Remove some totally unused functions
[tor.git] / src / common / container.h
blob1a68b8f67b767ef2551c8c74fbb67b6d95f93822
1 /* Copyright (c) 2003-2004, Roger Dingledine
2 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
3 * Copyright (c) 2007-2013, The Tor Project, Inc. */
4 /* See LICENSE for licensing information */
6 #ifndef TOR_CONTAINER_H
7 #define TOR_CONTAINER_H
9 #include "util.h"
11 /** A resizeable list of pointers, with associated helpful functionality.
13 * The members of this struct are exposed only so that macros and inlines can
14 * use them; all access to smartlist internals should go through the functions
15 * and macros defined here.
16 **/
17 typedef struct smartlist_t {
18 /** @{ */
19 /** <b>list</b> has enough capacity to store exactly <b>capacity</b> elements
20 * before it needs to be resized. Only the first <b>num_used</b> (\<=
21 * capacity) elements point to valid data.
23 void **list;
24 int num_used;
25 int capacity;
26 /** @} */
27 } smartlist_t;
29 smartlist_t *smartlist_new(void);
30 void smartlist_free(smartlist_t *sl);
31 void smartlist_clear(smartlist_t *sl);
32 void smartlist_add(smartlist_t *sl, void *element);
33 void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2);
34 void smartlist_remove(smartlist_t *sl, const void *element);
35 void *smartlist_pop_last(smartlist_t *sl);
36 void smartlist_reverse(smartlist_t *sl);
37 void smartlist_string_remove(smartlist_t *sl, const char *element);
38 int smartlist_contains(const smartlist_t *sl, const void *element);
39 int smartlist_contains_string(const smartlist_t *sl, const char *element);
40 int smartlist_string_pos(const smartlist_t *, const char *elt);
41 int smartlist_contains_string_case(const smartlist_t *sl, const char *element);
42 int smartlist_contains_int_as_string(const smartlist_t *sl, int num);
43 int smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2);
44 int smartlist_contains_digest(const smartlist_t *sl, const char *element);
45 int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2);
46 void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2);
47 void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2);
49 /* smartlist_choose() is defined in crypto.[ch] */
50 #ifdef DEBUG_SMARTLIST
51 /** Return the number of items in sl.
53 static INLINE int smartlist_len(const smartlist_t *sl);
54 static INLINE int smartlist_len(const smartlist_t *sl) {
55 tor_assert(sl);
56 return (sl)->num_used;
58 /** Return the <b>idx</b>th element of sl.
60 static INLINE void *smartlist_get(const smartlist_t *sl, int idx);
61 static INLINE void *smartlist_get(const smartlist_t *sl, int idx) {
62 tor_assert(sl);
63 tor_assert(idx>=0);
64 tor_assert(sl->num_used > idx);
65 return sl->list[idx];
67 static INLINE void smartlist_set(smartlist_t *sl, int idx, void *val) {
68 tor_assert(sl);
69 tor_assert(idx>=0);
70 tor_assert(sl->num_used > idx);
71 sl->list[idx] = val;
73 #else
74 #define smartlist_len(sl) ((sl)->num_used)
75 #define smartlist_get(sl, idx) ((sl)->list[idx])
76 #define smartlist_set(sl, idx, val) ((sl)->list[idx] = (val))
77 #endif
79 /** Exchange the elements at indices <b>idx1</b> and <b>idx2</b> of the
80 * smartlist <b>sl</b>. */
81 static INLINE void smartlist_swap(smartlist_t *sl, int idx1, int idx2)
83 if (idx1 != idx2) {
84 void *elt = smartlist_get(sl, idx1);
85 smartlist_set(sl, idx1, smartlist_get(sl, idx2));
86 smartlist_set(sl, idx2, elt);
90 void smartlist_del(smartlist_t *sl, int idx);
91 void smartlist_del_keeporder(smartlist_t *sl, int idx);
92 void smartlist_insert(smartlist_t *sl, int idx, void *val);
93 void smartlist_sort(smartlist_t *sl,
94 int (*compare)(const void **a, const void **b));
95 void *smartlist_get_most_frequent(const smartlist_t *sl,
96 int (*compare)(const void **a, const void **b));
97 void smartlist_uniq(smartlist_t *sl,
98 int (*compare)(const void **a, const void **b),
99 void (*free_fn)(void *elt));
101 void smartlist_sort_strings(smartlist_t *sl);
102 void smartlist_sort_digests(smartlist_t *sl);
103 void smartlist_sort_digests256(smartlist_t *sl);
105 char *smartlist_get_most_frequent_string(smartlist_t *sl);
106 char *smartlist_get_most_frequent_digest256(smartlist_t *sl);
108 void smartlist_uniq_strings(smartlist_t *sl);
109 void smartlist_uniq_digests(smartlist_t *sl);
110 void smartlist_uniq_digests256(smartlist_t *sl);
111 void *smartlist_bsearch(smartlist_t *sl, const void *key,
112 int (*compare)(const void *key, const void **member));
113 int smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
114 int (*compare)(const void *key, const void **member),
115 int *found_out);
117 void smartlist_pqueue_add(smartlist_t *sl,
118 int (*compare)(const void *a, const void *b),
119 int idx_field_offset,
120 void *item);
121 void *smartlist_pqueue_pop(smartlist_t *sl,
122 int (*compare)(const void *a, const void *b),
123 int idx_field_offset);
124 void smartlist_pqueue_remove(smartlist_t *sl,
125 int (*compare)(const void *a, const void *b),
126 int idx_field_offset,
127 void *item);
128 void smartlist_pqueue_assert_ok(smartlist_t *sl,
129 int (*compare)(const void *a, const void *b),
130 int idx_field_offset);
132 #define SPLIT_SKIP_SPACE 0x01
133 #define SPLIT_IGNORE_BLANK 0x02
134 #define SPLIT_STRIP_SPACE 0x04
135 int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
136 int flags, int max);
137 char *smartlist_join_strings(smartlist_t *sl, const char *join, int terminate,
138 size_t *len_out) ATTR_MALLOC;
139 char *smartlist_join_strings2(smartlist_t *sl, const char *join,
140 size_t join_len, int terminate, size_t *len_out)
141 ATTR_MALLOC;
143 /** Iterate over the items in a smartlist <b>sl</b>, in order. For each item,
144 * assign it to a new local variable of type <b>type</b> named <b>var</b>, and
145 * execute the statements inside the loop body. Inside the loop, the loop
146 * index can be accessed as <b>var</b>_sl_idx and the length of the list can
147 * be accessed as <b>var</b>_sl_len.
149 * NOTE: Do not change the length of the list while the loop is in progress,
150 * unless you adjust the _sl_len variable correspondingly. See second example
151 * below.
153 * Example use:
154 * <pre>
155 * smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
156 * SMARTLIST_FOREACH_BEGIN(list, char *, cp) {
157 * printf("%d: %s\n", cp_sl_idx, cp);
158 * tor_free(cp);
159 * } SMARTLIST_FOREACH_END(cp);
160 * smartlist_free(list);
161 * </pre>
163 * Example use (advanced):
164 * <pre>
165 * SMARTLIST_FOREACH_BEGIN(list, char *, cp) {
166 * if (!strcmp(cp, "junk")) {
167 * tor_free(cp);
168 * SMARTLIST_DEL_CURRENT(list, cp);
170 * } SMARTLIST_FOREACH_END(cp);
171 * </pre>
173 /* Note: these macros use token pasting, and reach into smartlist internals.
174 * This can make them a little daunting. Here's the approximate unpacking of
175 * the above examples, for entertainment value:
177 * <pre>
178 * smartlist_t *list = smartlist_split("A:B:C", ":", 0, 0);
180 * int cp_sl_idx, cp_sl_len = smartlist_len(list);
181 * char *cp;
182 * for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
183 * cp = smartlist_get(list, cp_sl_idx);
184 * printf("%d: %s\n", cp_sl_idx, cp);
185 * tor_free(cp);
188 * smartlist_free(list);
189 * </pre>
191 * <pre>
193 * int cp_sl_idx, cp_sl_len = smartlist_len(list);
194 * char *cp;
195 * for (cp_sl_idx = 0; cp_sl_idx < cp_sl_len; ++cp_sl_idx) {
196 * cp = smartlist_get(list, cp_sl_idx);
197 * if (!strcmp(cp, "junk")) {
198 * tor_free(cp);
199 * smartlist_del(list, cp_sl_idx);
200 * --cp_sl_idx;
201 * --cp_sl_len;
205 * </pre>
207 #define SMARTLIST_FOREACH_BEGIN(sl, type, var) \
208 STMT_BEGIN \
209 int var ## _sl_idx, var ## _sl_len=(sl)->num_used; \
210 type var; \
211 for (var ## _sl_idx = 0; var ## _sl_idx < var ## _sl_len; \
212 ++var ## _sl_idx) { \
213 var = (sl)->list[var ## _sl_idx];
215 #define SMARTLIST_FOREACH_END(var) \
216 var = NULL; \
217 } STMT_END
220 * An alias for SMARTLIST_FOREACH_BEGIN and SMARTLIST_FOREACH_END, using
221 * <b>cmd</b> as the loop body. This wrapper is here for convenience with
222 * very short loops.
224 * By convention, we do not use this for loops which nest, or for loops over
225 * 10 lines or so. Use SMARTLIST_FOREACH_{BEGIN,END} for those.
227 #define SMARTLIST_FOREACH(sl, type, var, cmd) \
228 SMARTLIST_FOREACH_BEGIN(sl,type,var) { \
229 cmd; \
230 } SMARTLIST_FOREACH_END(var)
232 /** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
233 * with the variable <b>var</b>, remove the current element in a way that
234 * won't confuse the loop. */
235 #define SMARTLIST_DEL_CURRENT(sl, var) \
236 STMT_BEGIN \
237 smartlist_del(sl, var ## _sl_idx); \
238 --var ## _sl_idx; \
239 --var ## _sl_len; \
240 STMT_END
242 /** Helper: While in a SMARTLIST_FOREACH loop over the list <b>sl</b> indexed
243 * with the variable <b>var</b>, replace the current element with <b>val</b>.
244 * Does not deallocate the current value of <b>var</b>.
246 #define SMARTLIST_REPLACE_CURRENT(sl, var, val) \
247 STMT_BEGIN \
248 smartlist_set(sl, var ## _sl_idx, val); \
249 STMT_END
251 /* Helper: Given two lists of items, possibly of different types, such that
252 * both lists are sorted on some common field (as determined by a comparison
253 * expression <b>cmpexpr</b>), and such that one list (<b>sl1</b>) has no
254 * duplicates on the common field, loop through the lists in lockstep, and
255 * execute <b>unmatched_var2</b> on items in var2 that do not appear in
256 * var1.
258 * WARNING: It isn't safe to add remove elements from either list while the
259 * loop is in progress.
261 * Example use:
262 * SMARTLIST_FOREACH_JOIN(routerstatus_list, routerstatus_t *, rs,
263 * routerinfo_list, routerinfo_t *, ri,
264 * tor_memcmp(rs->identity_digest, ri->identity_digest, 20),
265 * log_info(LD_GENERAL,"No match for %s", ri->nickname)) {
266 * log_info(LD_GENERAL, "%s matches routerstatus %p", ri->nickname, rs);
267 * } SMARTLIST_FOREACH_JOIN_END(rs, ri);
269 /* The example above unpacks (approximately) to:
270 * int rs_sl_idx = 0, rs_sl_len = smartlist_len(routerstatus_list);
271 * int ri_sl_idx, ri_sl_len = smartlist_len(routerinfo_list);
272 * int rs_ri_cmp;
273 * routerstatus_t *rs;
274 * routerinfo_t *ri;
275 * for (; ri_sl_idx < ri_sl_len; ++ri_sl_idx) {
276 * ri = smartlist_get(routerinfo_list, ri_sl_idx);
277 * while (rs_sl_idx < rs_sl_len) {
278 * rs = smartlist_get(routerstatus_list, rs_sl_idx);
279 * rs_ri_cmp = tor_memcmp(rs->identity_digest, ri->identity_digest, 20);
280 * if (rs_ri_cmp > 0) {
281 * break;
282 * } else if (rs_ri_cmp == 0) {
283 * goto matched_ri;
284 * } else {
285 * ++rs_sl_idx;
288 * log_info(LD_GENERAL,"No match for %s", ri->nickname);
289 * continue;
290 * matched_ri: {
291 * log_info(LD_GENERAL,"%s matches with routerstatus %p",ri->nickname,rs);
295 #define SMARTLIST_FOREACH_JOIN(sl1, type1, var1, sl2, type2, var2, \
296 cmpexpr, unmatched_var2) \
297 STMT_BEGIN \
298 int var1 ## _sl_idx = 0, var1 ## _sl_len=(sl1)->num_used; \
299 int var2 ## _sl_idx = 0, var2 ## _sl_len=(sl2)->num_used; \
300 int var1 ## _ ## var2 ## _cmp; \
301 type1 var1; \
302 type2 var2; \
303 for (; var2##_sl_idx < var2##_sl_len; ++var2##_sl_idx) { \
304 var2 = (sl2)->list[var2##_sl_idx]; \
305 while (var1##_sl_idx < var1##_sl_len) { \
306 var1 = (sl1)->list[var1##_sl_idx]; \
307 var1##_##var2##_cmp = (cmpexpr); \
308 if (var1##_##var2##_cmp > 0) { \
309 break; \
310 } else if (var1##_##var2##_cmp == 0) { \
311 goto matched_##var2; \
312 } else { \
313 ++var1##_sl_idx; \
316 /* Ran out of v1, or no match for var2. */ \
317 unmatched_var2; \
318 continue; \
319 matched_##var2: ; \
321 #define SMARTLIST_FOREACH_JOIN_END(var1, var2) \
323 STMT_END
325 #define DECLARE_MAP_FNS(maptype, keytype, prefix) \
326 typedef struct maptype maptype; \
327 typedef struct prefix##entry_t *prefix##iter_t; \
328 maptype* prefix##new(void); \
329 void* prefix##set(maptype *map, keytype key, void *val); \
330 void* prefix##get(const maptype *map, keytype key); \
331 void* prefix##remove(maptype *map, keytype key); \
332 void prefix##free(maptype *map, void (*free_val)(void*)); \
333 int prefix##isempty(const maptype *map); \
334 int prefix##size(const maptype *map); \
335 prefix##iter_t *prefix##iter_init(maptype *map); \
336 prefix##iter_t *prefix##iter_next(maptype *map, prefix##iter_t *iter); \
337 prefix##iter_t *prefix##iter_next_rmv(maptype *map, prefix##iter_t *iter); \
338 void prefix##iter_get(prefix##iter_t *iter, keytype *keyp, void **valp); \
339 int prefix##iter_done(prefix##iter_t *iter); \
340 void prefix##assert_ok(const maptype *map)
342 /* Map from const char * to void *. Implemented with a hash table. */
343 DECLARE_MAP_FNS(strmap_t, const char *, strmap_);
344 /* Map from const char[DIGEST_LEN] to void *. Implemented with a hash table. */
345 DECLARE_MAP_FNS(digestmap_t, const char *, digestmap_);
347 #undef DECLARE_MAP_FNS
349 /** Iterates over the key-value pairs in a map <b>map</b> in order.
350 * <b>prefix</b> is as for DECLARE_MAP_FNS (i.e., strmap_ or digestmap_).
351 * The map's keys and values are of type keytype and valtype respectively;
352 * each iteration assigns them to keyvar and valvar.
354 * Example use:
355 * MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) {
356 * // use k and r
357 * } MAP_FOREACH_END.
359 /* Unpacks to, approximately:
361 * digestmap_iter_t *k_iter;
362 * for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter);
363 * k_iter = digestmap_iter_next(m, k_iter)) {
364 * const char *k;
365 * void *r_voidp;
366 * routerinfo_t *r;
367 * digestmap_iter_get(k_iter, &k, &r_voidp);
368 * r = r_voidp;
369 * // use k and r
373 #define MAP_FOREACH(prefix, map, keytype, keyvar, valtype, valvar) \
374 STMT_BEGIN \
375 prefix##iter_t *keyvar##_iter; \
376 for (keyvar##_iter = prefix##iter_init(map); \
377 !prefix##iter_done(keyvar##_iter); \
378 keyvar##_iter = prefix##iter_next(map, keyvar##_iter)) { \
379 keytype keyvar; \
380 void *valvar##_voidp; \
381 valtype valvar; \
382 prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \
383 valvar = valvar##_voidp;
385 /** As MAP_FOREACH, except allows members to be removed from the map
386 * during the iteration via MAP_DEL_CURRENT. Example use:
388 * Example use:
389 * MAP_FOREACH(digestmap_, m, const char *, k, routerinfo_t *, r) {
390 * if (is_very_old(r))
391 * MAP_DEL_CURRENT(k);
392 * } MAP_FOREACH_END.
394 /* Unpacks to, approximately:
396 * digestmap_iter_t *k_iter;
397 * int k_del=0;
398 * for (k_iter = digestmap_iter_init(m); !digestmap_iter_done(k_iter);
399 * k_iter = k_del ? digestmap_iter_next(m, k_iter)
400 * : digestmap_iter_next_rmv(m, k_iter)) {
401 * const char *k;
402 * void *r_voidp;
403 * routerinfo_t *r;
404 * k_del=0;
405 * digestmap_iter_get(k_iter, &k, &r_voidp);
406 * r = r_voidp;
407 * if (is_very_old(r)) {
408 * k_del = 1;
413 #define MAP_FOREACH_MODIFY(prefix, map, keytype, keyvar, valtype, valvar) \
414 STMT_BEGIN \
415 prefix##iter_t *keyvar##_iter; \
416 int keyvar##_del=0; \
417 for (keyvar##_iter = prefix##iter_init(map); \
418 !prefix##iter_done(keyvar##_iter); \
419 keyvar##_iter = keyvar##_del ? \
420 prefix##iter_next_rmv(map, keyvar##_iter) : \
421 prefix##iter_next(map, keyvar##_iter)) { \
422 keytype keyvar; \
423 void *valvar##_voidp; \
424 valtype valvar; \
425 keyvar##_del=0; \
426 prefix##iter_get(keyvar##_iter, &keyvar, &valvar##_voidp); \
427 valvar = valvar##_voidp;
429 /** Used with MAP_FOREACH_MODIFY to remove the currently-iterated-upon
430 * member of the map. */
431 #define MAP_DEL_CURRENT(keyvar) \
432 STMT_BEGIN \
433 keyvar##_del = 1; \
434 STMT_END
436 /** Used to end a MAP_FOREACH() block. */
437 #define MAP_FOREACH_END } STMT_END ;
439 /** As MAP_FOREACH, but does not require declaration of prefix or keytype.
440 * Example use:
441 * DIGESTMAP_FOREACH(m, k, routerinfo_t *, r) {
442 * // use k and r
443 * } DIGESTMAP_FOREACH_END.
445 #define DIGESTMAP_FOREACH(map, keyvar, valtype, valvar) \
446 MAP_FOREACH(digestmap_, map, const char *, keyvar, valtype, valvar)
448 /** As MAP_FOREACH_MODIFY, but does not require declaration of prefix or
449 * keytype.
450 * Example use:
451 * DIGESTMAP_FOREACH_MODIFY(m, k, routerinfo_t *, r) {
452 * if (is_very_old(r))
453 * MAP_DEL_CURRENT(k);
454 * } DIGESTMAP_FOREACH_END.
456 #define DIGESTMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
457 MAP_FOREACH_MODIFY(digestmap_, map, const char *, keyvar, valtype, valvar)
458 /** Used to end a DIGESTMAP_FOREACH() block. */
459 #define DIGESTMAP_FOREACH_END MAP_FOREACH_END
461 #define STRMAP_FOREACH(map, keyvar, valtype, valvar) \
462 MAP_FOREACH(strmap_, map, const char *, keyvar, valtype, valvar)
463 #define STRMAP_FOREACH_MODIFY(map, keyvar, valtype, valvar) \
464 MAP_FOREACH_MODIFY(strmap_, map, const char *, keyvar, valtype, valvar)
465 #define STRMAP_FOREACH_END MAP_FOREACH_END
467 void* strmap_set_lc(strmap_t *map, const char *key, void *val);
468 void* strmap_get_lc(const strmap_t *map, const char *key);
469 void* strmap_remove_lc(strmap_t *map, const char *key);
471 #define DECLARE_TYPED_DIGESTMAP_FNS(prefix, maptype, valtype) \
472 typedef struct maptype maptype; \
473 typedef struct prefix##iter_t prefix##iter_t; \
474 static INLINE maptype* prefix##new(void) \
476 return (maptype*)digestmap_new(); \
478 static INLINE digestmap_t* prefix##to_digestmap(maptype *map) \
480 return (digestmap_t*)map; \
482 static INLINE valtype* prefix##get(maptype *map, const char *key) \
484 return (valtype*)digestmap_get((digestmap_t*)map, key); \
486 static INLINE valtype* prefix##set(maptype *map, const char *key, \
487 valtype *val) \
489 return (valtype*)digestmap_set((digestmap_t*)map, key, val); \
491 static INLINE valtype* prefix##remove(maptype *map, const char *key) \
493 return (valtype*)digestmap_remove((digestmap_t*)map, key); \
495 static INLINE void prefix##free(maptype *map, void (*free_val)(void*)) \
497 digestmap_free((digestmap_t*)map, free_val); \
499 static INLINE int prefix##isempty(maptype *map) \
501 return digestmap_isempty((digestmap_t*)map); \
503 static INLINE int prefix##size(maptype *map) \
505 return digestmap_size((digestmap_t*)map); \
507 static INLINE prefix##iter_t *prefix##iter_init(maptype *map) \
509 return (prefix##iter_t*) digestmap_iter_init((digestmap_t*)map); \
511 static INLINE prefix##iter_t *prefix##iter_next(maptype *map, \
512 prefix##iter_t *iter) \
514 return (prefix##iter_t*) digestmap_iter_next( \
515 (digestmap_t*)map, (digestmap_iter_t*)iter); \
517 static INLINE prefix##iter_t *prefix##iter_next_rmv(maptype *map, \
518 prefix##iter_t *iter) \
520 return (prefix##iter_t*) digestmap_iter_next_rmv( \
521 (digestmap_t*)map, (digestmap_iter_t*)iter); \
523 static INLINE void prefix##iter_get(prefix##iter_t *iter, \
524 const char **keyp, \
525 valtype **valp) \
527 void *v; \
528 digestmap_iter_get((digestmap_iter_t*) iter, keyp, &v); \
529 *valp = v; \
531 static INLINE int prefix##iter_done(prefix##iter_t *iter) \
533 return digestmap_iter_done((digestmap_iter_t*)iter); \
536 #if SIZEOF_INT == 4
537 #define BITARRAY_SHIFT 5
538 #elif SIZEOF_INT == 8
539 #define BITARRAY_SHIFT 6
540 #else
541 #error "int is neither 4 nor 8 bytes. I can't deal with that."
542 #endif
543 #define BITARRAY_MASK ((1u<<BITARRAY_SHIFT)-1)
545 /** A random-access array of one-bit-wide elements. */
546 typedef unsigned int bitarray_t;
547 /** Create a new bit array that can hold <b>n_bits</b> bits. */
548 static INLINE bitarray_t *
549 bitarray_init_zero(unsigned int n_bits)
551 /* round up to the next int. */
552 size_t sz = (n_bits+BITARRAY_MASK) >> BITARRAY_SHIFT;
553 return tor_malloc_zero(sz*sizeof(unsigned int));
555 /** Expand <b>ba</b> from holding <b>n_bits_old</b> to <b>n_bits_new</b>,
556 * clearing all new bits. Returns a possibly changed pointer to the
557 * bitarray. */
558 static INLINE bitarray_t *
559 bitarray_expand(bitarray_t *ba,
560 unsigned int n_bits_old, unsigned int n_bits_new)
562 size_t sz_old = (n_bits_old+BITARRAY_MASK) >> BITARRAY_SHIFT;
563 size_t sz_new = (n_bits_new+BITARRAY_MASK) >> BITARRAY_SHIFT;
564 char *ptr;
565 if (sz_new <= sz_old)
566 return ba;
567 ptr = tor_realloc(ba, sz_new*sizeof(unsigned int));
568 /* This memset does nothing to the older excess bytes. But they were
569 * already set to 0 by bitarry_init_zero. */
570 memset(ptr+sz_old*sizeof(unsigned int), 0,
571 (sz_new-sz_old)*sizeof(unsigned int));
572 return (bitarray_t*) ptr;
574 /** Free the bit array <b>ba</b>. */
575 static INLINE void
576 bitarray_free(bitarray_t *ba)
578 tor_free(ba);
580 /** Set the <b>bit</b>th bit in <b>b</b> to 1. */
581 static INLINE void
582 bitarray_set(bitarray_t *b, int bit)
584 b[bit >> BITARRAY_SHIFT] |= (1u << (bit & BITARRAY_MASK));
586 /** Set the <b>bit</b>th bit in <b>b</b> to 0. */
587 static INLINE void
588 bitarray_clear(bitarray_t *b, int bit)
590 b[bit >> BITARRAY_SHIFT] &= ~ (1u << (bit & BITARRAY_MASK));
592 /** Return true iff <b>bit</b>th bit in <b>b</b> is nonzero. NOTE: does
593 * not necessarily return 1 on true. */
594 static INLINE unsigned int
595 bitarray_is_set(bitarray_t *b, int bit)
597 return b[bit >> BITARRAY_SHIFT] & (1u << (bit & BITARRAY_MASK));
600 /** A set of digests, implemented as a Bloom filter. */
601 typedef struct {
602 int mask; /**< One less than the number of bits in <b>ba</b>; always one less
603 * than a power of two. */
604 bitarray_t *ba; /**< A bit array to implement the Bloom filter. */
605 } digestset_t;
607 #define BIT(n) ((n) & set->mask)
608 /** Add the digest <b>digest</b> to <b>set</b>. */
609 static INLINE void
610 digestset_add(digestset_t *set, const char *digest)
612 const uint32_t *p = (const uint32_t *)digest;
613 const uint32_t d1 = p[0] + (p[1]>>16);
614 const uint32_t d2 = p[1] + (p[2]>>16);
615 const uint32_t d3 = p[2] + (p[3]>>16);
616 const uint32_t d4 = p[3] + (p[0]>>16);
617 bitarray_set(set->ba, BIT(d1));
618 bitarray_set(set->ba, BIT(d2));
619 bitarray_set(set->ba, BIT(d3));
620 bitarray_set(set->ba, BIT(d4));
623 /** If <b>digest</b> is in <b>set</b>, return nonzero. Otherwise,
624 * <em>probably</em> return zero. */
625 static INLINE int
626 digestset_contains(const digestset_t *set, const char *digest)
628 const uint32_t *p = (const uint32_t *)digest;
629 const uint32_t d1 = p[0] + (p[1]>>16);
630 const uint32_t d2 = p[1] + (p[2]>>16);
631 const uint32_t d3 = p[2] + (p[3]>>16);
632 const uint32_t d4 = p[3] + (p[0]>>16);
633 return bitarray_is_set(set->ba, BIT(d1)) &&
634 bitarray_is_set(set->ba, BIT(d2)) &&
635 bitarray_is_set(set->ba, BIT(d3)) &&
636 bitarray_is_set(set->ba, BIT(d4));
638 #undef BIT
640 digestset_t *digestset_new(int max_elements);
641 void digestset_free(digestset_t* set);
643 /* These functions, given an <b>array</b> of <b>n_elements</b>, return the
644 * <b>nth</b> lowest element. <b>nth</b>=0 gives the lowest element;
645 * <b>n_elements</b>-1 gives the highest; and (<b>n_elements</b>-1) / 2 gives
646 * the median. As a side effect, the elements of <b>array</b> are sorted. */
647 int find_nth_int(int *array, int n_elements, int nth);
648 time_t find_nth_time(time_t *array, int n_elements, int nth);
649 double find_nth_double(double *array, int n_elements, int nth);
650 int32_t find_nth_int32(int32_t *array, int n_elements, int nth);
651 uint32_t find_nth_uint32(uint32_t *array, int n_elements, int nth);
652 long find_nth_long(long *array, int n_elements, int nth);
653 static INLINE int
654 median_int(int *array, int n_elements)
656 return find_nth_int(array, n_elements, (n_elements-1)/2);
658 static INLINE time_t
659 median_time(time_t *array, int n_elements)
661 return find_nth_time(array, n_elements, (n_elements-1)/2);
663 static INLINE double
664 median_double(double *array, int n_elements)
666 return find_nth_double(array, n_elements, (n_elements-1)/2);
668 static INLINE uint32_t
669 median_uint32(uint32_t *array, int n_elements)
671 return find_nth_uint32(array, n_elements, (n_elements-1)/2);
673 static INLINE int32_t
674 median_int32(int32_t *array, int n_elements)
676 return find_nth_int32(array, n_elements, (n_elements-1)/2);
679 #endif