2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
12 /* double erf(double x)
13 * double erfc(double x)
16 * erf(x) = --------- | exp(-t*t)dt
23 * erfc(-x) = 2 - erfc(x)
26 * 1. For |x| in [0, 0.84375]
27 * erf(x) = x + x*R(x^2)
28 * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
29 * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
30 * where R = P/Q where P is an odd poly of degree 8 and
31 * Q is an odd poly of degree 10.
33 * | R - (erf(x)-x)/x | <= 2
36 * Remark. The formula is derived by noting
37 * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
39 * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
40 * is close to one. The interval is chosen because the fix
41 * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
42 * near 0.6174), and by some experiment, 0.84375 is chosen to
43 * guarantee the error is less than one ulp for erf.
45 * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
46 * c = 0.84506291151 rounded to single (24 bits)
47 * erf(x) = sign(x) * (c + P1(s)/Q1(s))
48 * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
49 * 1+(c+P1(s)/Q1(s)) if x < 0
50 * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
51 * Remark: here we use the taylor series expansion at x=1.
52 * erf(1+s) = erf(1) + s*Poly(s)
53 * = 0.845.. + P1(s)/Q1(s)
54 * That is, we use rational approximation to approximate
55 * erf(1+s) - (c = (single)0.84506291151)
56 * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
58 * P1(s) = degree 6 poly in s
59 * Q1(s) = degree 6 poly in s
61 * 3. For x in [1.25,1/0.35(~2.857143)],
62 * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
63 * erf(x) = 1 - erfc(x)
65 * R1(z) = degree 7 poly in z, (z=1/x^2)
66 * S1(z) = degree 8 poly in z
68 * 4. For x in [1/0.35,28]
69 * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
70 * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
71 * = 2.0 - tiny (if x <= -6)
72 * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
73 * erf(x) = sign(x)*(1.0 - tiny)
75 * R2(z) = degree 6 poly in z, (z=1/x^2)
76 * S2(z) = degree 7 poly in z
79 * To compute exp(-x*x-0.5625+R/S), let s be a single
80 * precision number and s := x; then
81 * -x*x = -s*s + (s-x)*(s+x)
82 * exp(-x*x-0.5626+R/S) =
83 * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
85 * Here 4 and 5 make use of the asymptotic series
87 * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
89 * We use rational approximation to approximate
90 * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
91 * Here is the error bound for R1/S1 and R2/S2
92 * |R1/S1 - f(x)| < 2**(-62.57)
93 * |R2/S2 - f(x)| < 2**(-61.52)
95 * 5. For inf > x >= 28
96 * erf(x) = sign(x) *(1 - tiny) (raise inexact)
97 * erfc(x) = tiny*tiny (raise underflow) if x > 0
101 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
102 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
103 * erfc/erf(NaN) is NaN
107 #include "math_private.h"
111 half
= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
112 one
= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
113 two
= 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
114 /* c = (float)0.84506291151 */
115 erx
= 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
117 * Coefficients for approximation to erf on [0,0.84375]
119 efx
= 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
120 efx8
= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
121 pp0
= 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
122 pp1
= -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
123 pp2
= -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
124 pp3
= -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
125 pp4
= -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
126 qq1
= 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
127 qq2
= 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
128 qq3
= 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
129 qq4
= 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
130 qq5
= -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
132 * Coefficients for approximation to erf in [0.84375,1.25]
134 pa0
= -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
135 pa1
= 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
136 pa2
= -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
137 pa3
= 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
138 pa4
= -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
139 pa5
= 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
140 pa6
= -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
141 qa1
= 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
142 qa2
= 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
143 qa3
= 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
144 qa4
= 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
145 qa5
= 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
146 qa6
= 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
148 * Coefficients for approximation to erfc in [1.25,1/0.35]
150 ra0
= -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
151 ra1
= -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
152 ra2
= -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
153 ra3
= -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
154 ra4
= -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
155 ra5
= -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
156 ra6
= -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
157 ra7
= -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
158 sa1
= 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
159 sa2
= 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
160 sa3
= 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
161 sa4
= 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
162 sa5
= 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
163 sa6
= 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
164 sa7
= 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
165 sa8
= -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
167 * Coefficients for approximation to erfc in [1/.35,28]
169 rb0
= -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
170 rb1
= -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
171 rb2
= -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
172 rb3
= -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
173 rb4
= -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
174 rb5
= -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
175 rb6
= -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
176 sb1
= 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
177 sb2
= 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
178 sb3
= 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
179 sb4
= 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
180 sb5
= 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
181 sb6
= 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
182 sb7
= -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
187 double R
,S
,P
,Q
,s
,y
,z
,r
;
190 if(ix
>=0x7ff00000) { /* erf(nan)=nan */
191 i
= ((u_int32_t
)hx
>>31)<<1;
192 return (double)(1-i
)+one
/x
; /* erf(+-inf)=+-1 */
195 if(ix
< 0x3feb0000) { /* |x|<0.84375 */
196 if(ix
< 0x3e300000) { /* |x|<2**-28 */
198 return 0.125*(8.0*x
+efx8
*x
); /*avoid underflow */
202 r
= pp0
+z
*(pp1
+z
*(pp2
+z
*(pp3
+z
*pp4
)));
203 s
= one
+z
*(qq1
+z
*(qq2
+z
*(qq3
+z
*(qq4
+z
*qq5
))));
207 if(ix
< 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
209 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
210 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
211 if(hx
>=0) return erx
+ P
/Q
; else return -erx
- P
/Q
;
213 if (ix
>= 0x40180000) { /* inf>|x|>=6 */
214 if(hx
>=0) return one
-tiny
; else return tiny
-one
;
218 if(ix
< 0x4006DB6E) { /* |x| < 1/0.35 */
219 R
=ra0
+s
*(ra1
+s
*(ra2
+s
*(ra3
+s
*(ra4
+s
*(
220 ra5
+s
*(ra6
+s
*ra7
))))));
221 S
=one
+s
*(sa1
+s
*(sa2
+s
*(sa3
+s
*(sa4
+s
*(
222 sa5
+s
*(sa6
+s
*(sa7
+s
*sa8
)))))));
223 } else { /* |x| >= 1/0.35 */
224 R
=rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(
226 S
=one
+s
*(sb1
+s
*(sb2
+s
*(sb3
+s
*(sb4
+s
*(
227 sb5
+s
*(sb6
+s
*sb7
))))));
231 r
= __ieee754_exp(-z
*z
-0.5625)*__ieee754_exp((z
-x
)*(z
+x
)+R
/S
);
232 if(hx
>=0) return one
-r
/x
; else return r
/x
-one
;
236 double erfc(double x
)
239 double R
,S
,P
,Q
,s
,y
,z
,r
;
242 if(ix
>=0x7ff00000) { /* erfc(nan)=nan */
243 /* erfc(+-inf)=0,2 */
244 return (double)(((u_int32_t
)hx
>>31)<<1)+one
/x
;
247 if(ix
< 0x3feb0000) { /* |x|<0.84375 */
248 if(ix
< 0x3c700000) /* |x|<2**-56 */
251 r
= pp0
+z
*(pp1
+z
*(pp2
+z
*(pp3
+z
*pp4
)));
252 s
= one
+z
*(qq1
+z
*(qq2
+z
*(qq3
+z
*(qq4
+z
*qq5
))));
254 if(hx
< 0x3fd00000) { /* x<1/4 */
262 if(ix
< 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
264 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
265 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
267 z
= one
-erx
; return z
- P
/Q
;
269 z
= erx
+P
/Q
; return one
+z
;
272 if (ix
< 0x403c0000) { /* |x|<28 */
275 if(ix
< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
276 R
=ra0
+s
*(ra1
+s
*(ra2
+s
*(ra3
+s
*(ra4
+s
*(
277 ra5
+s
*(ra6
+s
*ra7
))))));
278 S
=one
+s
*(sa1
+s
*(sa2
+s
*(sa3
+s
*(sa4
+s
*(
279 sa5
+s
*(sa6
+s
*(sa7
+s
*sa8
)))))));
280 } else { /* |x| >= 1/.35 ~ 2.857143 */
281 if(hx
<0&&ix
>=0x40180000) return two
-tiny
;/* x < -6 */
282 R
=rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(
284 S
=one
+s
*(sb1
+s
*(sb2
+s
*(sb3
+s
*(sb4
+s
*(
285 sb5
+s
*(sb6
+s
*sb7
))))));
289 r
= __ieee754_exp(-z
*z
-0.5625)*
290 __ieee754_exp((z
-x
)*(z
+x
)+R
/S
);
291 if(hx
>0) return r
/x
; else return two
-r
/x
;
293 if(hx
>0) return tiny
*tiny
; else return two
-tiny
;
296 libm_hidden_def(erfc
)