fix TLS memory leak with dlopen
[uclibc-ng.git] / libm / e_exp.c
blobf694f67d17ee1ccb58b5217167fad1f9111b655c
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* __ieee754_exp(x)
13 * Returns the exponential of x.
15 * Method
16 * 1. Argument reduction:
17 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
18 * Given x, find r and integer k such that
20 * x = k*ln2 + r, |r| <= 0.5*ln2.
22 * Here r will be represented as r = hi-lo for better
23 * accuracy.
25 * 2. Approximation of exp(r) by a special rational function on
26 * the interval [0,0.34658]:
27 * Write
28 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
29 * We use a special Reme algorithm on [0,0.34658] to generate
30 * a polynomial of degree 5 to approximate R. The maximum error
31 * of this polynomial approximation is bounded by 2**-59. In
32 * other words,
33 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
34 * (where z=r*r, and the values of P1 to P5 are listed below)
35 * and
36 * | 5 | -59
37 * | 2.0+P1*z+...+P5*z - R(z) | <= 2
38 * | |
39 * The computation of exp(r) thus becomes
40 * 2*r
41 * exp(r) = 1 + -------
42 * R - r
43 * r*R1(r)
44 * = 1 + r + ----------- (for better accuracy)
45 * 2 - R1(r)
46 * where
47 * 2 4 10
48 * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
50 * 3. Scale back to obtain exp(x):
51 * From step 1, we have
52 * exp(x) = 2^k * exp(r)
54 * Special cases:
55 * exp(INF) is INF, exp(NaN) is NaN;
56 * exp(-INF) is 0, and
57 * for finite argument, only exp(0)=1 is exact.
59 * Accuracy:
60 * according to an error analysis, the error is always less than
61 * 1 ulp (unit in the last place).
63 * Misc. info.
64 * For IEEE double
65 * if x > 7.09782712893383973096e+02 then exp(x) overflow
66 * if x < -7.45133219101941108420e+02 then exp(x) underflow
68 * Constants:
69 * The hexadecimal values are the intended ones for the following
70 * constants. The decimal values may be used, provided that the
71 * compiler will convert from decimal to binary accurately enough
72 * to produce the hexadecimal values shown.
75 #include "math.h"
76 #include "math_private.h"
78 static const double
79 one = 1.0,
80 halF[2] = {0.5,-0.5,},
81 huge = 1.0e+300,
82 twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
83 o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
84 u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
85 ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
86 -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
87 ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
88 -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
89 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
90 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
91 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
92 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
93 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
94 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
96 double __ieee754_exp(double x) /* default IEEE double exp */
98 double y;
99 double hi = 0.0;
100 double lo = 0.0;
101 double c;
102 double t;
103 int32_t k=0;
104 int32_t xsb;
105 u_int32_t hx;
107 GET_HIGH_WORD(hx,x);
108 xsb = (hx>>31)&1; /* sign bit of x */
109 hx &= 0x7fffffff; /* high word of |x| */
111 /* filter out non-finite argument */
112 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
113 if(hx>=0x7ff00000) {
114 u_int32_t lx;
115 GET_LOW_WORD(lx,x);
116 if(((hx&0xfffff)|lx)!=0)
117 return x+x; /* NaN */
118 else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
120 if(x > o_threshold) return huge*huge; /* overflow */
121 if(x < u_threshold) return twom1000*twom1000; /* underflow */
124 /* argument reduction */
125 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
126 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
127 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
128 } else {
129 k = (int32_t)(invln2*x+halF[xsb]);
130 t = k;
131 hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
132 lo = t*ln2LO[0];
134 x = hi - lo;
136 else if(hx < 0x3e300000) { /* when |x|<2**-28 */
137 if(huge+x>one) return one+x;/* trigger inexact */
139 else k = 0;
141 /* x is now in primary range */
142 t = x*x;
143 c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
144 if(k==0) return one-((x*c)/(c-2.0)-x);
145 else y = one-((lo-(x*c)/(2.0-c))-hi);
146 if(k >= -1021) {
147 u_int32_t hy;
148 GET_HIGH_WORD(hy,y);
149 SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
150 return y;
151 } else {
152 u_int32_t hy;
153 GET_HIGH_WORD(hy,y);
154 SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
155 return y*twom1000;