2 * FreeSec: libcrypt for NetBSD
4 * Copyright (c) 1994 David Burren
7 * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
8 * this file should now *only* export crypt(), in order to make
9 * binaries of libcrypt exportable from the USA
11 * Adapted for FreeBSD-4.0 by Mark R V Murray
12 * this file should now *only* export crypt_des(), in order to make
13 * a module that can be optionally included in libcrypt.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. Neither the name of the author nor the names of other contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * This is an original implementation of the DES and the crypt(3) interfaces
40 * by David Burren <davidb@werj.com.au>.
42 * An excellent reference on the underlying algorithm (and related
45 * B. Schneier, Applied Cryptography: protocols, algorithms,
46 * and source code in C, John Wiley & Sons, 1994.
48 * Note that in that book's description of DES the lookups for the initial,
49 * pbox, and final permutations are inverted (this has been brought to the
50 * attention of the author). A list of errata for this book has been
51 * posted to the sci.crypt newsgroup by the author and is available for FTP.
53 * ARCHITECTURE ASSUMPTIONS:
54 * It is assumed that the 8-byte arrays passed by reference can be
55 * addressed as arrays of u_int32_t's (ie. the CPU is not picky about
59 #include <sys/cdefs.h>
60 #include <sys/types.h>
61 #include <sys/param.h>
62 #include <netinet/in.h>
68 /* Re-entrantify me -- all this junk needs to be in
69 * struct crypt_data to make this really reentrant... */
70 static u_char inv_key_perm
[64];
71 static u_char inv_comp_perm
[56];
72 static u_char un_pbox
[32];
73 static u_int32_t en_keysl
[16], en_keysr
[16];
74 static u_int32_t de_keysl
[16], de_keysr
[16];
75 static u_int32_t ip_maskl
[8][256], ip_maskr
[8][256];
76 static u_int32_t fp_maskl
[8][256], fp_maskr
[8][256];
77 static u_int32_t key_perm_maskl
[8][128], key_perm_maskr
[8][128];
78 static u_int32_t comp_maskl
[8][128], comp_maskr
[8][128];
79 static u_int32_t saltbits
;
80 static u_int32_t old_salt
;
81 static u_int32_t old_rawkey0
, old_rawkey1
;
84 /* Static stuff that stays resident and doesn't change after
85 * being initialized, and therefore doesn't need to be made
87 static u_char init_perm
[64], final_perm
[64];
88 static u_char m_sbox
[4][4096];
89 static u_int32_t psbox
[4][256];
95 static const u_char ascii64
[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
97 static const u_char IP
[64] = {
98 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
99 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
100 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
101 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
104 static const u_char key_perm
[56] = {
105 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
106 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
107 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
108 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
111 static const u_char key_shifts
[16] = {
112 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
115 static const u_char comp_perm
[48] = {
116 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
117 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
118 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
119 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
123 * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
126 static const u_char sbox
[8][64] = {
128 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
129 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
130 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
131 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
134 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
135 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
136 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
137 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
140 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
141 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
142 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
143 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
146 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
147 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
148 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
149 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
152 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
153 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
154 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
155 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
158 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
159 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
160 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
161 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
164 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
165 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
166 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
167 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
170 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
171 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
172 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
173 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
177 static const u_char pbox
[32] = {
178 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
179 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
182 static const u_int32_t bits32
[32] =
184 0x80000000, 0x40000000, 0x20000000, 0x10000000,
185 0x08000000, 0x04000000, 0x02000000, 0x01000000,
186 0x00800000, 0x00400000, 0x00200000, 0x00100000,
187 0x00080000, 0x00040000, 0x00020000, 0x00010000,
188 0x00008000, 0x00004000, 0x00002000, 0x00001000,
189 0x00000800, 0x00000400, 0x00000200, 0x00000100,
190 0x00000080, 0x00000040, 0x00000020, 0x00000010,
191 0x00000008, 0x00000004, 0x00000002, 0x00000001
194 static const u_char bits8
[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
198 ascii_to_bin(char ch
)
203 return(ch
- 'a' + 38);
207 return(ch
- 'A' + 12);
218 static int des_initialised
= 0;
220 int i
, j
, b
, k
, inbit
, obit
;
221 u_int32_t
*p
, *il
, *ir
, *fl
, *fr
;
222 const u_int32_t
*bits28
, *bits24
;
223 u_char u_sbox
[8][64];
225 if (des_initialised
==1)
228 old_rawkey0
= old_rawkey1
= 0L;
231 bits24
= (bits28
= bits32
+ 4) + 4;
234 * Invert the S-boxes, reordering the input bits.
236 for (i
= 0; i
< 8; i
++)
237 for (j
= 0; j
< 64; j
++) {
238 b
= (j
& 0x20) | ((j
& 1) << 4) | ((j
>> 1) & 0xf);
239 u_sbox
[i
][j
] = sbox
[i
][b
];
243 * Convert the inverted S-boxes into 4 arrays of 8 bits.
244 * Each will handle 12 bits of the S-box input.
246 for (b
= 0; b
< 4; b
++)
247 for (i
= 0; i
< 64; i
++)
248 for (j
= 0; j
< 64; j
++)
249 m_sbox
[b
][(i
<< 6) | j
] =
250 (u_char
)((u_sbox
[(b
<< 1)][i
] << 4) |
251 u_sbox
[(b
<< 1) + 1][j
]);
254 * Set up the initial & final permutations into a useful form, and
255 * initialise the inverted key permutation.
257 for (i
= 0; i
< 64; i
++) {
258 init_perm
[final_perm
[i
] = IP
[i
] - 1] = (u_char
)i
;
259 inv_key_perm
[i
] = 255;
263 * Invert the key permutation and initialise the inverted key
264 * compression permutation.
266 for (i
= 0; i
< 56; i
++) {
267 inv_key_perm
[key_perm
[i
] - 1] = (u_char
)i
;
268 inv_comp_perm
[i
] = 255;
272 * Invert the key compression permutation.
274 for (i
= 0; i
< 48; i
++) {
275 inv_comp_perm
[comp_perm
[i
] - 1] = (u_char
)i
;
279 * Set up the OR-mask arrays for the initial and final permutations,
280 * and for the key initial and compression permutations.
282 for (k
= 0; k
< 8; k
++) {
283 for (i
= 0; i
< 256; i
++) {
284 *(il
= &ip_maskl
[k
][i
]) = 0L;
285 *(ir
= &ip_maskr
[k
][i
]) = 0L;
286 *(fl
= &fp_maskl
[k
][i
]) = 0L;
287 *(fr
= &fp_maskr
[k
][i
]) = 0L;
288 for (j
= 0; j
< 8; j
++) {
291 if ((obit
= init_perm
[inbit
]) < 32)
294 *ir
|= bits32
[obit
-32];
295 if ((obit
= final_perm
[inbit
]) < 32)
298 *fr
|= bits32
[obit
- 32];
302 for (i
= 0; i
< 128; i
++) {
303 *(il
= &key_perm_maskl
[k
][i
]) = 0L;
304 *(ir
= &key_perm_maskr
[k
][i
]) = 0L;
305 for (j
= 0; j
< 7; j
++) {
307 if (i
& bits8
[j
+ 1]) {
308 if ((obit
= inv_key_perm
[inbit
]) == 255)
313 *ir
|= bits28
[obit
- 28];
316 *(il
= &comp_maskl
[k
][i
]) = 0L;
317 *(ir
= &comp_maskr
[k
][i
]) = 0L;
318 for (j
= 0; j
< 7; j
++) {
320 if (i
& bits8
[j
+ 1]) {
321 if ((obit
=inv_comp_perm
[inbit
]) == 255)
326 *ir
|= bits24
[obit
- 24];
333 * Invert the P-box permutation, and convert into OR-masks for
334 * handling the output of the S-box arrays setup above.
336 for (i
= 0; i
< 32; i
++)
337 un_pbox
[pbox
[i
] - 1] = (u_char
)i
;
339 for (b
= 0; b
< 4; b
++)
340 for (i
= 0; i
< 256; i
++) {
341 *(p
= &psbox
[b
][i
]) = 0L;
342 for (j
= 0; j
< 8; j
++) {
344 *p
|= bits32
[un_pbox
[8 * b
+ j
]];
353 setup_salt(u_int32_t salt
)
355 u_int32_t obit
, saltbit
;
358 if (salt
== old_salt
)
365 for (i
= 0; i
< 24; i
++) {
375 des_setkey(const char *key
)
377 u_int32_t k0
, k1
, rawkey0
, rawkey1
;
382 rawkey0
= ntohl(*(const u_int32_t
*) key
);
383 rawkey1
= ntohl(*(const u_int32_t
*) (key
+ 4));
385 if ((rawkey0
| rawkey1
)
386 && rawkey0
== old_rawkey0
387 && rawkey1
== old_rawkey1
) {
389 * Already setup for this key.
390 * This optimisation fails on a zero key (which is weak and
391 * has bad parity anyway) in order to simplify the starting
396 old_rawkey0
= rawkey0
;
397 old_rawkey1
= rawkey1
;
400 * Do key permutation and split into two 28-bit subkeys.
402 k0
= key_perm_maskl
[0][rawkey0
>> 25]
403 | key_perm_maskl
[1][(rawkey0
>> 17) & 0x7f]
404 | key_perm_maskl
[2][(rawkey0
>> 9) & 0x7f]
405 | key_perm_maskl
[3][(rawkey0
>> 1) & 0x7f]
406 | key_perm_maskl
[4][rawkey1
>> 25]
407 | key_perm_maskl
[5][(rawkey1
>> 17) & 0x7f]
408 | key_perm_maskl
[6][(rawkey1
>> 9) & 0x7f]
409 | key_perm_maskl
[7][(rawkey1
>> 1) & 0x7f];
410 k1
= key_perm_maskr
[0][rawkey0
>> 25]
411 | key_perm_maskr
[1][(rawkey0
>> 17) & 0x7f]
412 | key_perm_maskr
[2][(rawkey0
>> 9) & 0x7f]
413 | key_perm_maskr
[3][(rawkey0
>> 1) & 0x7f]
414 | key_perm_maskr
[4][rawkey1
>> 25]
415 | key_perm_maskr
[5][(rawkey1
>> 17) & 0x7f]
416 | key_perm_maskr
[6][(rawkey1
>> 9) & 0x7f]
417 | key_perm_maskr
[7][(rawkey1
>> 1) & 0x7f];
419 * Rotate subkeys and do compression permutation.
422 for (round
= 0; round
< 16; round
++) {
425 shifts
+= key_shifts
[round
];
427 t0
= (k0
<< shifts
) | (k0
>> (28 - shifts
));
428 t1
= (k1
<< shifts
) | (k1
>> (28 - shifts
));
430 de_keysl
[15 - round
] =
431 en_keysl
[round
] = comp_maskl
[0][(t0
>> 21) & 0x7f]
432 | comp_maskl
[1][(t0
>> 14) & 0x7f]
433 | comp_maskl
[2][(t0
>> 7) & 0x7f]
434 | comp_maskl
[3][t0
& 0x7f]
435 | comp_maskl
[4][(t1
>> 21) & 0x7f]
436 | comp_maskl
[5][(t1
>> 14) & 0x7f]
437 | comp_maskl
[6][(t1
>> 7) & 0x7f]
438 | comp_maskl
[7][t1
& 0x7f];
440 de_keysr
[15 - round
] =
441 en_keysr
[round
] = comp_maskr
[0][(t0
>> 21) & 0x7f]
442 | comp_maskr
[1][(t0
>> 14) & 0x7f]
443 | comp_maskr
[2][(t0
>> 7) & 0x7f]
444 | comp_maskr
[3][t0
& 0x7f]
445 | comp_maskr
[4][(t1
>> 21) & 0x7f]
446 | comp_maskr
[5][(t1
>> 14) & 0x7f]
447 | comp_maskr
[6][(t1
>> 7) & 0x7f]
448 | comp_maskr
[7][t1
& 0x7f];
454 do_des( u_int32_t l_in
, u_int32_t r_in
, u_int32_t
*l_out
, u_int32_t
*r_out
, int count
)
456 /* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */
457 u_int32_t l
, r
, *kl
, *kr
, *kl1
, *kr1
;
458 u_int32_t f
, r48l
, r48r
;
475 /* Do initial permutation (IP). */
476 l
= ip_maskl
[0][l_in
>> 24]
477 | ip_maskl
[1][(l_in
>> 16) & 0xff]
478 | ip_maskl
[2][(l_in
>> 8) & 0xff]
479 | ip_maskl
[3][l_in
& 0xff]
480 | ip_maskl
[4][r_in
>> 24]
481 | ip_maskl
[5][(r_in
>> 16) & 0xff]
482 | ip_maskl
[6][(r_in
>> 8) & 0xff]
483 | ip_maskl
[7][r_in
& 0xff];
484 r
= ip_maskr
[0][l_in
>> 24]
485 | ip_maskr
[1][(l_in
>> 16) & 0xff]
486 | ip_maskr
[2][(l_in
>> 8) & 0xff]
487 | ip_maskr
[3][l_in
& 0xff]
488 | ip_maskr
[4][r_in
>> 24]
489 | ip_maskr
[5][(r_in
>> 16) & 0xff]
490 | ip_maskr
[6][(r_in
>> 8) & 0xff]
491 | ip_maskr
[7][r_in
& 0xff];
499 /* Expand R to 48 bits (simulate the E-box). */
500 r48l
= ((r
& 0x00000001) << 23)
501 | ((r
& 0xf8000000) >> 9)
502 | ((r
& 0x1f800000) >> 11)
503 | ((r
& 0x01f80000) >> 13)
504 | ((r
& 0x001f8000) >> 15);
505 r48r
= ((r
& 0x0001f800) << 7)
506 | ((r
& 0x00001f80) << 5)
507 | ((r
& 0x000001f8) << 3)
508 | ((r
& 0x0000001f) << 1)
509 | ((r
& 0x80000000) >> 31);
511 * Do salting for crypt() and friends, and
512 * XOR with the permuted key.
514 f
= (r48l
^ r48r
) & saltbits
;
518 * Do sbox lookups (which shrink it back to 32 bits)
519 * and do the pbox permutation at the same time.
521 f
= psbox
[0][m_sbox
[0][r48l
>> 12]]
522 | psbox
[1][m_sbox
[1][r48l
& 0xfff]]
523 | psbox
[2][m_sbox
[2][r48r
>> 12]]
524 | psbox
[3][m_sbox
[3][r48r
& 0xfff]];
525 /* Now that we've permuted things, complete f(). */
533 /* Do final permutation (inverse of IP). */
534 *l_out
= fp_maskl
[0][l
>> 24]
535 | fp_maskl
[1][(l
>> 16) & 0xff]
536 | fp_maskl
[2][(l
>> 8) & 0xff]
537 | fp_maskl
[3][l
& 0xff]
538 | fp_maskl
[4][r
>> 24]
539 | fp_maskl
[5][(r
>> 16) & 0xff]
540 | fp_maskl
[6][(r
>> 8) & 0xff]
541 | fp_maskl
[7][r
& 0xff];
542 *r_out
= fp_maskr
[0][l
>> 24]
543 | fp_maskr
[1][(l
>> 16) & 0xff]
544 | fp_maskr
[2][(l
>> 8) & 0xff]
545 | fp_maskr
[3][l
& 0xff]
546 | fp_maskr
[4][r
>> 24]
547 | fp_maskr
[5][(r
>> 16) & 0xff]
548 | fp_maskr
[6][(r
>> 8) & 0xff]
549 | fp_maskr
[7][r
& 0xff];
556 des_cipher(const char *in
, char *out
, u_int32_t salt
, int count
)
558 u_int32_t l_out
, r_out
, rawl
, rawr
;
570 rawl
= ntohl(*trans
.ui32
++);
571 rawr
= ntohl(*trans
.ui32
);
573 retval
= do_des(rawl
, rawr
, &l_out
, &r_out
, count
);
576 *trans
.ui32
++ = htonl(l_out
);
577 *trans
.ui32
= htonl(r_out
);
584 setkey(const char *key
)
587 u_int32_t packed_keys
[2];
590 p
= (u_char
*) packed_keys
;
592 for (i
= 0; i
< 8; i
++) {
594 for (j
= 0; j
< 8; j
++)
598 des_setkey((char *)p
);
603 encrypt(char *block
, int flag
)
613 for (i
= 0; i
< 2; i
++) {
615 for (j
= 0; j
< 32; j
++)
619 do_des(io
[0], io
[1], io
, io
+ 1, flag
? -1 : 1);
620 for (i
= 0; i
< 2; i
++)
621 for (j
= 0; j
< 32; j
++)
622 block
[(i
<< 5) | j
] = (io
[i
] & bits32
[j
]) ? 1 : 0;
625 char *__des_crypt(const unsigned char *key
, const unsigned char *setting
)
627 u_int32_t count
, salt
, l
, r0
, r1
, keybuf
[2];
629 static char output
[21];
634 * Copy the key, shifting each character up by one bit
635 * and padding with zeros.
637 q
= (u_char
*)keybuf
;
638 while (q
- (u_char
*)keybuf
- 8) {
643 des_setkey((char *)keybuf
);
646 if (*setting
== _PASSWORD_EFMT1
) {
650 * setting - underscore, 4 bytes of count, 4 bytes of salt
651 * key - unlimited characters
653 for (i
= 1, count
= 0L; i
< 5; i
++)
654 count
|= ascii_to_bin(setting
[i
]) << ((i
- 1) * 6);
656 for (i
= 5, salt
= 0L; i
< 9; i
++)
657 salt
|= ascii_to_bin(setting
[i
]) << ((i
- 5) * 6);
661 * Encrypt the key with itself.
663 if (des_cipher((char *)keybuf
, (char *)keybuf
, 0L, 1))
666 * And XOR with the next 8 characters of the key.
668 q
= (u_char
*)keybuf
;
669 while (q
- (u_char
*)keybuf
- 8 && *key
)
672 des_setkey((char *)keybuf
);
674 strncpy(output
, setting
, 9);
677 * Double check that we weren't given a short setting.
678 * If we were, the above code will probably have created
679 * wierd values for count and salt, but we don't really care.
680 * Just make sure the output string doesn't have an extra
684 p
= (u_char
*)output
+ strlen(output
);
690 * setting - 2 bytes of salt
691 * key - up to 8 characters
695 salt
= (ascii_to_bin(setting
[1]) << 6)
696 | ascii_to_bin(setting
[0]);
698 output
[0] = setting
[0];
700 * If the encrypted password that the salt was extracted from
701 * is only 1 character long, the salt will be corrupted. We
702 * need to ensure that the output string doesn't have an extra
705 output
[1] = setting
[1] ? setting
[1] : output
[0];
707 p
= (u_char
*)output
+ 2;
713 if (do_des(0L, 0L, &r0
, &r1
, (int)count
))
716 * Now encode the result...
719 *p
++ = ascii64
[(l
>> 18) & 0x3f];
720 *p
++ = ascii64
[(l
>> 12) & 0x3f];
721 *p
++ = ascii64
[(l
>> 6) & 0x3f];
722 *p
++ = ascii64
[l
& 0x3f];
724 l
= (r0
<< 16) | ((r1
>> 16) & 0xffff);
725 *p
++ = ascii64
[(l
>> 18) & 0x3f];
726 *p
++ = ascii64
[(l
>> 12) & 0x3f];
727 *p
++ = ascii64
[(l
>> 6) & 0x3f];
728 *p
++ = ascii64
[l
& 0x3f];
731 *p
++ = ascii64
[(l
>> 12) & 0x3f];
732 *p
++ = ascii64
[(l
>> 6) & 0x3f];
733 *p
++ = ascii64
[l
& 0x3f];