1 /* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>. */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
14 * Return the logarithm to base 2 of x
17 * 1. Argument Reduction: find k and f such that
19 * where sqrt(2)/2 < 1+f < sqrt(2) .
21 * 2. Approximation of log(1+f).
22 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
23 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25 * We use a special Reme algorithm on [0,0.1716] to generate
26 * a polynomial of degree 14 to approximate R The maximum error
27 * of this polynomial approximation is bounded by 2**-58.45. In
30 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
31 * (the values of Lg1 to Lg7 are listed in the program)
34 * | Lg1*s +...+Lg7*s - R(z) | <= 2
36 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
37 * In order to guarantee error in log below 1ulp, we compute log
39 * log(1+f) = f - s*(f - R) (if f is not too large)
40 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
42 * 3. Finally, log(x) = k + log(1+f).
43 * = k+(f-(hfsq-(s*(hfsq+R))))
46 * log2(x) is NaN with signal if x < 0 (including -INF) ;
47 * log2(+INF) is +INF; log(0) is -INF with signal;
48 * log2(NaN) is that NaN with no signal.
51 * The hexadecimal values are the intended ones for the following
52 * constants. The decimal values may be used, provided that the
53 * compiler will convert from decimal to binary accurately enough
54 * to produce the hexadecimal values shown.
58 #include "math_private.h"
61 ln2
= 0.69314718055994530942,
62 two54
= 1.80143985094819840000e+16, /* 43500000 00000000 */
63 Lg1
= 6.666666666666735130e-01, /* 3FE55555 55555593 */
64 Lg2
= 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
65 Lg3
= 2.857142874366239149e-01, /* 3FD24924 94229359 */
66 Lg4
= 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
67 Lg5
= 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
68 Lg6
= 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
69 Lg7
= 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
71 static const double zero
= 0.0;
73 double __ieee754_log2(double x
)
75 double hfsq
,f
,s
,z
,R
,w
,t1
,t2
,dk
;
79 EXTRACT_WORDS(hx
,lx
,x
);
82 if (hx
< 0x00100000) { /* x < 2**-1022 */
83 if (((hx
&0x7fffffff)|lx
)==0)
84 return -two54
/(x
-x
); /* log(+-0)=-inf */
85 if (hx
<0) return (x
-x
)/(x
-x
); /* log(-#) = NaN */
86 k
-= 54; x
*= two54
; /* subnormal number, scale up x */
89 if (hx
>= 0x7ff00000) return x
+x
;
92 i
= (hx
+0x95f64)&0x100000;
93 SET_HIGH_WORD(x
,hx
|(i
^0x3ff00000)); /* normalize x or x/2 */
97 if((0x000fffff&(2+hx
))<3) { /* |f| < 2**-20 */
98 if(f
==zero
) return dk
;
99 R
= f
*f
*(0.5-0.33333333333333333*f
);
107 t1
= w
*(Lg2
+w
*(Lg4
+w
*Lg6
));
108 t2
= z
*(Lg1
+w
*(Lg3
+w
*(Lg5
+w
*Lg7
)));
113 return dk
-((hfsq
-(s
*(hfsq
+R
)))-f
)/ln2
;
115 return dk
-((s
*(f
-R
))-f
)/ln2
;