math: no reason to depend on special architecture
[uclibc-ng.git] / libm / e_sqrt.c
bloba5b2049bc128da726a2a99213ace94d175dcf0dd
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* __ieee754_sqrt(x)
13 * Return correctly rounded sqrt.
14 * ------------------------------------------
15 * | Use the hardware sqrt if you have one |
16 * ------------------------------------------
17 * Method:
18 * Bit by bit method using integer arithmetic. (Slow, but portable)
19 * 1. Normalization
20 * Scale x to y in [1,4) with even powers of 2:
21 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
22 * sqrt(x) = 2^k * sqrt(y)
23 * 2. Bit by bit computation
24 * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
25 * i 0
26 * i+1 2
27 * s = 2*q , and y = 2 * ( y - q ). (1)
28 * i i i i
30 * To compute q from q , one checks whether
31 * i+1 i
33 * -(i+1) 2
34 * (q + 2 ) <= y. (2)
35 * i
36 * -(i+1)
37 * If (2) is false, then q = q ; otherwise q = q + 2 .
38 * i+1 i i+1 i
40 * With some algebric manipulation, it is not difficult to see
41 * that (2) is equivalent to
42 * -(i+1)
43 * s + 2 <= y (3)
44 * i i
46 * The advantage of (3) is that s and y can be computed by
47 * i i
48 * the following recurrence formula:
49 * if (3) is false
51 * s = s , y = y ; (4)
52 * i+1 i i+1 i
54 * otherwise,
55 * -i -(i+1)
56 * s = s + 2 , y = y - s - 2 (5)
57 * i+1 i i+1 i i
59 * One may easily use induction to prove (4) and (5).
60 * Note. Since the left hand side of (3) contain only i+2 bits,
61 * it does not necessary to do a full (53-bit) comparison
62 * in (3).
63 * 3. Final rounding
64 * After generating the 53 bits result, we compute one more bit.
65 * Together with the remainder, we can decide whether the
66 * result is exact, bigger than 1/2ulp, or less than 1/2ulp
67 * (it will never equal to 1/2ulp).
68 * The rounding mode can be detected by checking whether
69 * huge + tiny is equal to huge, and whether huge - tiny is
70 * equal to huge for some floating point number "huge" and "tiny".
72 * Special cases:
73 * sqrt(+-0) = +-0 ... exact
74 * sqrt(inf) = inf
75 * sqrt(-ve) = NaN ... with invalid signal
76 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
78 * Other methods : see the appended file at the end of the program below.
79 *---------------
82 #include "math.h"
83 #include "math_private.h"
85 static const double one = 1.0, tiny = 1.0e-300;
87 double __ieee754_sqrt(double x)
89 double z;
90 int32_t sign = (int)0x80000000;
91 int32_t ix0,s0,q,m,t,i;
92 u_int32_t r,t1,s1,ix1,q1;
94 EXTRACT_WORDS(ix0,ix1,x);
96 /* take care of Inf and NaN */
97 if((ix0&0x7ff00000)==0x7ff00000) {
98 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
99 sqrt(-inf)=sNaN */
101 /* take care of zero */
102 if(ix0<=0) {
103 if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
104 else if(ix0<0)
105 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
107 /* normalize x */
108 m = (ix0>>20);
109 if(m==0) { /* subnormal x */
110 while(ix0==0) {
111 m -= 21;
112 ix0 |= (ix1>>11); ix1 <<= 21;
114 for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
115 m -= i-1;
116 ix0 |= (ix1>>(32-i));
117 ix1 <<= i;
119 m -= 1023; /* unbias exponent */
120 ix0 = (ix0&0x000fffff)|0x00100000;
121 if(m&1){ /* odd m, double x to make it even */
122 ix0 += ix0 + ((ix1&sign)>>31);
123 ix1 += ix1;
125 m >>= 1; /* m = [m/2] */
127 /* generate sqrt(x) bit by bit */
128 ix0 += ix0 + ((ix1&sign)>>31);
129 ix1 += ix1;
130 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
131 r = 0x00200000; /* r = moving bit from right to left */
133 while(r!=0) {
134 t = s0+r;
135 if(t<=ix0) {
136 s0 = t+r;
137 ix0 -= t;
138 q += r;
140 ix0 += ix0 + ((ix1&sign)>>31);
141 ix1 += ix1;
142 r>>=1;
145 r = sign;
146 while(r!=0) {
147 t1 = s1+r;
148 t = s0;
149 if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
150 s1 = t1+r;
151 if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
152 ix0 -= t;
153 if (ix1 < t1) ix0 -= 1;
154 ix1 -= t1;
155 q1 += r;
157 ix0 += ix0 + ((ix1&sign)>>31);
158 ix1 += ix1;
159 r>>=1;
162 /* use floating add to find out rounding direction */
163 if((ix0|ix1)!=0) {
164 z = one-tiny; /* trigger inexact flag */
165 if (z>=one) {
166 z = one+tiny;
167 if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
168 else if (z>one) {
169 if (q1==(u_int32_t)0xfffffffe) q+=1;
170 q1+=2;
171 } else
172 q1 += (q1&1);
175 ix0 = (q>>1)+0x3fe00000;
176 ix1 = q1>>1;
177 if ((q&1)==1) ix1 |= sign;
178 ix0 += (m <<20);
179 INSERT_WORDS(z,ix0,ix1);
180 return z;
183 strong_alias(__ieee754_sqrt, sqrt)
184 libm_hidden_def(sqrt)
188 Other methods (use floating-point arithmetic)
189 -------------
190 (This is a copy of a drafted paper by Prof W. Kahan
191 and K.C. Ng, written in May, 1986)
193 Two algorithms are given here to implement sqrt(x)
194 (IEEE double precision arithmetic) in software.
195 Both supply sqrt(x) correctly rounded. The first algorithm (in
196 Section A) uses newton iterations and involves four divisions.
197 The second one uses reciproot iterations to avoid division, but
198 requires more multiplications. Both algorithms need the ability
199 to chop results of arithmetic operations instead of round them,
200 and the INEXACT flag to indicate when an arithmetic operation
201 is executed exactly with no roundoff error, all part of the
202 standard (IEEE 754-1985). The ability to perform shift, add,
203 subtract and logical AND operations upon 32-bit words is needed
204 too, though not part of the standard.
206 A. sqrt(x) by Newton Iteration
208 (1) Initial approximation
210 Let x0 and x1 be the leading and the trailing 32-bit words of
211 a floating point number x (in IEEE double format) respectively
213 1 11 52 ...widths
214 ------------------------------------------------------
215 x: |s| e | f |
216 ------------------------------------------------------
217 msb lsb msb lsb ...order
220 ------------------------ ------------------------
221 x0: |s| e | f1 | x1: | f2 |
222 ------------------------ ------------------------
224 By performing shifts and subtracts on x0 and x1 (both regarded
225 as integers), we obtain an 8-bit approximation of sqrt(x) as
226 follows.
228 k := (x0>>1) + 0x1ff80000;
229 y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
230 Here k is a 32-bit integer and T1[] is an integer array containing
231 correction terms. Now magically the floating value of y (y's
232 leading 32-bit word is y0, the value of its trailing word is 0)
233 approximates sqrt(x) to almost 8-bit.
235 Value of T1:
236 static int T1[32]= {
237 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
238 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
239 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
240 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
242 (2) Iterative refinement
244 Apply Heron's rule three times to y, we have y approximates
245 sqrt(x) to within 1 ulp (Unit in the Last Place):
247 y := (y+x/y)/2 ... almost 17 sig. bits
248 y := (y+x/y)/2 ... almost 35 sig. bits
249 y := y-(y-x/y)/2 ... within 1 ulp
252 Remark 1.
253 Another way to improve y to within 1 ulp is:
255 y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
256 y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
259 (x-y )*y
260 y := y + 2* ---------- ...within 1 ulp
262 3y + x
265 This formula has one division fewer than the one above; however,
266 it requires more multiplications and additions. Also x must be
267 scaled in advance to avoid spurious overflow in evaluating the
268 expression 3y*y+x. Hence it is not recommended uless division
269 is slow. If division is very slow, then one should use the
270 reciproot algorithm given in section B.
272 (3) Final adjustment
274 By twiddling y's last bit it is possible to force y to be
275 correctly rounded according to the prevailing rounding mode
276 as follows. Let r and i be copies of the rounding mode and
277 inexact flag before entering the square root program. Also we
278 use the expression y+-ulp for the next representable floating
279 numbers (up and down) of y. Note that y+-ulp = either fixed
280 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
281 mode.
283 I := FALSE; ... reset INEXACT flag I
284 R := RZ; ... set rounding mode to round-toward-zero
285 z := x/y; ... chopped quotient, possibly inexact
286 If(not I) then { ... if the quotient is exact
287 if(z=y) {
288 I := i; ... restore inexact flag
289 R := r; ... restore rounded mode
290 return sqrt(x):=y.
291 } else {
292 z := z - ulp; ... special rounding
295 i := TRUE; ... sqrt(x) is inexact
296 If (r=RN) then z=z+ulp ... rounded-to-nearest
297 If (r=RP) then { ... round-toward-+inf
298 y = y+ulp; z=z+ulp;
300 y := y+z; ... chopped sum
301 y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
302 I := i; ... restore inexact flag
303 R := r; ... restore rounded mode
304 return sqrt(x):=y.
306 (4) Special cases
308 Square root of +inf, +-0, or NaN is itself;
309 Square root of a negative number is NaN with invalid signal.
312 B. sqrt(x) by Reciproot Iteration
314 (1) Initial approximation
316 Let x0 and x1 be the leading and the trailing 32-bit words of
317 a floating point number x (in IEEE double format) respectively
318 (see section A). By performing shifs and subtracts on x0 and y0,
319 we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
321 k := 0x5fe80000 - (x0>>1);
322 y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
324 Here k is a 32-bit integer and T2[] is an integer array
325 containing correction terms. Now magically the floating
326 value of y (y's leading 32-bit word is y0, the value of
327 its trailing word y1 is set to zero) approximates 1/sqrt(x)
328 to almost 7.8-bit.
330 Value of T2:
331 static int T2[64]= {
332 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
333 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
334 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
335 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
336 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
337 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
338 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
339 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
341 (2) Iterative refinement
343 Apply Reciproot iteration three times to y and multiply the
344 result by x to get an approximation z that matches sqrt(x)
345 to about 1 ulp. To be exact, we will have
346 -1ulp < sqrt(x)-z<1.0625ulp.
348 ... set rounding mode to Round-to-nearest
349 y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
350 y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
351 ... special arrangement for better accuracy
352 z := x*y ... 29 bits to sqrt(x), with z*y<1
353 z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
355 Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
356 (a) the term z*y in the final iteration is always less than 1;
357 (b) the error in the final result is biased upward so that
358 -1 ulp < sqrt(x) - z < 1.0625 ulp
359 instead of |sqrt(x)-z|<1.03125ulp.
361 (3) Final adjustment
363 By twiddling y's last bit it is possible to force y to be
364 correctly rounded according to the prevailing rounding mode
365 as follows. Let r and i be copies of the rounding mode and
366 inexact flag before entering the square root program. Also we
367 use the expression y+-ulp for the next representable floating
368 numbers (up and down) of y. Note that y+-ulp = either fixed
369 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
370 mode.
372 R := RZ; ... set rounding mode to round-toward-zero
373 switch(r) {
374 case RN: ... round-to-nearest
375 if(x<= z*(z-ulp)...chopped) z = z - ulp; else
376 if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
377 break;
378 case RZ:case RM: ... round-to-zero or round-to--inf
379 R:=RP; ... reset rounding mod to round-to-+inf
380 if(x<z*z ... rounded up) z = z - ulp; else
381 if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
382 break;
383 case RP: ... round-to-+inf
384 if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
385 if(x>z*z ...chopped) z = z+ulp;
386 break;
389 Remark 3. The above comparisons can be done in fixed point. For
390 example, to compare x and w=z*z chopped, it suffices to compare
391 x1 and w1 (the trailing parts of x and w), regarding them as
392 two's complement integers.
394 ...Is z an exact square root?
395 To determine whether z is an exact square root of x, let z1 be the
396 trailing part of z, and also let x0 and x1 be the leading and
397 trailing parts of x.
399 If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
400 I := 1; ... Raise Inexact flag: z is not exact
401 else {
402 j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
403 k := z1 >> 26; ... get z's 25-th and 26-th
404 fraction bits
405 I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
407 R:= r ... restore rounded mode
408 return sqrt(x):=z.
410 If multiplication is cheaper then the foregoing red tape, the
411 Inexact flag can be evaluated by
413 I := i;
414 I := (z*z!=x) or I.
416 Note that z*z can overwrite I; this value must be sensed if it is
417 True.
419 Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
420 zero.
422 --------------------
423 z1: | f2 |
424 --------------------
425 bit 31 bit 0
427 Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
428 or even of logb(x) have the following relations:
430 -------------------------------------------------
431 bit 27,26 of z1 bit 1,0 of x1 logb(x)
432 -------------------------------------------------
433 00 00 odd and even
434 01 01 even
435 10 10 odd
436 10 00 even
437 11 01 even
438 -------------------------------------------------
440 (4) Special cases (see (4) of Section A).