2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
13 * Return the logrithm of x
16 * 1. Argument Reduction: find k and f such that
18 * where sqrt(2)/2 < 1+f < sqrt(2) .
20 * 2. Approximation of log(1+f).
21 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
22 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
24 * We use a special Reme algorithm on [0,0.1716] to generate
25 * a polynomial of degree 14 to approximate R The maximum error
26 * of this polynomial approximation is bounded by 2**-58.45. In
29 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
30 * (the values of Lg1 to Lg7 are listed in the program)
33 * | Lg1*s +...+Lg7*s - R(z) | <= 2
35 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
36 * In order to guarantee error in log below 1ulp, we compute log
38 * log(1+f) = f - s*(f - R) (if f is not too large)
39 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
41 * 3. Finally, log(x) = k*ln2 + log(1+f).
42 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
43 * Here ln2 is split into two floating point number:
45 * where n*ln2_hi is always exact for |n| < 2000.
48 * log(x) is NaN with signal if x < 0 (including -INF) ;
49 * log(+INF) is +INF; log(0) is -INF with signal;
50 * log(NaN) is that NaN with no signal.
53 * according to an error analysis, the error is always less than
54 * 1 ulp (unit in the last place).
57 * The hexadecimal values are the intended ones for the following
58 * constants. The decimal values may be used, provided that the
59 * compiler will convert from decimal to binary accurately enough
60 * to produce the hexadecimal values shown.
64 #include "math_private.h"
67 ln2_hi
= 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
68 ln2_lo
= 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
69 two54
= 1.80143985094819840000e+16, /* 43500000 00000000 */
70 Lg1
= 6.666666666666735130e-01, /* 3FE55555 55555593 */
71 Lg2
= 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
72 Lg3
= 2.857142874366239149e-01, /* 3FD24924 94229359 */
73 Lg4
= 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
74 Lg5
= 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
75 Lg6
= 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
76 Lg7
= 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
78 static const double zero
= 0.0;
80 double __ieee754_log(double x
)
82 double hfsq
,f
,s
,z
,R
,w
,t1
,t2
,dk
;
86 EXTRACT_WORDS(hx
,lx
,x
);
89 if (hx
< 0x00100000) { /* x < 2**-1022 */
90 if (((hx
&0x7fffffff)|lx
)==0)
91 return -two54
/zero
; /* log(+-0)=-inf */
92 if (hx
<0) return (x
-x
)/zero
; /* log(-#) = NaN */
93 k
-= 54; x
*= two54
; /* subnormal number, scale up x */
96 if (hx
>= 0x7ff00000) return x
+x
;
99 i
= (hx
+0x95f64)&0x100000;
100 SET_HIGH_WORD(x
,hx
|(i
^0x3ff00000)); /* normalize x or x/2 */
103 if((0x000fffff&(2+hx
))<3) { /* |f| < 2**-20 */
104 if(f
==zero
) {if(k
==0) return zero
; else {dk
=(double)k
;
105 return dk
*ln2_hi
+dk
*ln2_lo
;}
107 R
= f
*f
*(0.5-0.33333333333333333*f
);
108 if(k
==0) return f
-R
; else {dk
=(double)k
;
109 return dk
*ln2_hi
-((R
-dk
*ln2_lo
)-f
);}
117 t1
= w
*(Lg2
+w
*(Lg4
+w
*Lg6
));
118 t2
= z
*(Lg1
+w
*(Lg3
+w
*(Lg5
+w
*Lg7
)));
123 if(k
==0) return f
-(hfsq
-s
*(hfsq
+R
)); else
124 return dk
*ln2_hi
-((hfsq
-(s
*(hfsq
+R
)+dk
*ln2_lo
))-f
);
126 if(k
==0) return f
-s
*(f
-R
); else
127 return dk
*ln2_hi
-((s
*(f
-R
)-dk
*ln2_lo
)-f
);
137 double z
= __ieee754_log(x
);
138 if (_LIB_VERSION
== _IEEE_
|| isnan(x
) || x
> 0.0)
141 return __kernel_standard(x
, x
, 16); /* log(0) */
142 return __kernel_standard(x
, x
, 17); /* log(x<0) */
145 strong_alias(__ieee754_log
, log
)