 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1048 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1049 ASSERT(!BP_IS_GANG(zio->io_bp));
1050 ASSERT(!BP_IS_HOLE(zio->io_bp));
1051 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1053 abd_put(zio->io_abd);
1055 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1057 mutex_enter(&zilog->zl_lock);
1058 lwb->lwb_write_zio = NULL;
1059 mutex_exit(&zilog->zl_lock);
1061 if (avl_numnodes(t) == 0)
1062 return;
1065 * If there was an IO error, we're not going to call zio_flush()
1066 * on these vdevs, so we simply empty the tree and free the
1067 * nodes. We avoid calling zio_flush() since there isn't any
1068 * good reason for doing so, after the lwb block failed to be
1069 * written out.
1071 if (zio->io_error != 0) {
1072 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1073 kmem_free(zv, sizeof (*zv));
1074 return;
1077 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1078 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1079 if (vd != NULL)
1080 zio_flush(lwb->lwb_root_zio, vd);
1081 kmem_free(zv, sizeof (*zv));
1086 * This function's purpose is to "open" an lwb such that it is ready to
1087 * accept new itxs being committed to it. To do this, the lwb's zio
1088 * structures are created, and linked to the lwb. This function is
1089 * idempotent; if the passed in lwb has already been opened, this
1090 * function is essentially a no-op.
1092 static void
1093 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1095 zbookmark_phys_t zb;
1096 zio_priority_t prio;
1098 ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1099 ASSERT3P(lwb, !=, NULL);
1100 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1101 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1103 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1104 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1105 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1107 if (lwb->lwb_root_zio == NULL) {
1108 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1109 BP_GET_LSIZE(&lwb->lwb_blk));
1111 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1112 prio = ZIO_PRIORITY_SYNC_WRITE;
1113 else
1114 prio = ZIO_PRIORITY_ASYNC_WRITE;
1116 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1117 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1118 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1120 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1121 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1122 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1123 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1124 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1126 lwb->lwb_state = LWB_STATE_OPENED;
1128 mutex_enter(&zilog->zl_lock);
1131 * The zilog's "zl_last_lwb_opened" field is used to
1132 * build the lwb/zio dependency chain, which is used to
1133 * preserve the ordering of lwb completions that is
1134 * required by the semantics of the ZIL. Each new lwb
1135 * zio becomes a parent of the "previous" lwb zio, such
1136 * that the new lwb's zio cannot complete until the
1137 * "previous" lwb's zio completes.
1139 * This is required by the semantics of zil_commit();
1140 * the commit waiters attached to the lwbs will be woken
1141 * in the lwb zio's completion callback, so this zio
1142 * dependency graph ensures the waiters are woken in the
1143 * correct order (the same order the lwbs were created).
1145 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1146 if (last_lwb_opened != NULL &&
1147 last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1148 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1149 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1150 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1151 zio_add_child(lwb->lwb_root_zio,
1152 last_lwb_opened->lwb_root_zio);
1154 zilog->zl_last_lwb_opened = lwb;
1156 mutex_exit(&zilog->zl_lock);
1159 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1160 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1161 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1165 * Define a limited set of intent log block sizes.
1167 * These must be a multiple of 4KB. Note only the amount used (again
1168 * aligned to 4KB) actually gets written. However, we can't always just
1169 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1171 uint64_t zil_block_buckets[] = {
1172 4096, /* non TX_WRITE */
1173 8192+4096, /* data base */
1174 32*1024 + 4096, /* NFS writes */
1175 UINT64_MAX
1179 * Start a log block write and advance to the next log block.
1180 * Calls are serialized.
1182 static lwb_t *
1183 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1185 lwb_t *nlwb = NULL;
1186 zil_chain_t *zilc;
1187 spa_t *spa = zilog->zl_spa;
1188 blkptr_t *bp;
1189 dmu_tx_t *tx;
1190 uint64_t txg;
1191 uint64_t zil_blksz, wsz;
1192 int i, error;
1193 boolean_t slog;
1195 ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1196 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1197 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1198 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1200 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1201 zilc = (zil_chain_t *)lwb->lwb_buf;
1202 bp = &zilc->zc_next_blk;
1203 } else {
1204 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1205 bp = &zilc->zc_next_blk;
1208 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1211 * Allocate the next block and save its address in this block
1212 * before writing it in order to establish the log chain.
1213 * Note that if the allocation of nlwb synced before we wrote
1214 * the block that points at it (lwb), we'd leak it if we crashed.
1215 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1216 * We dirty the dataset to ensure that zil_sync() will be called
1217 * to clean up in the event of allocation failure or I/O failure.
1220 tx = dmu_tx_create(zilog->zl_os);
1223 * Since we are not going to create any new dirty data and we can even
1224 * help with clearing the existing dirty data, we should not be subject
1225 * to the dirty data based delays.
1226 * We (ab)use TXG_WAITED to bypass the delay mechanism.
1227 * One side effect from using TXG_WAITED is that dmu_tx_assign() can
1228 * fail if the pool is suspended. Those are dramatic circumstances,
1229 * so we return NULL to signal that the normal ZIL processing is not
1230 * possible and txg_wait_synced() should be used to ensure that the data
1231 * is on disk.
1233 error = dmu_tx_assign(tx, TXG_WAITED);
1234 if (error != 0) {
1235 ASSERT3S(error, ==, EIO);
1236 dmu_tx_abort(tx);
1237 return (NULL);
1239 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1240 txg = dmu_tx_get_txg(tx);
1242 lwb->lwb_tx = tx;
1245 * Log blocks are pre-allocated. Here we select the size of the next
1246 * block, based on size used in the last block.
1247 * - first find the smallest bucket that will fit the block from a
1248 * limited set of block sizes. This is because it's faster to write
1249 * blocks allocated from the same metaslab as they are adjacent or
1250 * close.
1251 * - next find the maximum from the new suggested size and an array of
1252 * previous sizes. This lessens a picket fence effect of wrongly
1253 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1254 * requests.
1256 * Note we only write what is used, but we can't just allocate
1257 * the maximum block size because we can exhaust the available
1258 * pool log space.
1260 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1261 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1262 continue;
1263 zil_blksz = zil_block_buckets[i];
1264 if (zil_blksz == UINT64_MAX)
1265 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1266 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1267 for (i = 0; i < ZIL_PREV_BLKS; i++)
1268 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1269 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1271 BP_ZERO(bp);
1273 /* pass the old blkptr in order to spread log blocks across devs */
1274 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1275 if (error == 0) {
1276 ASSERT3U(bp->blk_birth, ==, txg);
1277 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1278 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1281 * Allocate a new log write block (lwb).
1283 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1286 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1287 /* For Slim ZIL only write what is used. */
1288 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1289 ASSERT3U(wsz, <=, lwb->lwb_sz);
1290 zio_shrink(lwb->lwb_write_zio, wsz);
1292 } else {
1293 wsz = lwb->lwb_sz;
1296 zilc->zc_pad = 0;
1297 zilc->zc_nused = lwb->lwb_nused;
1298 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1301 * clear unused data for security
1303 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1305 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1307 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1308 lwb->lwb_issued_timestamp = gethrtime();
1309 lwb->lwb_state = LWB_STATE_ISSUED;
1311 zio_nowait(lwb->lwb_root_zio);
1312 zio_nowait(lwb->lwb_write_zio);
1315 * If there was an allocation failure then nlwb will be null which
1316 * forces a txg_wait_synced().
1318 return (nlwb);
1321 static lwb_t *
1322 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1324 lr_t *lrcb, *lrc;
1325 lr_write_t *lrwb, *lrw;
1326 char *lr_buf;
1327 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1329 ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1330 ASSERT3P(lwb, !=, NULL);
1331 ASSERT3P(lwb->lwb_buf, !=, NULL);
1333 zil_lwb_write_open(zilog, lwb);
1335 lrc = &itx->itx_lr;
1336 lrw = (lr_write_t *)lrc;
1339 * A commit itx doesn't represent any on-disk state; instead
1340 * it's simply used as a place holder on the commit list, and
1341 * provides a mechanism for attaching a "commit waiter" onto the
1342 * correct lwb (such that the waiter can be signalled upon
1343 * completion of that lwb). Thus, we don't process this itx's
1344 * log record if it's a commit itx (these itx's don't have log
1345 * records), and instead link the itx's waiter onto the lwb's
1346 * list of waiters.
1348 * For more details, see the comment above zil_commit().
1350 if (lrc->lrc_txtype == TX_COMMIT) {
1351 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1352 itx->itx_private = NULL;
1353 return (lwb);
1356 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1357 dlen = P2ROUNDUP_TYPED(
1358 lrw->lr_length, sizeof (uint64_t), uint64_t);
1359 } else {
1360 dlen = 0;
1362 reclen = lrc->lrc_reclen;
1363 zilog->zl_cur_used += (reclen + dlen);
1364 txg = lrc->lrc_txg;
1366 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1368 cont:
1370 * If this record won't fit in the current log block, start a new one.
1371 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1373 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1374 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1375 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1376 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1377 lwb = zil_lwb_write_issue(zilog, lwb);
1378 if (lwb == NULL)
1379 return (NULL);
1380 zil_lwb_write_open(zilog, lwb);
1381 ASSERT(LWB_EMPTY(lwb));
1382 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1383 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1386 dnow = MIN(dlen, lwb_sp - reclen);
1387 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1388 bcopy(lrc, lr_buf, reclen);
1389 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1390 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1393 * If it's a write, fetch the data or get its blkptr as appropriate.
1395 if (lrc->lrc_txtype == TX_WRITE) {
1396 if (txg > spa_freeze_txg(zilog->zl_spa))
1397 txg_wait_synced(zilog->zl_dmu_pool, txg);
1398 if (itx->itx_wr_state != WR_COPIED) {
1399 char *dbuf;
1400 int error;
1402 if (itx->itx_wr_state == WR_NEED_COPY) {
1403 dbuf = lr_buf + reclen;
1404 lrcb->lrc_reclen += dnow;
1405 if (lrwb->lr_length > dnow)
1406 lrwb->lr_length = dnow;
1407 lrw->lr_offset += dnow;
1408 lrw->lr_length -= dnow;
1409 } else {
1410 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1411 dbuf = NULL;
1415 * We pass in the "lwb_write_zio" rather than
1416 * "lwb_root_zio" so that the "lwb_write_zio"
1417 * becomes the parent of any zio's created by
1418 * the "zl_get_data" callback. The vdevs are
1419 * flushed after the "lwb_write_zio" completes,
1420 * so we want to make sure that completion
1421 * callback waits for these additional zio's,
1422 * such that the vdevs used by those zio's will
1423 * be included in the lwb's vdev tree, and those
1424 * vdevs will be properly flushed. If we passed
1425 * in "lwb_root_zio" here, then these additional
1426 * vdevs may not be flushed; e.g. if these zio's
1427 * completed after "lwb_write_zio" completed.
1429 error = zilog->zl_get_data(itx->itx_private,
1430 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1432 if (error == EIO) {
1433 txg_wait_synced(zilog->zl_dmu_pool, txg);
1434 return (lwb);
1436 if (error != 0) {
1437 ASSERT(error == ENOENT || error == EEXIST ||
1438 error == EALREADY);
1439 return (lwb);
1445 * We're actually making an entry, so update lrc_seq to be the
1446 * log record sequence number. Note that this is generally not
1447 * equal to the itx sequence number because not all transactions
1448 * are synchronous, and sometimes spa_sync() gets there first.
1450 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1451 lwb->lwb_nused += reclen + dnow;
1453 zil_lwb_add_txg(lwb, txg);
1455 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1456 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1458 dlen -= dnow;
1459 if (dlen > 0) {
1460 zilog->zl_cur_used += reclen;
1461 goto cont;
1464 return (lwb);
1467 itx_t *
1468 zil_itx_create(uint64_t txtype, size_t lrsize)
1470 itx_t *itx;
1472 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1474 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1475 itx->itx_lr.lrc_txtype = txtype;
1476 itx->itx_lr.lrc_reclen = lrsize;
1477 itx->itx_lr.lrc_seq = 0; /* defensive */
1478 itx->itx_sync = B_TRUE; /* default is synchronous */
1480 return (itx);
1483 void
1484 zil_itx_destroy(itx_t *itx)
1486 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1490 * Free up the sync and async itxs. The itxs_t has already been detached
1491 * so no locks are needed.
1493 static void
1494 zil_itxg_clean(itxs_t *itxs)
1496 itx_t *itx;
1497 list_t *list;
1498 avl_tree_t *t;
1499 void *cookie;
1500 itx_async_node_t *ian;
1502 list = &itxs->i_sync_list;
1503 while ((itx = list_head(list)) != NULL) {
1505 * In the general case, commit itxs will not be found
1506 * here, as they'll be committed to an lwb via
1507 * zil_lwb_commit(), and free'd in that function. Having
1508 * said that, it is still possible for commit itxs to be
1509 * found here, due to the following race:
1511 * - a thread calls zil_commit() which assigns the
1512 * commit itx to a per-txg i_sync_list
1513 * - zil_itxg_clean() is called (e.g. via spa_sync())
1514 * while the waiter is still on the i_sync_list
1516 * There's nothing to prevent syncing the txg while the
1517 * waiter is on the i_sync_list. This normally doesn't
1518 * happen because spa_sync() is slower than zil_commit(),
1519 * but if zil_commit() calls txg_wait_synced() (e.g.
1520 * because zil_create() or zil_commit_writer_stall() is
1521 * called) we will hit this case.
1523 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1524 zil_commit_waiter_skip(itx->itx_private);
1526 list_remove(list, itx);
1527 zil_itx_destroy(itx);
1530 cookie = NULL;
1531 t = &itxs->i_async_tree;
1532 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1533 list = &ian->ia_list;
1534 while ((itx = list_head(list)) != NULL) {
1535 list_remove(list, itx);
1536 /* commit itxs should never be on the async lists. */
1537 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1538 zil_itx_destroy(itx);
1540 list_destroy(list);
1541 kmem_free(ian, sizeof (itx_async_node_t));
1543 avl_destroy(t);
1545 kmem_free(itxs, sizeof (itxs_t));
1548 static int
1549 zil_aitx_compare(const void *x1, const void *x2)
1551 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1552 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1554 if (o1 < o2)
1555 return (-1);
1556 if (o1 > o2)
1557 return (1);
1559 return (0);
1563 * Remove all async itx with the given oid.
1565 static void
1566 zil_remove_async(zilog_t *zilog, uint64_t oid)
1568 uint64_t otxg, txg;
1569 itx_async_node_t *ian;
1570 avl_tree_t *t;
1571 avl_index_t where;
1572 list_t clean_list;
1573 itx_t *itx;
1575 ASSERT(oid != 0);
1576 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1578 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1579 otxg = ZILTEST_TXG;
1580 else
1581 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1583 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1584 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1586 mutex_enter(&itxg->itxg_lock);
1587 if (itxg->itxg_txg != txg) {
1588 mutex_exit(&itxg->itxg_lock);
1589 continue;
1593 * Locate the object node and append its list.
1595 t = &itxg->itxg_itxs->i_async_tree;
1596 ian = avl_find(t, &oid, &where);
1597 if (ian != NULL)
1598 list_move_tail(&clean_list, &ian->ia_list);
1599 mutex_exit(&itxg->itxg_lock);
1601 while ((itx = list_head(&clean_list)) != NULL) {
1602 list_remove(&clean_list, itx);
1603 /* commit itxs should never be on the async lists. */
1604 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1605 zil_itx_destroy(itx);
1607 list_destroy(&clean_list);
1610 void
1611 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1613 uint64_t txg;
1614 itxg_t *itxg;
1615 itxs_t *itxs, *clean = NULL;
1618 * Object ids can be re-instantiated in the next txg so
1619 * remove any async transactions to avoid future leaks.
1620 * This can happen if a fsync occurs on the re-instantiated
1621 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1622 * the new file data and flushes a write record for the old object.
1624 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1625 zil_remove_async(zilog, itx->itx_oid);
1628 * Ensure the data of a renamed file is committed before the rename.
1630 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1631 zil_async_to_sync(zilog, itx->itx_oid);
1633 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1634 txg = ZILTEST_TXG;
1635 else
1636 txg = dmu_tx_get_txg(tx);
1638 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1639 mutex_enter(&itxg->itxg_lock);
1640 itxs = itxg->itxg_itxs;
1641 if (itxg->itxg_txg != txg) {
1642 if (itxs != NULL) {
1644 * The zil_clean callback hasn't got around to cleaning
1645 * this itxg. Save the itxs for release below.
1646 * This should be rare.
1648 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1649 "txg %llu", itxg->itxg_txg);
1650 clean = itxg->itxg_itxs;
1652 itxg->itxg_txg = txg;
1653 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1655 list_create(&itxs->i_sync_list, sizeof (itx_t),
1656 offsetof(itx_t, itx_node));
1657 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1658 sizeof (itx_async_node_t),
1659 offsetof(itx_async_node_t, ia_node));
1661 if (itx->itx_sync) {
1662 list_insert_tail(&itxs->i_sync_list, itx);
1663 } else {
1664 avl_tree_t *t = &itxs->i_async_tree;
1665 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1666 itx_async_node_t *ian;
1667 avl_index_t where;
1669 ian = avl_find(t, &foid, &where);
1670 if (ian == NULL) {
1671 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1672 list_create(&ian->ia_list, sizeof (itx_t),
1673 offsetof(itx_t, itx_node));
1674 ian->ia_foid = foid;
1675 avl_insert(t, ian, where);
1677 list_insert_tail(&ian->ia_list, itx);
1680 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1683 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1684 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1685 * need to be careful to always dirty the ZIL using the "real"
1686 * TXG (not itxg_txg) even when the SPA is frozen.
1688 zilog_dirty(zilog, dmu_tx_get_txg(tx));
1689 mutex_exit(&itxg->itxg_lock);
1691 /* Release the old itxs now we've dropped the lock */
1692 if (clean != NULL)
1693 zil_itxg_clean(clean);
1697 * If there are any in-memory intent log transactions which have now been
1698 * synced then start up a taskq to free them. We should only do this after we
1699 * have written out the uberblocks (i.e. txg has been comitted) so that
1700 * don't inadvertently clean out in-memory log records that would be required
1701 * by zil_commit().
1703 void
1704 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1706 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1707 itxs_t *clean_me;
1709 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1711 mutex_enter(&itxg->itxg_lock);
1712 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1713 mutex_exit(&itxg->itxg_lock);
1714 return;
1716 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1717 ASSERT3U(itxg->itxg_txg, !=, 0);
1718 clean_me = itxg->itxg_itxs;
1719 itxg->itxg_itxs = NULL;
1720 itxg->itxg_txg = 0;
1721 mutex_exit(&itxg->itxg_lock);
1723 * Preferably start a task queue to free up the old itxs but
1724 * if taskq_dispatch can't allocate resources to do that then
1725 * free it in-line. This should be rare. Note, using TQ_SLEEP
1726 * created a bad performance problem.
1728 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1729 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1730 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1731 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1732 zil_itxg_clean(clean_me);
1736 * This function will traverse the queue of itxs that need to be
1737 * committed, and move them onto the ZIL's zl_itx_commit_list.
1739 static void
1740 zil_get_commit_list(zilog_t *zilog)
1742 uint64_t otxg, txg;
1743 list_t *commit_list = &zilog->zl_itx_commit_list;
1745 ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1747 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1748 otxg = ZILTEST_TXG;
1749 else
1750 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1753 * This is inherently racy, since there is nothing to prevent
1754 * the last synced txg from changing. That's okay since we'll
1755 * only commit things in the future.
1757 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1758 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1760 mutex_enter(&itxg->itxg_lock);
1761 if (itxg->itxg_txg != txg) {
1762 mutex_exit(&itxg->itxg_lock);
1763 continue;
1767 * If we're adding itx records to the zl_itx_commit_list,
1768 * then the zil better be dirty in this "txg". We can assert
1769 * that here since we're holding the itxg_lock which will
1770 * prevent spa_sync from cleaning it. Once we add the itxs
1771 * to the zl_itx_commit_list we must commit it to disk even
1772 * if it's unnecessary (i.e. the txg was synced).
1774 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1775 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1776 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1778 mutex_exit(&itxg->itxg_lock);
1783 * Move the async itxs for a specified object to commit into sync lists.
1785 static void
1786 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1788 uint64_t otxg, txg;
1789 itx_async_node_t *ian;
1790 avl_tree_t *t;
1791 avl_index_t where;
1793 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1794 otxg = ZILTEST_TXG;
1795 else
1796 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1799 * This is inherently racy, since there is nothing to prevent
1800 * the last synced txg from changing.
1802 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1803 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1805 mutex_enter(&itxg->itxg_lock);
1806 if (itxg->itxg_txg != txg) {
1807 mutex_exit(&itxg->itxg_lock);
1808 continue;
1812 * If a foid is specified then find that node and append its
1813 * list. Otherwise walk the tree appending all the lists
1814 * to the sync list. We add to the end rather than the
1815 * beginning to ensure the create has happened.
1817 t = &itxg->itxg_itxs->i_async_tree;
1818 if (foid != 0) {
1819 ian = avl_find(t, &foid, &where);
1820 if (ian != NULL) {
1821 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1822 &ian->ia_list);
1824 } else {
1825 void *cookie = NULL;
1827 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1828 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1829 &ian->ia_list);
1830 list_destroy(&ian->ia_list);
1831 kmem_free(ian, sizeof (itx_async_node_t));
1834 mutex_exit(&itxg->itxg_lock);
1839 * This function will prune commit itxs that are at the head of the
1840 * commit list (it won't prune past the first non-commit itx), and
1841 * either: a) attach them to the last lwb that's still pending
1842 * completion, or b) skip them altogether.
1844 * This is used as a performance optimization to prevent commit itxs
1845 * from generating new lwbs when it's unnecessary to do so.
1847 static void
1848 zil_prune_commit_list(zilog_t *zilog)
1850 itx_t *itx;
1852 ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1854 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1855 lr_t *lrc = &itx->itx_lr;
1856 if (lrc->lrc_txtype != TX_COMMIT)
1857 break;
1859 mutex_enter(&zilog->zl_lock);
1861 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1862 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1864 * All of the itxs this waiter was waiting on
1865 * must have already completed (or there were
1866 * never any itx's for it to wait on), so it's
1867 * safe to skip this waiter and mark it done.
1869 zil_commit_waiter_skip(itx->itx_private);
1870 } else {
1871 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1872 itx->itx_private = NULL;
1875 mutex_exit(&zilog->zl_lock);
1877 list_remove(&zilog->zl_itx_commit_list, itx);
1878 zil_itx_destroy(itx);
1881 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1884 static void
1885 zil_commit_writer_stall(zilog_t *zilog)
1888 * When zio_alloc_zil() fails to allocate the next lwb block on
1889 * disk, we must call txg_wait_synced() to ensure all of the
1890 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1891 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1892 * to zil_process_commit_list()) will have to call zil_create(),
1893 * and start a new ZIL chain.
1895 * Since zil_alloc_zil() failed, the lwb that was previously
1896 * issued does not have a pointer to the "next" lwb on disk.
1897 * Thus, if another ZIL writer thread was to allocate the "next"
1898 * on-disk lwb, that block could be leaked in the event of a
1899 * crash (because the previous lwb on-disk would not point to
1900 * it).
1902 * We must hold the zilog's zl_writer_lock while we do this, to
1903 * ensure no new threads enter zil_process_commit_list() until
1904 * all lwb's in the zl_lwb_list have been synced and freed
1905 * (which is achieved via the txg_wait_synced() call).
1907 ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1908 txg_wait_synced(zilog->zl_dmu_pool, 0);
1909 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1913 * This function will traverse the commit list, creating new lwbs as
1914 * needed, and committing the itxs from the commit list to these newly
1915 * created lwbs. Additionally, as a new lwb is created, the previous
1916 * lwb will be issued to the zio layer to be written to disk.
1918 static void
1919 zil_process_commit_list(zilog_t *zilog)
1921 spa_t *spa = zilog->zl_spa;
1922 list_t nolwb_waiters;
1923 lwb_t *lwb;
1924 itx_t *itx;
1926 ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1929 * Return if there's nothing to commit before we dirty the fs by
1930 * calling zil_create().
1932 if (list_head(&zilog->zl_itx_commit_list) == NULL)
1933 return;
1935 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
1936 offsetof(zil_commit_waiter_t, zcw_node));
1938 lwb = list_tail(&zilog->zl_lwb_list);
1939 if (lwb == NULL) {
1940 lwb = zil_create(zilog);
1941 } else {
1942 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
1943 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
1946 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1947 lr_t *lrc = &itx->itx_lr;
1948 uint64_t txg = lrc->lrc_txg;
1950 ASSERT3U(txg, !=, 0);
1952 if (lrc->lrc_txtype == TX_COMMIT) {
1953 DTRACE_PROBE2(zil__process__commit__itx,
1954 zilog_t *, zilog, itx_t *, itx);
1955 } else {
1956 DTRACE_PROBE2(zil__process__normal__itx,
1957 zilog_t *, zilog, itx_t *, itx);
1961 * This is inherently racy and may result in us writing
1962 * out a log block for a txg that was just synced. This
1963 * is ok since we'll end cleaning up that log block the
1964 * next time we call zil_sync().
1966 boolean_t synced = txg <= spa_last_synced_txg(spa);
1967 boolean_t frozen = txg > spa_freeze_txg(spa);
1969 if (!synced || frozen) {
1970 if (lwb != NULL) {
1971 lwb = zil_lwb_commit(zilog, itx, lwb);
1972 } else if (lrc->lrc_txtype == TX_COMMIT) {
1973 ASSERT3P(lwb, ==, NULL);
1974 zil_commit_waiter_link_nolwb(
1975 itx->itx_private, &nolwb_waiters);
1977 } else if (lrc->lrc_txtype == TX_COMMIT) {
1978 ASSERT3B(synced, ==, B_TRUE);
1979 ASSERT3B(frozen, ==, B_FALSE);
1982 * If this is a commit itx, then there will be a
1983 * thread that is either: already waiting for
1984 * it, or soon will be waiting.
1986 * This itx has already been committed to disk
1987 * via spa_sync() so we don't bother committing
1988 * it to an lwb. As a result, we cannot use the
1989 * lwb zio callback to signal the waiter and
1990 * mark it as done, so we must do that here.
1992 zil_commit_waiter_skip(itx->itx_private);
1995 list_remove(&zilog->zl_itx_commit_list, itx);
1996 zil_itx_destroy(itx);
1998 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
2000 if (lwb == NULL) {
2002 * This indicates zio_alloc_zil() failed to allocate the
2003 * "next" lwb on-disk. When this happens, we must stall
2004 * the ZIL write pipeline; see the comment within
2005 * zil_commit_writer_stall() for more details.
2007 zil_commit_writer_stall(zilog);
2010 * Additionally, we have to signal and mark the "nolwb"
2011 * waiters as "done" here, since without an lwb, we
2012 * can't do this via zil_lwb_flush_vdevs_done() like
2013 * normal.
2015 zil_commit_waiter_t *zcw;
2016 while (zcw = list_head(&nolwb_waiters)) {
2017 zil_commit_waiter_skip(zcw);
2018 list_remove(&nolwb_waiters, zcw);
2020 } else {
2021 ASSERT(list_is_empty(&nolwb_waiters));
2022 ASSERT3P(lwb, !=, NULL);
2023 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2024 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2027 * At this point, the ZIL block pointed at by the "lwb"
2028 * variable is in one of the following states: "closed"
2029 * or "open".
2031 * If its "closed", then no itxs have been committed to
2032 * it, so there's no point in issuing its zio (i.e.
2033 * it's "empty").
2035 * If its "open" state, then it contains one or more
2036 * itxs that eventually need to be committed to stable
2037 * storage. In this case we intentionally do not issue
2038 * the lwb's zio to disk yet, and instead rely on one of
2039 * the following two mechanisms for issuing the zio:
2041 * 1. Ideally, there will be more ZIL activity occuring
2042 * on the system, such that this function will be
2043 * immediately called again (not necessarily by the same
2044 * thread) and this lwb's zio will be issued via
2045 * zil_lwb_commit(). This way, the lwb is guaranteed to
2046 * be "full" when it is issued to disk, and we'll make
2047 * use of the lwb's size the best we can.
2049 * 2. If there isn't sufficient ZIL activity occuring on
2050 * the system, such that this lwb's zio isn't issued via
2051 * zil_lwb_commit(), zil_commit_waiter() will issue the
2052 * lwb's zio. If this occurs, the lwb is not guaranteed
2053 * to be "full" by the time its zio is issued, and means
2054 * the size of the lwb was "too large" given the amount
2055 * of ZIL activity occuring on the system at that time.
2057 * We do this for a couple of reasons:
2059 * 1. To try and reduce the number of IOPs needed to
2060 * write the same number of itxs. If an lwb has space
2061 * available in it's buffer for more itxs, and more itxs
2062 * will be committed relatively soon (relative to the
2063 * latency of performing a write), then it's beneficial
2064 * to wait for these "next" itxs. This way, more itxs
2065 * can be committed to stable storage with fewer writes.
2067 * 2. To try and use the largest lwb block size that the
2068 * incoming rate of itxs can support. Again, this is to
2069 * try and pack as many itxs into as few lwbs as
2070 * possible, without significantly impacting the latency
2071 * of each individual itx.
2077 * This function is responsible for ensuring the passed in commit waiter
2078 * (and associated commit itx) is committed to an lwb. If the waiter is
2079 * not already committed to an lwb, all itxs in the zilog's queue of
2080 * itxs will be processed. The assumption is the passed in waiter's
2081 * commit itx will found in the queue just like the other non-commit
2082 * itxs, such that when the entire queue is processed, the waiter will
2083 * have been commited to an lwb.
2085 * The lwb associated with the passed in waiter is not guaranteed to
2086 * have been issued by the time this function completes. If the lwb is
2087 * not issued, we rely on future calls to zil_commit_writer() to issue
2088 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2090 static void
2091 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2093 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2094 ASSERT(spa_writeable(zilog->zl_spa));
2095 ASSERT0(zilog->zl_suspend);
2097 mutex_enter(&zilog->zl_writer_lock);
2099 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2101 * It's possible that, while we were waiting to acquire
2102 * the "zl_writer_lock", another thread committed this
2103 * waiter to an lwb. If that occurs, we bail out early,
2104 * without processing any of the zilog's queue of itxs.
2106 * On certain workloads and system configurations, the
2107 * "zl_writer_lock" can become highly contended. In an
2108 * attempt to reduce this contention, we immediately drop
2109 * the lock if the waiter has already been processed.
2111 * We've measured this optimization to reduce CPU spent
2112 * contending on this lock by up to 5%, using a system
2113 * with 32 CPUs, low latency storage (~50 usec writes),
2114 * and 1024 threads performing sync writes.
2116 goto out;
2119 zil_get_commit_list(zilog);
2120 zil_prune_commit_list(zilog);
2121 zil_process_commit_list(zilog);
2123 out:
2124 mutex_exit(&zilog->zl_writer_lock);
2127 static void
2128 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2130 ASSERT(!MUTEX_HELD(&zilog->zl_writer_lock));
2131 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2132 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2134 lwb_t *lwb = zcw->zcw_lwb;
2135 ASSERT3P(lwb, !=, NULL);
2136 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2139 * If the lwb has already been issued by another thread, we can
2140 * immediately return since there's no work to be done (the
2141 * point of this function is to issue the lwb). Additionally, we
2142 * do this prior to acquiring the zl_writer_lock, to avoid
2143 * acquiring it when it's not necessary to do so.
2145 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2146 lwb->lwb_state == LWB_STATE_DONE)
2147 return;
2150 * In order to call zil_lwb_write_issue() we must hold the
2151 * zilog's "zl_writer_lock". We can't simply acquire that lock,
2152 * since we're already holding the commit waiter's "zcw_lock",
2153 * and those two locks are aquired in the opposite order
2154 * elsewhere.
2156 mutex_exit(&zcw->zcw_lock);
2157 mutex_enter(&zilog->zl_writer_lock);
2158 mutex_enter(&zcw->zcw_lock);
2161 * Since we just dropped and re-acquired the commit waiter's
2162 * lock, we have to re-check to see if the waiter was marked
2163 * "done" during that process. If the waiter was marked "done",
2164 * the "lwb" pointer is no longer valid (it can be free'd after
2165 * the waiter is marked "done"), so without this check we could
2166 * wind up with a use-after-free error below.
2168 if (zcw->zcw_done)
2169 goto out;
2171 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2174 * We've already checked this above, but since we hadn't
2175 * acquired the zilog's zl_writer_lock, we have to perform this
2176 * check a second time while holding the lock. We can't call
2177 * zil_lwb_write_issue() if the lwb had already been issued.
2179 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2180 lwb->lwb_state == LWB_STATE_DONE)
2181 goto out;
2183 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2186 * As described in the comments above zil_commit_waiter() and
2187 * zil_process_commit_list(), we need to issue this lwb's zio
2188 * since we've reached the commit waiter's timeout and it still
2189 * hasn't been issued.
2191 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2193 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2196 * Since the lwb's zio hadn't been issued by the time this thread
2197 * reached its timeout, we reset the zilog's "zl_cur_used" field
2198 * to influence the zil block size selection algorithm.
2200 * By having to issue the lwb's zio here, it means the size of the
2201 * lwb was too large, given the incoming throughput of itxs. By
2202 * setting "zl_cur_used" to zero, we communicate this fact to the
2203 * block size selection algorithm, so it can take this informaiton
2204 * into account, and potentially select a smaller size for the
2205 * next lwb block that is allocated.
2207 zilog->zl_cur_used = 0;
2209 if (nlwb == NULL) {
2211 * When zil_lwb_write_issue() returns NULL, this
2212 * indicates zio_alloc_zil() failed to allocate the
2213 * "next" lwb on-disk. When this occurs, the ZIL write
2214 * pipeline must be stalled; see the comment within the
2215 * zil_commit_writer_stall() function for more details.
2217 * We must drop the commit waiter's lock prior to
2218 * calling zil_commit_writer_stall() or else we can wind
2219 * up with the following deadlock:
2221 * - This thread is waiting for the txg to sync while
2222 * holding the waiter's lock; txg_wait_synced() is
2223 * used within txg_commit_writer_stall().
2225 * - The txg can't sync because it is waiting for this
2226 * lwb's zio callback to call dmu_tx_commit().
2228 * - The lwb's zio callback can't call dmu_tx_commit()
2229 * because it's blocked trying to acquire the waiter's
2230 * lock, which occurs prior to calling dmu_tx_commit()
2232 mutex_exit(&zcw->zcw_lock);
2233 zil_commit_writer_stall(zilog);
2234 mutex_enter(&zcw->zcw_lock);
2237 out:
2238 mutex_exit(&zilog->zl_writer_lock);
2239 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2243 * This function is responsible for performing the following two tasks:
2245 * 1. its primary responsibility is to block until the given "commit
2246 * waiter" is considered "done".
2248 * 2. its secondary responsibility is to issue the zio for the lwb that
2249 * the given "commit waiter" is waiting on, if this function has
2250 * waited "long enough" and the lwb is still in the "open" state.
2252 * Given a sufficient amount of itxs being generated and written using
2253 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2254 * function. If this does not occur, this secondary responsibility will
2255 * ensure the lwb is issued even if there is not other synchronous
2256 * activity on the system.
2258 * For more details, see zil_process_commit_list(); more specifically,
2259 * the comment at the bottom of that function.
2261 static void
2262 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2264 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2265 ASSERT(!MUTEX_HELD(&zilog->zl_writer_lock));
2266 ASSERT(spa_writeable(zilog->zl_spa));
2267 ASSERT0(zilog->zl_suspend);
2269 mutex_enter(&zcw->zcw_lock);
2272 * The timeout is scaled based on the lwb latency to avoid
2273 * significantly impacting the latency of each individual itx.
2274 * For more details, see the comment at the bottom of the
2275 * zil_process_commit_list() function.
2277 int pct = MAX(zfs_commit_timeout_pct, 1);
2278 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2279 hrtime_t wakeup = gethrtime() + sleep;
2280 boolean_t timedout = B_FALSE;
2282 while (!zcw->zcw_done) {
2283 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2285 lwb_t *lwb = zcw->zcw_lwb;
2288 * Usually, the waiter will have a non-NULL lwb field here,
2289 * but it's possible for it to be NULL as a result of
2290 * zil_commit() racing with spa_sync().
2292 * When zil_clean() is called, it's possible for the itxg
2293 * list (which may be cleaned via a taskq) to contain
2294 * commit itxs. When this occurs, the commit waiters linked
2295 * off of these commit itxs will not be committed to an
2296 * lwb. Additionally, these commit waiters will not be
2297 * marked done until zil_commit_waiter_skip() is called via
2298 * zil_itxg_clean().
2300 * Thus, it's possible for this commit waiter (i.e. the
2301 * "zcw" variable) to be found in this "in between" state;
2302 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2303 * been skipped, so it's "zcw_done" field is still B_FALSE.
2305 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2307 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2308 ASSERT3B(timedout, ==, B_FALSE);
2311 * If the lwb hasn't been issued yet, then we
2312 * need to wait with a timeout, in case this
2313 * function needs to issue the lwb after the
2314 * timeout is reached; responsibility (2) from
2315 * the comment above this function.
2317 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2318 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2319 CALLOUT_FLAG_ABSOLUTE);
2321 if (timeleft >= 0 || zcw->zcw_done)
2322 continue;
2324 timedout = B_TRUE;
2325 zil_commit_waiter_timeout(zilog, zcw);
2327 if (!zcw->zcw_done) {
2329 * If the commit waiter has already been
2330 * marked "done", it's possible for the
2331 * waiter's lwb structure to have already
2332 * been freed. Thus, we can only reliably
2333 * make these assertions if the waiter
2334 * isn't done.
2336 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2337 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2339 } else {
2341 * If the lwb isn't open, then it must have already
2342 * been issued. In that case, there's no need to
2343 * use a timeout when waiting for the lwb to
2344 * complete.
2346 * Additionally, if the lwb is NULL, the waiter
2347 * will soon be signalled and marked done via
2348 * zil_clean() and zil_itxg_clean(), so no timeout
2349 * is required.
2352 IMPLY(lwb != NULL,
2353 lwb->lwb_state == LWB_STATE_ISSUED ||
2354 lwb->lwb_state == LWB_STATE_DONE);
2355 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2359 mutex_exit(&zcw->zcw_lock);
2362 static zil_commit_waiter_t *
2363 zil_alloc_commit_waiter()
2365 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2367 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2368 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2369 list_link_init(&zcw->zcw_node);
2370 zcw->zcw_lwb = NULL;
2371 zcw->zcw_done = B_FALSE;
2372 zcw->zcw_zio_error = 0;
2374 return (zcw);
2377 static void
2378 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2380 ASSERT(!list_link_active(&zcw->zcw_node));
2381 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2382 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2383 mutex_destroy(&zcw->zcw_lock);
2384 cv_destroy(&zcw->zcw_cv);
2385 kmem_cache_free(zil_zcw_cache, zcw);
2389 * This function is used to create a TX_COMMIT itx and assign it. This
2390 * way, it will be linked into the ZIL's list of synchronous itxs, and
2391 * then later committed to an lwb (or skipped) when
2392 * zil_process_commit_list() is called.
2394 static void
2395 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2397 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2398 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2400 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2401 itx->itx_sync = B_TRUE;
2402 itx->itx_private = zcw;
2404 zil_itx_assign(zilog, itx, tx);
2406 dmu_tx_commit(tx);
2410 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2412 * When writing ZIL transactions to the on-disk representation of the
2413 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2414 * itxs can be committed to a single lwb. Once a lwb is written and
2415 * committed to stable storage (i.e. the lwb is written, and vdevs have
2416 * been flushed), each itx that was committed to that lwb is also
2417 * considered to be committed to stable storage.
2419 * When an itx is committed to an lwb, the log record (lr_t) contained
2420 * by the itx is copied into the lwb's zio buffer, and once this buffer
2421 * is written to disk, it becomes an on-disk ZIL block.
2423 * As itxs are generated, they're inserted into the ZIL's queue of
2424 * uncommitted itxs. The semantics of zil_commit() are such that it will
2425 * block until all itxs that were in the queue when it was called, are
2426 * committed to stable storage.
2428 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2429 * itxs, for all objects in the dataset, will be committed to stable
2430 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2431 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2432 * that correspond to the foid passed in, will be committed to stable
2433 * storage prior to zil_commit() returning.
2435 * Generally speaking, when zil_commit() is called, the consumer doesn't
2436 * actually care about _all_ of the uncommitted itxs. Instead, they're
2437 * simply trying to waiting for a specific itx to be committed to disk,
2438 * but the interface(s) for interacting with the ZIL don't allow such
2439 * fine-grained communication. A better interface would allow a consumer
2440 * to create and assign an itx, and then pass a reference to this itx to
2441 * zil_commit(); such that zil_commit() would return as soon as that
2442 * specific itx was committed to disk (instead of waiting for _all_
2443 * itxs to be committed).
2445 * When a thread calls zil_commit() a special "commit itx" will be
2446 * generated, along with a corresponding "waiter" for this commit itx.
2447 * zil_commit() will wait on this waiter's CV, such that when the waiter
2448 * is marked done, and signalled, zil_commit() will return.
2450 * This commit itx is inserted into the queue of uncommitted itxs. This
2451 * provides an easy mechanism for determining which itxs were in the
2452 * queue prior to zil_commit() having been called, and which itxs were
2453 * added after zil_commit() was called.
2455 * The commit it is special; it doesn't have any on-disk representation.
2456 * When a commit itx is "committed" to an lwb, the waiter associated
2457 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2458 * completes, each waiter on the lwb's list is marked done and signalled
2459 * -- allowing the thread waiting on the waiter to return from zil_commit().
2461 * It's important to point out a few critical factors that allow us
2462 * to make use of the commit itxs, commit waiters, per-lwb lists of
2463 * commit waiters, and zio completion callbacks like we're doing:
2465 * 1. The list of waiters for each lwb is traversed, and each commit
2466 * waiter is marked "done" and signalled, in the zio completion
2467 * callback of the lwb's zio[*].
2469 * * Actually, the waiters are signalled in the zio completion
2470 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2471 * that are sent to the vdevs upon completion of the lwb zio.
2473 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2474 * itxs, the order in which they are inserted is preserved[*]; as
2475 * itxs are added to the queue, they are added to the tail of
2476 * in-memory linked lists.
2478 * When committing the itxs to lwbs (to be written to disk), they
2479 * are committed in the same order in which the itxs were added to
2480 * the uncommitted queue's linked list(s); i.e. the linked list of
2481 * itxs to commit is traversed from head to tail, and each itx is
2482 * committed to an lwb in that order.
2484 * * To clarify:
2486 * - the order of "sync" itxs is preserved w.r.t. other
2487 * "sync" itxs, regardless of the corresponding objects.
2488 * - the order of "async" itxs is preserved w.r.t. other
2489 * "async" itxs corresponding to the same object.
2490 * - the order of "async" itxs is *not* preserved w.r.t. other
2491 * "async" itxs corresponding to different objects.
2492 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2493 * versa) is *not* preserved, even for itxs that correspond
2494 * to the same object.
2496 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2497 * zil_get_commit_list(), and zil_process_commit_list().
2499 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2500 * lwb cannot be considered committed to stable storage, until its
2501 * "previous" lwb is also committed to stable storage. This fact,
2502 * coupled with the fact described above, means that itxs are
2503 * committed in (roughly) the order in which they were generated.
2504 * This is essential because itxs are dependent on prior itxs.
2505 * Thus, we *must not* deem an itx as being committed to stable
2506 * storage, until *all* prior itxs have also been committed to
2507 * stable storage.
2509 * To enforce this ordering of lwb zio's, while still leveraging as
2510 * much of the underlying storage performance as possible, we rely
2511 * on two fundamental concepts:
2513 * 1. The creation and issuance of lwb zio's is protected by
2514 * the zilog's "zl_writer_lock", which ensures only a single
2515 * thread is creating and/or issuing lwb's at a time
2516 * 2. The "previous" lwb is a child of the "current" lwb
2517 * (leveraging the zio parent-child depenency graph)
2519 * By relying on this parent-child zio relationship, we can have
2520 * many lwb zio's concurrently issued to the underlying storage,
2521 * but the order in which they complete will be the same order in
2522 * which they were created.
2524 void
2525 zil_commit(zilog_t *zilog, uint64_t foid)
2528 * We should never attempt to call zil_commit on a snapshot for
2529 * a couple of reasons:
2531 * 1. A snapshot may never be modified, thus it cannot have any
2532 * in-flight itxs that would have modified the dataset.
2534 * 2. By design, when zil_commit() is called, a commit itx will
2535 * be assigned to this zilog; as a result, the zilog will be
2536 * dirtied. We must not dirty the zilog of a snapshot; there's
2537 * checks in the code that enforce this invariant, and will
2538 * cause a panic if it's not upheld.
2540 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2542 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2543 return;
2545 if (!spa_writeable(zilog->zl_spa)) {
2547 * If the SPA is not writable, there should never be any
2548 * pending itxs waiting to be committed to disk. If that
2549 * weren't true, we'd skip writing those itxs out, and
2550 * would break the sematics of zil_commit(); thus, we're
2551 * verifying that truth before we return to the caller.
2553 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2554 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2555 for (int i = 0; i < TXG_SIZE; i++)
2556 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2557 return;
2561 * If the ZIL is suspended, we don't want to dirty it by calling
2562 * zil_commit_itx_assign() below, nor can we write out
2563 * lwbs like would be done in zil_commit_write(). Thus, we
2564 * simply rely on txg_wait_synced() to maintain the necessary
2565 * semantics, and avoid calling those functions altogether.
2567 if (zilog->zl_suspend > 0) {
2568 txg_wait_synced(zilog->zl_dmu_pool, 0);
2569 return;
2573 * Move the "async" itxs for the specified foid to the "sync"
2574 * queues, such that they will be later committed (or skipped)
2575 * to an lwb when zil_process_commit_list() is called.
2577 * Since these "async" itxs must be committed prior to this
2578 * call to zil_commit returning, we must perform this operation
2579 * before we call zil_commit_itx_assign().
2581 zil_async_to_sync(zilog, foid);
2584 * We allocate a new "waiter" structure which will initially be
2585 * linked to the commit itx using the itx's "itx_private" field.
2586 * Since the commit itx doesn't represent any on-disk state,
2587 * when it's committed to an lwb, rather than copying the its
2588 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2589 * added to the lwb's list of waiters. Then, when the lwb is
2590 * committed to stable storage, each waiter in the lwb's list of
2591 * waiters will be marked "done", and signalled.
2593 * We must create the waiter and assign the commit itx prior to
2594 * calling zil_commit_writer(), or else our specific commit itx
2595 * is not guaranteed to be committed to an lwb prior to calling
2596 * zil_commit_waiter().
2598 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2599 zil_commit_itx_assign(zilog, zcw);
2601 zil_commit_writer(zilog, zcw);
2602 zil_commit_waiter(zilog, zcw);
2604 if (zcw->zcw_zio_error != 0) {
2606 * If there was an error writing out the ZIL blocks that
2607 * this thread is waiting on, then we fallback to
2608 * relying on spa_sync() to write out the data this
2609 * thread is waiting on. Obviously this has performance
2610 * implications, but the expectation is for this to be
2611 * an exceptional case, and shouldn't occur often.
2613 DTRACE_PROBE2(zil__commit__io__error,
2614 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2615 txg_wait_synced(zilog->zl_dmu_pool, 0);
2618 zil_free_commit_waiter(zcw);
2622 * Called in syncing context to free committed log blocks and update log header.
2624 void
2625 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2627 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2628 uint64_t txg = dmu_tx_get_txg(tx);
2629 spa_t *spa = zilog->zl_spa;
2630 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2631 lwb_t *lwb;
2634 * We don't zero out zl_destroy_txg, so make sure we don't try
2635 * to destroy it twice.
2637 if (spa_sync_pass(spa) != 1)
2638 return;
2640 mutex_enter(&zilog->zl_lock);
2642 ASSERT(zilog->zl_stop_sync == 0);
2644 if (*replayed_seq != 0) {
2645 ASSERT(zh->zh_replay_seq < *replayed_seq);
2646 zh->zh_replay_seq = *replayed_seq;
2647 *replayed_seq = 0;
2650 if (zilog->zl_destroy_txg == txg) {
2651 blkptr_t blk = zh->zh_log;
2653 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2655 bzero(zh, sizeof (zil_header_t));
2656 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2658 if (zilog->zl_keep_first) {
2660 * If this block was part of log chain that couldn't
2661 * be claimed because a device was missing during
2662 * zil_claim(), but that device later returns,
2663 * then this block could erroneously appear valid.
2664 * To guard against this, assign a new GUID to the new
2665 * log chain so it doesn't matter what blk points to.
2667 zil_init_log_chain(zilog, &blk);
2668 zh->zh_log = blk;
2672 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2673 zh->zh_log = lwb->lwb_blk;
2674 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2675 break;
2676 list_remove(&zilog->zl_lwb_list, lwb);
2677 zio_free(spa, txg, &lwb->lwb_blk);
2678 zil_free_lwb(zilog, lwb);
2681 * If we don't have anything left in the lwb list then
2682 * we've had an allocation failure and we need to zero
2683 * out the zil_header blkptr so that we don't end
2684 * up freeing the same block twice.
2686 if (list_head(&zilog->zl_lwb_list) == NULL)
2687 BP_ZERO(&zh->zh_log);
2689 mutex_exit(&zilog->zl_lock);
2692 /* ARGSUSED */
2693 static int
2694 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2696 lwb_t *lwb = vbuf;
2697 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2698 offsetof(zil_commit_waiter_t, zcw_node));
2699 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2700 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2701 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2702 return (0);
2705 /* ARGSUSED */
2706 static void
2707 zil_lwb_dest(void *vbuf, void *unused)
2709 lwb_t *lwb = vbuf;
2710 mutex_destroy(&lwb->lwb_vdev_lock);
2711 avl_destroy(&lwb->lwb_vdev_tree);
2712 list_destroy(&lwb->lwb_waiters);
2715 void
2716 zil_init(void)
2718 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2719 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2721 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2722 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2725 void
2726 zil_fini(void)
2728 kmem_cache_destroy(zil_zcw_cache);
2729 kmem_cache_destroy(zil_lwb_cache);
2732 void
2733 zil_set_sync(zilog_t *zilog, uint64_t sync)
2735 zilog->zl_sync = sync;
2738 void
2739 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2741 zilog->zl_logbias = logbias;
2744 zilog_t *
2745 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2747 zilog_t *zilog;
2749 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2751 zilog->zl_header = zh_phys;
2752 zilog->zl_os = os;
2753 zilog->zl_spa = dmu_objset_spa(os);
2754 zilog->zl_dmu_pool = dmu_objset_pool(os);
2755 zilog->zl_destroy_txg = TXG_INITIAL - 1;
2756 zilog->zl_logbias = dmu_objset_logbias(os);
2757 zilog->zl_sync = dmu_objset_syncprop(os);
2758 zilog->zl_dirty_max_txg = 0;
2759 zilog->zl_last_lwb_opened = NULL;
2760 zilog->zl_last_lwb_latency = 0;
2762 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2763 mutex_init(&zilog->zl_writer_lock, NULL, MUTEX_DEFAULT, NULL);
2765 for (int i = 0; i < TXG_SIZE; i++) {
2766 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2767 MUTEX_DEFAULT, NULL);
2770 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2771 offsetof(lwb_t, lwb_node));
2773 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2774 offsetof(itx_t, itx_node));
2776 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2778 return (zilog);
2781 void
2782 zil_free(zilog_t *zilog)
2784 zilog->zl_stop_sync = 1;
2786 ASSERT0(zilog->zl_suspend);
2787 ASSERT0(zilog->zl_suspending);
2789 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2790 list_destroy(&zilog->zl_lwb_list);
2792 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2793 list_destroy(&zilog->zl_itx_commit_list);
2795 for (int i = 0; i < TXG_SIZE; i++) {
2797 * It's possible for an itx to be generated that doesn't dirty
2798 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2799 * callback to remove the entry. We remove those here.
2801 * Also free up the ziltest itxs.
2803 if (zilog->zl_itxg[i].itxg_itxs)
2804 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2805 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2808 mutex_destroy(&zilog->zl_writer_lock);
2809 mutex_destroy(&zilog->zl_lock);
2811 cv_destroy(&zilog->zl_cv_suspend);
2813 kmem_free(zilog, sizeof (zilog_t));
2817 * Open an intent log.
2819 zilog_t *
2820 zil_open(objset_t *os, zil_get_data_t *get_data)
2822 zilog_t *zilog = dmu_objset_zil(os);
2824 ASSERT3P(zilog->zl_get_data, ==, NULL);
2825 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2826 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2828 zilog->zl_get_data = get_data;
2830 return (zilog);
2834 * Close an intent log.
2836 void
2837 zil_close(zilog_t *zilog)
2839 lwb_t *lwb;
2840 uint64_t txg;
2842 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2843 zil_commit(zilog, 0);
2844 } else {
2845 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2846 ASSERT0(zilog->zl_dirty_max_txg);
2847 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2850 mutex_enter(&zilog->zl_lock);
2851 lwb = list_tail(&zilog->zl_lwb_list);
2852 if (lwb == NULL)
2853 txg = zilog->zl_dirty_max_txg;
2854 else
2855 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2856 mutex_exit(&zilog->zl_lock);
2859 * We need to use txg_wait_synced() to wait long enough for the
2860 * ZIL to be clean, and to wait for all pending lwbs to be
2861 * written out.
2863 if (txg != 0)
2864 txg_wait_synced(zilog->zl_dmu_pool, txg);
2866 if (zilog_is_dirty(zilog))
2867 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2868 VERIFY(!zilog_is_dirty(zilog));
2870 zilog->zl_get_data = NULL;
2873 * We should have only one lwb left on the list; remove it now.
2875 mutex_enter(&zilog->zl_lock);
2876 lwb = list_head(&zilog->zl_lwb_list);
2877 if (lwb != NULL) {
2878 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2879 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2880 list_remove(&zilog->zl_lwb_list, lwb);
2881 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2882 zil_free_lwb(zilog, lwb);
2884 mutex_exit(&zilog->zl_lock);
2887 static char *suspend_tag = "zil suspending";
2890 * Suspend an intent log. While in suspended mode, we still honor
2891 * synchronous semantics, but we rely on txg_wait_synced() to do it.
2892 * On old version pools, we suspend the log briefly when taking a
2893 * snapshot so that it will have an empty intent log.
2895 * Long holds are not really intended to be used the way we do here --
2896 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
2897 * could fail. Therefore we take pains to only put a long hold if it is
2898 * actually necessary. Fortunately, it will only be necessary if the
2899 * objset is currently mounted (or the ZVOL equivalent). In that case it
2900 * will already have a long hold, so we are not really making things any worse.
2902 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2903 * zvol_state_t), and use their mechanism to prevent their hold from being
2904 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
2905 * very little gain.
2907 * if cookiep == NULL, this does both the suspend & resume.
2908 * Otherwise, it returns with the dataset "long held", and the cookie
2909 * should be passed into zil_resume().
2912 zil_suspend(const char *osname, void **cookiep)
2914 objset_t *os;
2915 zilog_t *zilog;
2916 const zil_header_t *zh;
2917 int error;
2919 error = dmu_objset_hold(osname, suspend_tag, &os);
2920 if (error != 0)
2921 return (error);
2922 zilog = dmu_objset_zil(os);
2924 mutex_enter(&zilog->zl_lock);
2925 zh = zilog->zl_header;
2927 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
2928 mutex_exit(&zilog->zl_lock);
2929 dmu_objset_rele(os, suspend_tag);
2930 return (SET_ERROR(EBUSY));
2934 * Don't put a long hold in the cases where we can avoid it. This
2935 * is when there is no cookie so we are doing a suspend & resume
2936 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2937 * for the suspend because it's already suspended, or there's no ZIL.
2939 if (cookiep == NULL && !zilog->zl_suspending &&
2940 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2941 mutex_exit(&zilog->zl_lock);
2942 dmu_objset_rele(os, suspend_tag);
2943 return (0);
2946 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2947 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2949 zilog->zl_suspend++;
2951 if (zilog->zl_suspend > 1) {
2953 * Someone else is already suspending it.
2954 * Just wait for them to finish.
2957 while (zilog->zl_suspending)
2958 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2959 mutex_exit(&zilog->zl_lock);
2961 if (cookiep == NULL)
2962 zil_resume(os);
2963 else
2964 *cookiep = os;
2965 return (0);
2969 * If there is no pointer to an on-disk block, this ZIL must not
2970 * be active (e.g. filesystem not mounted), so there's nothing
2971 * to clean up.
2973 if (BP_IS_HOLE(&zh->zh_log)) {
2974 ASSERT(cookiep != NULL); /* fast path already handled */
2976 *cookiep = os;
2977 mutex_exit(&zilog->zl_lock);
2978 return (0);
2981 zilog->zl_suspending = B_TRUE;
2982 mutex_exit(&zilog->zl_lock);
2984 zil_commit(zilog, 0);
2986 zil_destroy(zilog, B_FALSE);
2988 mutex_enter(&zilog->zl_lock);
2989 zilog->zl_suspending = B_FALSE;
2990 cv_broadcast(&zilog->zl_cv_suspend);
2991 mutex_exit(&zilog->zl_lock);
2993 if (cookiep == NULL)
2994 zil_resume(os);
2995 else
2996 *cookiep = os;
2997 return (0);
3000 void
3001 zil_resume(void *cookie)
3003 objset_t *os = cookie;
3004 zilog_t *zilog = dmu_objset_zil(os);
3006 mutex_enter(&zilog->zl_lock);
3007 ASSERT(zilog->zl_suspend != 0);
3008 zilog->zl_suspend--;
3009 mutex_exit(&zilog->zl_lock);
3010 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3011 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3014 typedef struct zil_replay_arg {
3015 zil_replay_func_t **zr_replay;
3016 void *zr_arg;
3017 boolean_t zr_byteswap;
3018 char *zr_lr;
3019 } zil_replay_arg_t;
3021 static int
3022 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3024 char name[ZFS_MAX_DATASET_NAME_LEN];
3026 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3028 dmu_objset_name(zilog->zl_os, name);
3030 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3031 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3032 (u_longlong_t)lr->lrc_seq,
3033 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3034 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3036 return (error);
3039 static int
3040 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3042 zil_replay_arg_t *zr = zra;
3043 const zil_header_t *zh = zilog->zl_header;
3044 uint64_t reclen = lr->lrc_reclen;
3045 uint64_t txtype = lr->lrc_txtype;
3046 int error = 0;
3048 zilog->zl_replaying_seq = lr->lrc_seq;
3050 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3051 return (0);
3053 if (lr->lrc_txg < claim_txg) /* already committed */
3054 return (0);
3056 /* Strip case-insensitive bit, still present in log record */
3057 txtype &= ~TX_CI;
3059 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3060 return (zil_replay_error(zilog, lr, EINVAL));
3063 * If this record type can be logged out of order, the object
3064 * (lr_foid) may no longer exist. That's legitimate, not an error.
3066 if (TX_OOO(txtype)) {
3067 error = dmu_object_info(zilog->zl_os,
3068 ((lr_ooo_t *)lr)->lr_foid, NULL);
3069 if (error == ENOENT || error == EEXIST)
3070 return (0);
3074 * Make a copy of the data so we can revise and extend it.
3076 bcopy(lr, zr->zr_lr, reclen);
3079 * If this is a TX_WRITE with a blkptr, suck in the data.
3081 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3082 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3083 zr->zr_lr + reclen);
3084 if (error != 0)
3085 return (zil_replay_error(zilog, lr, error));
3089 * The log block containing this lr may have been byteswapped
3090 * so that we can easily examine common fields like lrc_txtype.
3091 * However, the log is a mix of different record types, and only the
3092 * replay vectors know how to byteswap their records. Therefore, if
3093 * the lr was byteswapped, undo it before invoking the replay vector.
3095 if (zr->zr_byteswap)
3096 byteswap_uint64_array(zr->zr_lr, reclen);
3099 * We must now do two things atomically: replay this log record,
3100 * and update the log header sequence number to reflect the fact that
3101 * we did so. At the end of each replay function the sequence number
3102 * is updated if we are in replay mode.
3104 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3105 if (error != 0) {
3107 * The DMU's dnode layer doesn't see removes until the txg
3108 * commits, so a subsequent claim can spuriously fail with
3109 * EEXIST. So if we receive any error we try syncing out
3110 * any removes then retry the transaction. Note that we
3111 * specify B_FALSE for byteswap now, so we don't do it twice.
3113 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3114 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3115 if (error != 0)
3116 return (zil_replay_error(zilog, lr, error));
3118 return (0);
3121 /* ARGSUSED */
3122 static int
3123 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3125 zilog->zl_replay_blks++;
3127 return (0);
3131 * If this dataset has a non-empty intent log, replay it and destroy it.
3133 void
3134 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3136 zilog_t *zilog = dmu_objset_zil(os);
3137 const zil_header_t *zh = zilog->zl_header;
3138 zil_replay_arg_t zr;
3140 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3141 zil_destroy(zilog, B_TRUE);
3142 return;
3145 zr.zr_replay = replay_func;
3146 zr.zr_arg = arg;
3147 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3148 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3151 * Wait for in-progress removes to sync before starting replay.
3153 txg_wait_synced(zilog->zl_dmu_pool, 0);
3155 zilog->zl_replay = B_TRUE;
3156 zilog->zl_replay_time = ddi_get_lbolt();
3157 ASSERT(zilog->zl_replay_blks == 0);
3158 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3159 zh->zh_claim_txg);
3160 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3162 zil_destroy(zilog, B_FALSE);
3163 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3164 zilog->zl_replay = B_FALSE;
3167 boolean_t
3168 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3170 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3171 return (B_TRUE);
3173 if (zilog->zl_replay) {
3174 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3175 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3176 zilog->zl_replaying_seq;
3177 return (B_TRUE);
3180 return (B_FALSE);
3183 /* ARGSUSED */
3185 zil_vdev_offline(const char *osname, void *arg)
3187 int error;
3189 error = zil_suspend(osname, NULL);
3190 if (error != 0)
3191 return (SET_ERROR(EEXIST));
3192 return (0);