2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
13 * Return the Hyperbolic Tangent of x
18 * 0. tanh(x) is defined to be -----------
21 * 1. reduce x to non-negative by tanh(-x) = -tanh(x).
22 * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
24 * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
27 * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
29 * 22.0 < x <= INF : tanh(x) := 1.
33 * only tanh(0)=0 is exact for finite argument.
37 #include "math_private.h"
39 static const double one
=1.0, two
=2.0, tiny
= 1.0e-300;
46 /* High word of |x|. */
52 if (jx
>=0) return one
/x
+one
; /* tanh(+-inf)=+-1 */
53 else return one
/x
-one
; /* tanh(NaN) = NaN */
57 if (ix
< 0x40360000) { /* |x|<22 */
58 if (ix
<0x3c800000) /* |x|<2**-55 */
59 return x
*(one
+x
); /* tanh(small) = small */
60 if (ix
>=0x3ff00000) { /* |x|>=1 */
61 t
= expm1(two
*fabs(x
));
62 z
= one
- two
/(t
+two
);
64 t
= expm1(-two
*fabs(x
));
67 /* |x| > 22, return +-1 */
69 z
= one
- tiny
; /* raised inexact flag */
71 return (jx
>=0)? z
: -z
;