MINI2440: Removed extra SDRAM probe
[u-boot-openmoko/mini2440.git] / cpu / mpc8xx / fec.c
blob37eb481ff16d534d0009b5d06010deb2a0d93e9d
1 /*
2 * (C) Copyright 2000
3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5 * See file CREDITS for list of people who contributed to this
6 * project.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
24 #include <common.h>
25 #include <malloc.h>
26 #include <commproc.h>
27 #include <net.h>
28 #include <command.h>
30 DECLARE_GLOBAL_DATA_PTR;
32 #undef ET_DEBUG
34 #if defined(CONFIG_CMD_NET) && \
35 (defined(FEC_ENET) || defined(CONFIG_ETHER_ON_FEC1) || defined(CONFIG_ETHER_ON_FEC2))
37 /* compatibility test, if only FEC_ENET defined assume ETHER on FEC1 */
38 #if defined(FEC_ENET) && !defined(CONFIG_ETHER_ON_FEC1) && !defined(CONFIG_ETHER_ON_FEC2)
39 #define CONFIG_ETHER_ON_FEC1 1
40 #endif
42 /* define WANT_MII when MII support is required */
43 #if defined(CFG_DISCOVER_PHY) || defined(CONFIG_FEC1_PHY) || defined(CONFIG_FEC2_PHY)
44 #define WANT_MII
45 #else
46 #undef WANT_MII
47 #endif
49 #if defined(WANT_MII)
50 #include <miiphy.h>
52 #if !(defined(CONFIG_MII) || defined(CONFIG_CMD_MII))
53 #error "CONFIG_MII has to be defined!"
54 #endif
56 #endif
58 #if defined(CONFIG_RMII) && !defined(WANT_MII)
59 #error RMII support is unusable without a working PHY.
60 #endif
62 #ifdef CFG_DISCOVER_PHY
63 static int mii_discover_phy(struct eth_device *dev);
64 #endif
66 int fec8xx_miiphy_read(char *devname, unsigned char addr,
67 unsigned char reg, unsigned short *value);
68 int fec8xx_miiphy_write(char *devname, unsigned char addr,
69 unsigned char reg, unsigned short value);
71 static struct ether_fcc_info_s
73 int ether_index;
74 int fecp_offset;
75 int phy_addr;
76 int actual_phy_addr;
77 int initialized;
79 ether_fcc_info[] = {
80 #if defined(CONFIG_ETHER_ON_FEC1)
83 offsetof(immap_t, im_cpm.cp_fec1),
84 #if defined(CONFIG_FEC1_PHY)
85 CONFIG_FEC1_PHY,
86 #else
87 -1, /* discover */
88 #endif
89 -1,
93 #endif
94 #if defined(CONFIG_ETHER_ON_FEC2)
97 offsetof(immap_t, im_cpm.cp_fec2),
98 #if defined(CONFIG_FEC2_PHY)
99 CONFIG_FEC2_PHY,
100 #else
102 #endif
106 #endif
109 /* Ethernet Transmit and Receive Buffers */
110 #define DBUF_LENGTH 1520
112 #define TX_BUF_CNT 2
114 #define TOUT_LOOP 100
116 #define PKT_MAXBUF_SIZE 1518
117 #define PKT_MINBUF_SIZE 64
118 #define PKT_MAXBLR_SIZE 1520
120 #ifdef __GNUC__
121 static char txbuf[DBUF_LENGTH] __attribute__ ((aligned(8)));
122 #else
123 #error txbuf must be aligned.
124 #endif
126 static uint rxIdx; /* index of the current RX buffer */
127 static uint txIdx; /* index of the current TX buffer */
130 * FEC Ethernet Tx and Rx buffer descriptors allocated at the
131 * immr->udata_bd address on Dual-Port RAM
132 * Provide for Double Buffering
135 typedef volatile struct CommonBufferDescriptor {
136 cbd_t rxbd[PKTBUFSRX]; /* Rx BD */
137 cbd_t txbd[TX_BUF_CNT]; /* Tx BD */
138 } RTXBD;
140 static RTXBD *rtx = NULL;
142 static int fec_send(struct eth_device* dev, volatile void *packet, int length);
143 static int fec_recv(struct eth_device* dev);
144 static int fec_init(struct eth_device* dev, bd_t * bd);
145 static void fec_halt(struct eth_device* dev);
146 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
147 static void __mii_init(void);
148 #endif
150 int fec_initialize(bd_t *bis)
152 struct eth_device* dev;
153 struct ether_fcc_info_s *efis;
154 int i;
156 for (i = 0; i < sizeof(ether_fcc_info) / sizeof(ether_fcc_info[0]); i++) {
158 dev = malloc(sizeof(*dev));
159 if (dev == NULL)
160 hang();
162 memset(dev, 0, sizeof(*dev));
164 /* for FEC1 make sure that the name of the interface is the same
165 as the old one for compatibility reasons */
166 if (i == 0) {
167 sprintf (dev->name, "FEC ETHERNET");
168 } else {
169 sprintf (dev->name, "FEC%d ETHERNET",
170 ether_fcc_info[i].ether_index + 1);
173 efis = &ether_fcc_info[i];
176 * reset actual phy addr
178 efis->actual_phy_addr = -1;
180 dev->priv = efis;
181 dev->init = fec_init;
182 dev->halt = fec_halt;
183 dev->send = fec_send;
184 dev->recv = fec_recv;
186 eth_register(dev);
188 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
189 miiphy_register(dev->name,
190 fec8xx_miiphy_read, fec8xx_miiphy_write);
191 #endif
193 return 1;
196 static int fec_send(struct eth_device* dev, volatile void *packet, int length)
198 int j, rc;
199 struct ether_fcc_info_s *efis = dev->priv;
200 volatile fec_t *fecp = (volatile fec_t *)(CFG_IMMR + efis->fecp_offset);
202 /* section 16.9.23.3
203 * Wait for ready
205 j = 0;
206 while ((rtx->txbd[txIdx].cbd_sc & BD_ENET_TX_READY) && (j<TOUT_LOOP)) {
207 udelay(1);
208 j++;
210 if (j>=TOUT_LOOP) {
211 printf("TX not ready\n");
214 rtx->txbd[txIdx].cbd_bufaddr = (uint)packet;
215 rtx->txbd[txIdx].cbd_datlen = length;
216 rtx->txbd[txIdx].cbd_sc |= BD_ENET_TX_READY | BD_ENET_TX_LAST;
217 __asm__ ("eieio");
219 /* Activate transmit Buffer Descriptor polling */
220 fecp->fec_x_des_active = 0x01000000; /* Descriptor polling active */
222 j = 0;
223 while ((rtx->txbd[txIdx].cbd_sc & BD_ENET_TX_READY) && (j<TOUT_LOOP)) {
224 #if defined(CONFIG_ICU862)
225 udelay(10);
226 #else
227 udelay(1);
228 #endif
229 j++;
231 if (j>=TOUT_LOOP) {
232 printf("TX timeout\n");
234 #ifdef ET_DEBUG
235 printf("%s[%d] %s: cycles: %d status: %x retry cnt: %d\n",
236 __FILE__,__LINE__,__FUNCTION__,j,rtx->txbd[txIdx].cbd_sc,
237 (rtx->txbd[txIdx].cbd_sc & 0x003C)>>2);
238 #endif
239 /* return only status bits */;
240 rc = (rtx->txbd[txIdx].cbd_sc & BD_ENET_TX_STATS);
242 txIdx = (txIdx + 1) % TX_BUF_CNT;
244 return rc;
247 static int fec_recv (struct eth_device *dev)
249 struct ether_fcc_info_s *efis = dev->priv;
250 volatile fec_t *fecp =
251 (volatile fec_t *) (CFG_IMMR + efis->fecp_offset);
252 int length;
254 for (;;) {
255 /* section 16.9.23.2 */
256 if (rtx->rxbd[rxIdx].cbd_sc & BD_ENET_RX_EMPTY) {
257 length = -1;
258 break; /* nothing received - leave for() loop */
261 length = rtx->rxbd[rxIdx].cbd_datlen;
263 if (rtx->rxbd[rxIdx].cbd_sc & 0x003f) {
264 #ifdef ET_DEBUG
265 printf ("%s[%d] err: %x\n",
266 __FUNCTION__, __LINE__,
267 rtx->rxbd[rxIdx].cbd_sc);
268 #endif
269 } else {
270 volatile uchar *rx = NetRxPackets[rxIdx];
272 length -= 4;
274 #if defined(CONFIG_CMD_CDP)
275 if ((rx[0] & 1) != 0
276 && memcmp ((uchar *) rx, NetBcastAddr, 6) != 0
277 && memcmp ((uchar *) rx, NetCDPAddr, 6) != 0)
278 rx = NULL;
279 #endif
281 * Pass the packet up to the protocol layers.
283 if (rx != NULL)
284 NetReceive (rx, length);
287 /* Give the buffer back to the FEC. */
288 rtx->rxbd[rxIdx].cbd_datlen = 0;
290 /* wrap around buffer index when necessary */
291 if ((rxIdx + 1) >= PKTBUFSRX) {
292 rtx->rxbd[PKTBUFSRX - 1].cbd_sc =
293 (BD_ENET_RX_WRAP | BD_ENET_RX_EMPTY);
294 rxIdx = 0;
295 } else {
296 rtx->rxbd[rxIdx].cbd_sc = BD_ENET_RX_EMPTY;
297 rxIdx++;
300 __asm__ ("eieio");
302 /* Try to fill Buffer Descriptors */
303 fecp->fec_r_des_active = 0x01000000; /* Descriptor polling active */
306 return length;
309 /**************************************************************
311 * FEC Ethernet Initialization Routine
313 *************************************************************/
315 #define FEC_ECNTRL_PINMUX 0x00000004
316 #define FEC_ECNTRL_ETHER_EN 0x00000002
317 #define FEC_ECNTRL_RESET 0x00000001
319 #define FEC_RCNTRL_BC_REJ 0x00000010
320 #define FEC_RCNTRL_PROM 0x00000008
321 #define FEC_RCNTRL_MII_MODE 0x00000004
322 #define FEC_RCNTRL_DRT 0x00000002
323 #define FEC_RCNTRL_LOOP 0x00000001
325 #define FEC_TCNTRL_FDEN 0x00000004
326 #define FEC_TCNTRL_HBC 0x00000002
327 #define FEC_TCNTRL_GTS 0x00000001
329 #define FEC_RESET_DELAY 50
331 #if defined(CONFIG_RMII)
333 static inline void fec_10Mbps(struct eth_device *dev)
335 struct ether_fcc_info_s *efis = dev->priv;
336 int fecidx = efis->ether_index;
337 uint mask = (fecidx == 0) ? 0x0000010 : 0x0000008;
339 if ((unsigned int)fecidx >= 2)
340 hang();
342 ((volatile immap_t *)CFG_IMMR)->im_cpm.cp_cptr |= mask;
345 static inline void fec_100Mbps(struct eth_device *dev)
347 struct ether_fcc_info_s *efis = dev->priv;
348 int fecidx = efis->ether_index;
349 uint mask = (fecidx == 0) ? 0x0000010 : 0x0000008;
351 if ((unsigned int)fecidx >= 2)
352 hang();
354 ((volatile immap_t *)CFG_IMMR)->im_cpm.cp_cptr &= ~mask;
357 #endif
359 static inline void fec_full_duplex(struct eth_device *dev)
361 struct ether_fcc_info_s *efis = dev->priv;
362 volatile fec_t *fecp = (volatile fec_t *)(CFG_IMMR + efis->fecp_offset);
364 fecp->fec_r_cntrl &= ~FEC_RCNTRL_DRT;
365 fecp->fec_x_cntrl |= FEC_TCNTRL_FDEN; /* FD enable */
368 static inline void fec_half_duplex(struct eth_device *dev)
370 struct ether_fcc_info_s *efis = dev->priv;
371 volatile fec_t *fecp = (volatile fec_t *)(CFG_IMMR + efis->fecp_offset);
373 fecp->fec_r_cntrl |= FEC_RCNTRL_DRT;
374 fecp->fec_x_cntrl &= ~FEC_TCNTRL_FDEN; /* FD disable */
377 static void fec_pin_init(int fecidx)
379 bd_t *bd = gd->bd;
380 volatile immap_t *immr = (immap_t *) CFG_IMMR;
381 volatile fec_t *fecp;
384 * only two FECs please
386 if ((unsigned int)fecidx >= 2)
387 hang();
389 if (fecidx == 0)
390 fecp = &immr->im_cpm.cp_fec1;
391 else
392 fecp = &immr->im_cpm.cp_fec2;
395 * Set MII speed to 2.5 MHz or slightly below.
396 * * According to the MPC860T (Rev. D) Fast ethernet controller user
397 * * manual (6.2.14),
398 * * the MII management interface clock must be less than or equal
399 * * to 2.5 MHz.
400 * * This MDC frequency is equal to system clock / (2 * MII_SPEED).
401 * * Then MII_SPEED = system_clock / 2 * 2,5 Mhz.
403 * All MII configuration is done via FEC1 registers:
405 immr->im_cpm.cp_fec1.fec_mii_speed = ((bd->bi_intfreq + 4999999) / 5000000) << 1;
407 #if defined(CONFIG_NETTA) || defined(CONFIG_NETPHONE) || defined(CONFIG_NETTA2)
408 /* our PHYs are the limit at 2.5 MHz */
409 fecp->fec_mii_speed <<= 1;
410 #endif
412 #if defined(CONFIG_MPC885_FAMILY) && defined(WANT_MII)
413 /* use MDC for MII */
414 immr->im_ioport.iop_pdpar |= 0x0080;
415 immr->im_ioport.iop_pddir &= ~0x0080;
416 #endif
418 if (fecidx == 0) {
419 #if defined(CONFIG_ETHER_ON_FEC1)
421 #if defined(CONFIG_MPC885_FAMILY) /* MPC87x/88x have got 2 FECs and different pinout */
423 #if !defined(CONFIG_RMII)
425 immr->im_ioport.iop_papar |= 0xf830;
426 immr->im_ioport.iop_padir |= 0x0830;
427 immr->im_ioport.iop_padir &= ~0xf000;
429 immr->im_cpm.cp_pbpar |= 0x00001001;
430 immr->im_cpm.cp_pbdir &= ~0x00001001;
432 immr->im_ioport.iop_pcpar |= 0x000c;
433 immr->im_ioport.iop_pcdir &= ~0x000c;
435 immr->im_cpm.cp_pepar |= 0x00000003;
436 immr->im_cpm.cp_pedir |= 0x00000003;
437 immr->im_cpm.cp_peso &= ~0x00000003;
439 immr->im_cpm.cp_cptr &= ~0x00000100;
441 #else
443 #if !defined(CONFIG_FEC1_PHY_NORXERR)
444 immr->im_ioport.iop_papar |= 0x1000;
445 immr->im_ioport.iop_padir &= ~0x1000;
446 #endif
447 immr->im_ioport.iop_papar |= 0xe810;
448 immr->im_ioport.iop_padir |= 0x0810;
449 immr->im_ioport.iop_padir &= ~0xe000;
451 immr->im_cpm.cp_pbpar |= 0x00000001;
452 immr->im_cpm.cp_pbdir &= ~0x00000001;
454 immr->im_cpm.cp_cptr |= 0x00000100;
455 immr->im_cpm.cp_cptr &= ~0x00000050;
457 #endif /* !CONFIG_RMII */
459 #elif !defined(CONFIG_ICU862) && !defined(CONFIG_IAD210)
461 * Configure all of port D for MII.
463 immr->im_ioport.iop_pdpar = 0x1fff;
466 * Bits moved from Rev. D onward
468 if ((get_immr(0) & 0xffff) < 0x0501)
469 immr->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
470 else
471 immr->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
472 #else
474 * Configure port A for MII.
477 #if defined(CONFIG_ICU862) && defined(CFG_DISCOVER_PHY)
480 * On the ICU862 board the MII-MDC pin is routed to PD8 pin
481 * * of CPU, so for this board we need to configure Utopia and
482 * * enable PD8 to MII-MDC function
484 immr->im_ioport.iop_pdpar |= 0x4080;
485 #endif
488 * Has Utopia been configured?
490 if (immr->im_ioport.iop_pdpar & (0x8000 >> 1)) {
492 * YES - Use MUXED mode for UTOPIA bus.
493 * This frees Port A for use by MII (see 862UM table 41-6).
495 immr->im_ioport.utmode &= ~0x80;
496 } else {
498 * NO - set SPLIT mode for UTOPIA bus.
500 * This doesn't really effect UTOPIA (which isn't
501 * enabled anyway) but just tells the 862
502 * to use port A for MII (see 862UM table 41-6).
504 immr->im_ioport.utmode |= 0x80;
506 #endif /* !defined(CONFIG_ICU862) */
508 #endif /* CONFIG_ETHER_ON_FEC1 */
509 } else if (fecidx == 1) {
511 #if defined(CONFIG_ETHER_ON_FEC2)
513 #if defined(CONFIG_MPC885_FAMILY) /* MPC87x/88x have got 2 FECs and different pinout */
515 #if !defined(CONFIG_RMII)
516 immr->im_cpm.cp_pepar |= 0x0003fffc;
517 immr->im_cpm.cp_pedir |= 0x0003fffc;
518 immr->im_cpm.cp_peso &= ~0x000087fc;
519 immr->im_cpm.cp_peso |= 0x00037800;
521 immr->im_cpm.cp_cptr &= ~0x00000080;
522 #else
524 #if !defined(CONFIG_FEC2_PHY_NORXERR)
525 immr->im_cpm.cp_pepar |= 0x00000010;
526 immr->im_cpm.cp_pedir |= 0x00000010;
527 immr->im_cpm.cp_peso &= ~0x00000010;
528 #endif
529 immr->im_cpm.cp_pepar |= 0x00039620;
530 immr->im_cpm.cp_pedir |= 0x00039620;
531 immr->im_cpm.cp_peso |= 0x00031000;
532 immr->im_cpm.cp_peso &= ~0x00008620;
534 immr->im_cpm.cp_cptr |= 0x00000080;
535 immr->im_cpm.cp_cptr &= ~0x00000028;
536 #endif /* CONFIG_RMII */
538 #endif /* CONFIG_MPC885_FAMILY */
540 #endif /* CONFIG_ETHER_ON_FEC2 */
545 static int fec_reset(volatile fec_t *fecp)
547 int i;
549 /* Whack a reset.
550 * A delay is required between a reset of the FEC block and
551 * initialization of other FEC registers because the reset takes
552 * some time to complete. If you don't delay, subsequent writes
553 * to FEC registers might get killed by the reset routine which is
554 * still in progress.
557 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
558 for (i = 0;
559 (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
560 ++i) {
561 udelay (1);
563 if (i == FEC_RESET_DELAY)
564 return -1;
566 return 0;
569 static int fec_init (struct eth_device *dev, bd_t * bd)
571 struct ether_fcc_info_s *efis = dev->priv;
572 volatile immap_t *immr = (immap_t *) CFG_IMMR;
573 volatile fec_t *fecp =
574 (volatile fec_t *) (CFG_IMMR + efis->fecp_offset);
575 int i;
577 if (efis->ether_index == 0) {
578 #if defined(CONFIG_FADS) /* FADS family uses FPGA (BCSR) to control PHYs */
579 #if defined(CONFIG_MPC885ADS)
580 *(vu_char *) BCSR5 &= ~(BCSR5_MII1_EN | BCSR5_MII1_RST);
581 #else
582 /* configure FADS for fast (FEC) ethernet, half-duplex */
583 /* The LXT970 needs about 50ms to recover from reset, so
584 * wait for it by discovering the PHY before leaving eth_init().
587 volatile uint *bcsr4 = (volatile uint *) BCSR4;
589 *bcsr4 = (*bcsr4 & ~(BCSR4_FETH_EN | BCSR4_FETHCFG1))
590 | (BCSR4_FETHCFG0 | BCSR4_FETHFDE |
591 BCSR4_FETHRST);
593 /* reset the LXT970 PHY */
594 *bcsr4 &= ~BCSR4_FETHRST;
595 udelay (10);
596 *bcsr4 |= BCSR4_FETHRST;
597 udelay (10);
599 #endif /* CONFIG_MPC885ADS */
600 #endif /* CONFIG_FADS */
603 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
604 /* the MII interface is connected to FEC1
605 * so for the miiphy_xxx function to work we must
606 * call mii_init since fec_halt messes the thing up
608 if (efis->ether_index != 0)
609 __mii_init();
610 #endif
612 if (fec_reset(fecp) < 0)
613 printf ("FEC_RESET_DELAY timeout\n");
615 /* We use strictly polling mode only
617 fecp->fec_imask = 0;
619 /* Clear any pending interrupt
621 fecp->fec_ievent = 0xffc0;
623 /* No need to set the IVEC register */
625 /* Set station address
627 #define ea dev->enetaddr
628 fecp->fec_addr_low = (ea[0] << 24) | (ea[1] << 16) | (ea[2] << 8) | (ea[3]);
629 fecp->fec_addr_high = (ea[4] << 8) | (ea[5]);
630 #undef ea
632 #if defined(CONFIG_CMD_CDP)
634 * Turn on multicast address hash table
636 fecp->fec_hash_table_high = 0xffffffff;
637 fecp->fec_hash_table_low = 0xffffffff;
638 #else
639 /* Clear multicast address hash table
641 fecp->fec_hash_table_high = 0;
642 fecp->fec_hash_table_low = 0;
643 #endif
645 /* Set maximum receive buffer size.
647 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
649 /* Set maximum frame length
651 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
654 * Setup Buffers and Buffer Desriptors
656 rxIdx = 0;
657 txIdx = 0;
659 if (!rtx) {
660 #ifdef CFG_ALLOC_DPRAM
661 rtx = (RTXBD *) (immr->im_cpm.cp_dpmem +
662 dpram_alloc_align (sizeof (RTXBD), 8));
663 #else
664 rtx = (RTXBD *) (immr->im_cpm.cp_dpmem + CPM_FEC_BASE);
665 #endif
668 * Setup Receiver Buffer Descriptors (13.14.24.18)
669 * Settings:
670 * Empty, Wrap
672 for (i = 0; i < PKTBUFSRX; i++) {
673 rtx->rxbd[i].cbd_sc = BD_ENET_RX_EMPTY;
674 rtx->rxbd[i].cbd_datlen = 0; /* Reset */
675 rtx->rxbd[i].cbd_bufaddr = (uint) NetRxPackets[i];
677 rtx->rxbd[PKTBUFSRX - 1].cbd_sc |= BD_ENET_RX_WRAP;
680 * Setup Ethernet Transmitter Buffer Descriptors (13.14.24.19)
681 * Settings:
682 * Last, Tx CRC
684 for (i = 0; i < TX_BUF_CNT; i++) {
685 rtx->txbd[i].cbd_sc = BD_ENET_TX_LAST | BD_ENET_TX_TC;
686 rtx->txbd[i].cbd_datlen = 0; /* Reset */
687 rtx->txbd[i].cbd_bufaddr = (uint) (&txbuf[0]);
689 rtx->txbd[TX_BUF_CNT - 1].cbd_sc |= BD_ENET_TX_WRAP;
691 /* Set receive and transmit descriptor base
693 fecp->fec_r_des_start = (unsigned int) (&rtx->rxbd[0]);
694 fecp->fec_x_des_start = (unsigned int) (&rtx->txbd[0]);
696 /* Enable MII mode
698 #if 0 /* Full duplex mode */
699 fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE;
700 fecp->fec_x_cntrl = FEC_TCNTRL_FDEN;
701 #else /* Half duplex mode */
702 fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT;
703 fecp->fec_x_cntrl = 0;
704 #endif
706 /* Enable big endian and don't care about SDMA FC.
708 fecp->fec_fun_code = 0x78000000;
711 * Setup the pin configuration of the FEC
713 fec_pin_init (efis->ether_index);
715 rxIdx = 0;
716 txIdx = 0;
719 * Now enable the transmit and receive processing
721 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN;
723 if (efis->phy_addr == -1) {
724 #ifdef CFG_DISCOVER_PHY
726 * wait for the PHY to wake up after reset
728 efis->actual_phy_addr = mii_discover_phy (dev);
730 if (efis->actual_phy_addr == -1) {
731 printf ("Unable to discover phy!\n");
732 return -1;
734 #else
735 efis->actual_phy_addr = -1;
736 #endif
737 } else {
738 efis->actual_phy_addr = efis->phy_addr;
741 #if defined(CONFIG_MII) && defined(CONFIG_RMII)
743 * adapt the RMII speed to the speed of the phy
745 if (miiphy_speed (dev->name, efis->actual_phy_addr) == _100BASET) {
746 fec_100Mbps (dev);
747 } else {
748 fec_10Mbps (dev);
750 #endif
752 #if defined(CONFIG_MII)
754 * adapt to the half/full speed settings
756 if (miiphy_duplex (dev->name, efis->actual_phy_addr) == FULL) {
757 fec_full_duplex (dev);
758 } else {
759 fec_half_duplex (dev);
761 #endif
763 /* And last, try to fill Rx Buffer Descriptors */
764 fecp->fec_r_des_active = 0x01000000; /* Descriptor polling active */
766 efis->initialized = 1;
768 return 0;
772 static void fec_halt(struct eth_device* dev)
774 struct ether_fcc_info_s *efis = dev->priv;
775 volatile fec_t *fecp = (volatile fec_t *)(CFG_IMMR + efis->fecp_offset);
776 int i;
778 /* avoid halt if initialized; mii gets stuck otherwise */
779 if (!efis->initialized)
780 return;
782 /* Whack a reset.
783 * A delay is required between a reset of the FEC block and
784 * initialization of other FEC registers because the reset takes
785 * some time to complete. If you don't delay, subsequent writes
786 * to FEC registers might get killed by the reset routine which is
787 * still in progress.
790 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
791 for (i = 0;
792 (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
793 ++i) {
794 udelay (1);
796 if (i == FEC_RESET_DELAY) {
797 printf ("FEC_RESET_DELAY timeout\n");
798 return;
801 efis->initialized = 0;
804 #if defined(CFG_DISCOVER_PHY) || defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
806 /* Make MII read/write commands for the FEC.
809 #define mk_mii_read(ADDR, REG) (0x60020000 | ((ADDR << 23) | \
810 (REG & 0x1f) << 18))
812 #define mk_mii_write(ADDR, REG, VAL) (0x50020000 | ((ADDR << 23) | \
813 (REG & 0x1f) << 18) | \
814 (VAL & 0xffff))
816 /* Interrupt events/masks.
818 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
819 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
820 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
821 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
822 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
823 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
824 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
825 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
826 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
827 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
829 /* PHY identification
831 #define PHY_ID_LXT970 0x78100000 /* LXT970 */
832 #define PHY_ID_LXT971 0x001378e0 /* LXT971 and 972 */
833 #define PHY_ID_82555 0x02a80150 /* Intel 82555 */
834 #define PHY_ID_QS6612 0x01814400 /* QS6612 */
835 #define PHY_ID_AMD79C784 0x00225610 /* AMD 79C784 */
836 #define PHY_ID_LSI80225 0x0016f870 /* LSI 80225 */
837 #define PHY_ID_LSI80225B 0x0016f880 /* LSI 80225/B */
838 #define PHY_ID_DM9161 0x0181B880 /* Davicom DM9161 */
839 #define PHY_ID_KSM8995M 0x00221450 /* MICREL KS8995MA */
841 /* send command to phy using mii, wait for result */
842 static uint
843 mii_send(uint mii_cmd)
845 uint mii_reply;
846 volatile fec_t *ep;
847 int cnt;
849 ep = &(((immap_t *)CFG_IMMR)->im_cpm.cp_fec);
851 ep->fec_mii_data = mii_cmd; /* command to phy */
853 /* wait for mii complete */
854 cnt = 0;
855 while (!(ep->fec_ievent & FEC_ENET_MII)) {
856 if (++cnt > 1000) {
857 printf("mii_send STUCK!\n");
858 break;
861 mii_reply = ep->fec_mii_data; /* result from phy */
862 ep->fec_ievent = FEC_ENET_MII; /* clear MII complete */
863 #if 0
864 printf("%s[%d] %s: sent=0x%8.8x, reply=0x%8.8x\n",
865 __FILE__,__LINE__,__FUNCTION__,mii_cmd,mii_reply);
866 #endif
867 return (mii_reply & 0xffff); /* data read from phy */
869 #endif
871 #if defined(CFG_DISCOVER_PHY)
872 static int mii_discover_phy(struct eth_device *dev)
874 #define MAX_PHY_PASSES 11
875 uint phyno;
876 int pass;
877 uint phytype;
878 int phyaddr;
880 phyaddr = -1; /* didn't find a PHY yet */
881 for (pass = 1; pass <= MAX_PHY_PASSES && phyaddr < 0; ++pass) {
882 if (pass > 1) {
883 /* PHY may need more time to recover from reset.
884 * The LXT970 needs 50ms typical, no maximum is
885 * specified, so wait 10ms before try again.
886 * With 11 passes this gives it 100ms to wake up.
888 udelay(10000); /* wait 10ms */
890 for (phyno = 0; phyno < 32 && phyaddr < 0; ++phyno) {
891 phytype = mii_send(mk_mii_read(phyno, PHY_PHYIDR2));
892 #ifdef ET_DEBUG
893 printf("PHY type 0x%x pass %d type ", phytype, pass);
894 #endif
895 if (phytype != 0xffff) {
896 phyaddr = phyno;
897 phytype |= mii_send(mk_mii_read(phyno,
898 PHY_PHYIDR1)) << 16;
900 #ifdef ET_DEBUG
901 printf("PHY @ 0x%x pass %d type ",phyno,pass);
902 switch (phytype & 0xfffffff0) {
903 case PHY_ID_LXT970:
904 printf("LXT970\n");
905 break;
906 case PHY_ID_LXT971:
907 printf("LXT971\n");
908 break;
909 case PHY_ID_82555:
910 printf("82555\n");
911 break;
912 case PHY_ID_QS6612:
913 printf("QS6612\n");
914 break;
915 case PHY_ID_AMD79C784:
916 printf("AMD79C784\n");
917 break;
918 case PHY_ID_LSI80225B:
919 printf("LSI L80225/B\n");
920 break;
921 case PHY_ID_DM9161:
922 printf("Davicom DM9161\n");
923 break;
924 case PHY_ID_KSM8995M:
925 printf("MICREL KS8995M\n");
926 break;
927 default:
928 printf("0x%08x\n", phytype);
929 break;
931 #endif
935 if (phyaddr < 0) {
936 printf("No PHY device found.\n");
938 return phyaddr;
940 #endif /* CFG_DISCOVER_PHY */
942 #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) && !defined(CONFIG_BITBANGMII)
944 /****************************************************************************
945 * mii_init -- Initialize the MII via FEC 1 for MII command without ethernet
946 * This function is a subset of eth_init
947 ****************************************************************************
949 static void __mii_init(void)
951 volatile immap_t *immr = (immap_t *) CFG_IMMR;
952 volatile fec_t *fecp = &(immr->im_cpm.cp_fec);
954 if (fec_reset(fecp) < 0)
955 printf ("FEC_RESET_DELAY timeout\n");
957 /* We use strictly polling mode only
959 fecp->fec_imask = 0;
961 /* Clear any pending interrupt
963 fecp->fec_ievent = 0xffc0;
965 /* Now enable the transmit and receive processing
967 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN;
970 void mii_init (void)
972 int i;
974 __mii_init();
976 /* Setup the pin configuration of the FEC(s)
978 for (i = 0; i < sizeof(ether_fcc_info) / sizeof(ether_fcc_info[0]); i++)
979 fec_pin_init(ether_fcc_info[i].ether_index);
982 /*****************************************************************************
983 * Read and write a MII PHY register, routines used by MII Utilities
985 * FIXME: These routines are expected to return 0 on success, but mii_send
986 * does _not_ return an error code. Maybe 0xFFFF means error, i.e.
987 * no PHY connected...
988 * For now always return 0.
989 * FIXME: These routines only work after calling eth_init() at least once!
990 * Otherwise they hang in mii_send() !!! Sorry!
991 *****************************************************************************/
993 int fec8xx_miiphy_read(char *devname, unsigned char addr,
994 unsigned char reg, unsigned short *value)
996 short rdreg; /* register working value */
998 #ifdef MII_DEBUG
999 printf ("miiphy_read(0x%x) @ 0x%x = ", reg, addr);
1000 #endif
1001 rdreg = mii_send(mk_mii_read(addr, reg));
1003 *value = rdreg;
1004 #ifdef MII_DEBUG
1005 printf ("0x%04x\n", *value);
1006 #endif
1007 return 0;
1010 int fec8xx_miiphy_write(char *devname, unsigned char addr,
1011 unsigned char reg, unsigned short value)
1013 short rdreg; /* register working value */
1014 #ifdef MII_DEBUG
1015 printf ("miiphy_write(0x%x) @ 0x%x = ", reg, addr);
1016 #endif
1017 rdreg = mii_send(mk_mii_write(addr, reg, value));
1019 #ifdef MII_DEBUG
1020 printf ("0x%04x\n", value);
1021 #endif
1022 return 0;
1024 #endif
1026 #endif