2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
13 * __ieee754_jn(n, x), __ieee754_yn(n, x)
14 * floating point Bessel's function of the 1st and 2nd kind
18 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20 * Note 2. About jn(n,x), yn(n,x)
21 * For n=0, j0(x) is called,
22 * for n=1, j1(x) is called,
23 * for n<x, forward recursion us used starting
24 * from values of j0(x) and j1(x).
25 * for n>x, a continued fraction approximation to
26 * j(n,x)/j(n-1,x) is evaluated and then backward
27 * recursion is used starting from a supposed value
28 * for j(n,x). The resulting value of j(0,x) is
29 * compared with the actual value to correct the
30 * supposed value of j(n,x).
32 * yn(n,x) is similar in all respects, except
33 * that forward recursion is used for all
39 #include "math_private.h"
42 invsqrtpi
= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
43 two
= 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
44 one
= 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
46 static const double zero
= 0.00000000000000000000e+00;
48 double __ieee754_jn(int n
, double x
)
50 int32_t i
,hx
,ix
,lx
, sgn
;
51 double a
, b
, temp
=0, di
;
54 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
55 * Thus, J(-n,x) = J(n,-x)
57 EXTRACT_WORDS(hx
,lx
,x
);
59 /* if J(n,NaN) is NaN */
60 if((ix
|((u_int32_t
)(lx
|-lx
))>>31)>0x7ff00000) return x
+x
;
66 if(n
==0) return(__ieee754_j0(x
));
67 if(n
==1) return(__ieee754_j1(x
));
68 sgn
= (n
&1)&(hx
>>31); /* even n -- 0, odd n -- sign(x) */
70 if((ix
|lx
)==0||ix
>=0x7ff00000) /* if x is 0 or inf */
72 else if((double)n
<=x
) {
73 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
74 if(ix
>=0x52D00000) { /* x > 2**302 */
76 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
77 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
78 * Let s=sin(x), c=cos(x),
79 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
81 * n sin(xn)*sqt2 cos(xn)*sqt2
82 * ----------------------------------
89 case 0: temp
= cos(x
)+sin(x
); break;
90 case 1: temp
= -cos(x
)+sin(x
); break;
91 case 2: temp
= -cos(x
)-sin(x
); break;
92 case 3: temp
= cos(x
)-sin(x
); break;
94 b
= invsqrtpi
*temp
/sqrt(x
);
100 b
= b
*((double)(i
+i
)/x
) - a
; /* avoid underflow */
105 if(ix
<0x3e100000) { /* x < 2**-29 */
106 /* x is tiny, return the first Taylor expansion of J(n,x)
107 * J(n,x) = 1/n!*(x/2)^n - ...
109 if(n
>33) /* underflow */
112 temp
= x
*0.5; b
= temp
;
113 for (a
=one
,i
=2;i
<=n
;i
++) {
114 a
*= (double)i
; /* a = n! */
115 b
*= temp
; /* b = (x/2)^n */
120 /* use backward recurrence */
122 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
123 * 2n - 2(n+1) - 2(n+2)
126 * (for large x) = ---- ------ ------ .....
128 * -- - ------ - ------ -
131 * Let w = 2n/x and h=2/x, then the above quotient
132 * is equal to the continued fraction:
134 * = -----------------------
136 * w - -----------------
141 * To determine how many terms needed, let
142 * Q(0) = w, Q(1) = w(w+h) - 1,
143 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
144 * When Q(k) > 1e4 good for single
145 * When Q(k) > 1e9 good for double
146 * When Q(k) > 1e17 good for quadruple
150 double q0
,q1
,h
,tmp
; int32_t k
,m
;
151 w
= (n
+n
)/(double)x
; h
= 2.0/(double)x
;
152 q0
= w
; z
= w
+h
; q1
= w
*z
- 1.0; k
=1;
160 for(t
=zero
, i
= 2*(n
+k
); i
>=m
; i
-= 2) t
= one
/(i
/x
-t
);
163 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
164 * Hence, if n*(log(2n/x)) > ...
165 * single 8.8722839355e+01
166 * double 7.09782712893383973096e+02
167 * long double 1.1356523406294143949491931077970765006170e+04
168 * then recurrent value may overflow and the result is
169 * likely underflow to zero
173 tmp
= tmp
*__ieee754_log(fabs(v
*tmp
));
174 if(tmp
<7.09782712893383973096e+02) {
175 for(i
=n
-1,di
=(double)(i
+i
);i
>0;i
--){
183 for(i
=n
-1,di
=(double)(i
+i
);i
>0;i
--){
189 /* scale b to avoid spurious overflow */
197 b
= (t
*__ieee754_j0(x
)/b
);
200 if(sgn
==1) return -b
; else return b
;
203 strong_alias(__ieee754_jn
, jn
)
205 double __ieee754_yn(int n
, double x
)
211 EXTRACT_WORDS(hx
,lx
,x
);
213 /* if Y(n,NaN) is NaN */
214 if((ix
|((u_int32_t
)(lx
|-lx
))>>31)>0x7ff00000) return x
+x
;
215 if((ix
|lx
)==0) return -one
/zero
;
216 if(hx
<0) return zero
/zero
;
220 sign
= 1 - ((n
&1)<<1);
222 if(n
==0) return(__ieee754_y0(x
));
223 if(n
==1) return(sign
*__ieee754_y1(x
));
224 if(ix
==0x7ff00000) return zero
;
225 if(ix
>=0x52D00000) { /* x > 2**302 */
227 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
228 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
229 * Let s=sin(x), c=cos(x),
230 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
232 * n sin(xn)*sqt2 cos(xn)*sqt2
233 * ----------------------------------
240 case 0: temp
= sin(x
)-cos(x
); break;
241 case 1: temp
= -sin(x
)-cos(x
); break;
242 case 2: temp
= -sin(x
)+cos(x
); break;
243 case 3: temp
= sin(x
)+cos(x
); break;
245 b
= invsqrtpi
*temp
/sqrt(x
);
250 /* quit if b is -inf */
251 GET_HIGH_WORD(high
,b
);
252 for(i
=1;i
<n
&&high
!=0xfff00000;i
++){
254 b
= ((double)(i
+i
)/x
)*b
- a
;
255 GET_HIGH_WORD(high
,b
);
259 if(sign
>0) return b
; else return -b
;
262 strong_alias(__ieee754_yn
, yn
)