TomatoVPN 1.27vpn3.6 release
[tomato.git] / release / src / shared / gzip_inflate.c
blobaf7024280c7ab383ad133515dd4339e83dd64114
1 #ifndef DEBG
2 #define DEBG(x)
3 #endif
4 #ifndef DEBG1
5 #define DEBG1(x)
6 #endif
7 /* inflate.c -- Not copyrighted 1992 by Mark Adler
8 version c10p1, 10 January 1993 */
10 /*
11 * Adapted for booting Linux by Hannu Savolainen 1993
12 * based on gzip-1.0.3
14 * Nicolas Pitre <nico@cam.org>, 1999/04/14 :
15 * Little mods for all variable to reside either into rodata or bss segments
16 * by marking constant variables with 'const' and initializing all the others
17 * at run-time only. This allows for the kernel uncompressor to run
18 * directly from Flash or ROM memory on embedded systems.
22 Inflate deflated (PKZIP's method 8 compressed) data. The compression
23 method searches for as much of the current string of bytes (up to a
24 length of 258) in the previous 32 K bytes. If it doesn't find any
25 matches (of at least length 3), it codes the next byte. Otherwise, it
26 codes the length of the matched string and its distance backwards from
27 the current position. There is a single Huffman code that codes both
28 single bytes (called "literals") and match lengths. A second Huffman
29 code codes the distance information, which follows a length code. Each
30 length or distance code actually represents a base value and a number
31 of "extra" (sometimes zero) bits to get to add to the base value. At
32 the end of each deflated block is a special end-of-block (EOB) literal/
33 length code. The decoding process is basically: get a literal/length
34 code; if EOB then done; if a literal, emit the decoded byte; if a
35 length then get the distance and emit the referred-to bytes from the
36 sliding window of previously emitted data.
38 There are (currently) three kinds of inflate blocks: stored, fixed, and
39 dynamic. The compressor deals with some chunk of data at a time, and
40 decides which method to use on a chunk-by-chunk basis. A chunk might
41 typically be 32 K or 64 K. If the chunk is incompressible, then the
42 "stored" method is used. In this case, the bytes are simply stored as
43 is, eight bits per byte, with none of the above coding. The bytes are
44 preceded by a count, since there is no longer an EOB code.
46 If the data is compressible, then either the fixed or dynamic methods
47 are used. In the dynamic method, the compressed data is preceded by
48 an encoding of the literal/length and distance Huffman codes that are
49 to be used to decode this block. The representation is itself Huffman
50 coded, and so is preceded by a description of that code. These code
51 descriptions take up a little space, and so for small blocks, there is
52 a predefined set of codes, called the fixed codes. The fixed method is
53 used if the block codes up smaller that way (usually for quite small
54 chunks), otherwise the dynamic method is used. In the latter case, the
55 codes are customized to the probabilities in the current block, and so
56 can code it much better than the pre-determined fixed codes.
58 The Huffman codes themselves are decoded using a multi-level table
59 lookup, in order to maximize the speed of decoding plus the speed of
60 building the decoding tables. See the comments below that precede the
61 lbits and dbits tuning parameters.
66 Notes beyond the 1.93a appnote.txt:
68 1. Distance pointers never point before the beginning of the output
69 stream.
70 2. Distance pointers can point back across blocks, up to 32k away.
71 3. There is an implied maximum of 7 bits for the bit length table and
72 15 bits for the actual data.
73 4. If only one code exists, then it is encoded using one bit. (Zero
74 would be more efficient, but perhaps a little confusing.) If two
75 codes exist, they are coded using one bit each (0 and 1).
76 5. There is no way of sending zero distance codes--a dummy must be
77 sent if there are none. (History: a pre 2.0 version of PKZIP would
78 store blocks with no distance codes, but this was discovered to be
79 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
80 zero distance codes, which is sent as one code of zero bits in
81 length.
82 6. There are up to 286 literal/length codes. Code 256 represents the
83 end-of-block. Note however that the static length tree defines
84 288 codes just to fill out the Huffman codes. Codes 286 and 287
85 cannot be used though, since there is no length base or extra bits
86 defined for them. Similarly, there are up to 30 distance codes.
87 However, static trees define 32 codes (all 5 bits) to fill out the
88 Huffman codes, but the last two had better not show up in the data.
89 7. Unzip can check dynamic Huffman blocks for complete code sets.
90 The exception is that a single code would not be complete (see #4).
91 8. The five bits following the block type is really the number of
92 literal codes sent minus 257.
93 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
94 (1+6+6). Therefore, to output three times the length, you output
95 three codes (1+1+1), whereas to output four times the same length,
96 you only need two codes (1+3). Hmm.
97 10. In the tree reconstruction algorithm, Code = Code + Increment
98 only if BitLength(i) is not zero. (Pretty obvious.)
99 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
100 12. Note: length code 284 can represent 227-258, but length code 285
101 really is 258. The last length deserves its own, short code
102 since it gets used a lot in very redundant files. The length
103 258 is special since 258 - 3 (the min match length) is 255.
104 13. The literal/length and distance code bit lengths are read as a
105 single stream of lengths. It is possible (and advantageous) for
106 a repeat code (16, 17, or 18) to go across the boundary between
107 the two sets of lengths.
110 #ifdef RCSID
111 static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
112 #endif
114 #ifndef STATIC
116 #if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
117 # include <sys/types.h>
118 # include <stdlib.h>
119 #endif
121 #include "gzip.h"
122 #define STATIC
123 #endif /* !STATIC */
125 #define slide window
127 /* Huffman code lookup table entry--this entry is four bytes for machines
128 that have 16-bit pointers (e.g. PC's in the small or medium model).
129 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
130 means that v is a literal, 16 < e < 32 means that v is a pointer to
131 the next table, which codes e - 16 bits, and lastly e == 99 indicates
132 an unused code. If a code with e == 99 is looked up, this implies an
133 error in the data. */
134 struct huft {
135 uch e; /* number of extra bits or operation */
136 uch b; /* number of bits in this code or subcode */
137 union {
138 ush n; /* literal, length base, or distance base */
139 struct huft *t; /* pointer to next level of table */
140 } v;
144 /* Function prototypes */
145 STATIC int huft_build OF((unsigned *, unsigned, unsigned,
146 const ush *, const ush *, struct huft **, int *));
147 STATIC int huft_free OF((struct huft *));
148 STATIC int inflate_codes OF((struct huft *, struct huft *, int, int));
149 STATIC int inflate_stored OF((void));
150 STATIC int inflate_fixed OF((void));
151 STATIC int inflate_dynamic OF((void));
152 STATIC int inflate_block OF((int *));
153 STATIC int inflate OF((void));
156 /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
157 stream to find repeated byte strings. This is implemented here as a
158 circular buffer. The index is updated simply by incrementing and then
159 ANDing with 0x7fff (32K-1). */
160 /* It is left to other modules to supply the 32 K area. It is assumed
161 to be usable as if it were declared "uch slide[32768];" or as just
162 "uch *slide;" and then malloc'ed in the latter case. The definition
163 must be in unzip.h, included above. */
164 /* unsigned wp; current position in slide */
165 #define wp outcnt
166 #define flush_output(w) (wp=(w),flush_window())
168 /* Tables for deflate from PKZIP's appnote.txt. */
169 static const unsigned border[] = { /* Order of the bit length code lengths */
170 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
171 static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */
172 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
173 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
174 /* note: see note #13 above about the 258 in this list. */
175 static const ush cplext[] = { /* Extra bits for literal codes 257..285 */
176 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
177 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
178 static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
179 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
180 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
181 8193, 12289, 16385, 24577};
182 static const ush cpdext[] = { /* Extra bits for distance codes */
183 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
184 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
185 12, 12, 13, 13};
189 /* Macros for inflate() bit peeking and grabbing.
190 The usage is:
192 NEEDBITS(j)
193 x = b & mask_bits[j];
194 DUMPBITS(j)
196 where NEEDBITS makes sure that b has at least j bits in it, and
197 DUMPBITS removes the bits from b. The macros use the variable k
198 for the number of bits in b. Normally, b and k are register
199 variables for speed, and are initialized at the beginning of a
200 routine that uses these macros from a global bit buffer and count.
202 If we assume that EOB will be the longest code, then we will never
203 ask for bits with NEEDBITS that are beyond the end of the stream.
204 So, NEEDBITS should not read any more bytes than are needed to
205 meet the request. Then no bytes need to be "returned" to the buffer
206 at the end of the last block.
208 However, this assumption is not true for fixed blocks--the EOB code
209 is 7 bits, but the other literal/length codes can be 8 or 9 bits.
210 (The EOB code is shorter than other codes because fixed blocks are
211 generally short. So, while a block always has an EOB, many other
212 literal/length codes have a significantly lower probability of
213 showing up at all.) However, by making the first table have a
214 lookup of seven bits, the EOB code will be found in that first
215 lookup, and so will not require that too many bits be pulled from
216 the stream.
219 STATIC ulg bb; /* bit buffer */
220 STATIC unsigned bk; /* bits in bit buffer */
222 STATIC const ush mask_bits[] = {
223 0x0000,
224 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
225 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
228 #define NEXTBYTE() (uch)get_byte()
229 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
230 #define DUMPBITS(n) {b>>=(n);k-=(n);}
234 Huffman code decoding is performed using a multi-level table lookup.
235 The fastest way to decode is to simply build a lookup table whose
236 size is determined by the longest code. However, the time it takes
237 to build this table can also be a factor if the data being decoded
238 is not very long. The most common codes are necessarily the
239 shortest codes, so those codes dominate the decoding time, and hence
240 the speed. The idea is you can have a shorter table that decodes the
241 shorter, more probable codes, and then point to subsidiary tables for
242 the longer codes. The time it costs to decode the longer codes is
243 then traded against the time it takes to make longer tables.
245 This results of this trade are in the variables lbits and dbits
246 below. lbits is the number of bits the first level table for literal/
247 length codes can decode in one step, and dbits is the same thing for
248 the distance codes. Subsequent tables are also less than or equal to
249 those sizes. These values may be adjusted either when all of the
250 codes are shorter than that, in which case the longest code length in
251 bits is used, or when the shortest code is *longer* than the requested
252 table size, in which case the length of the shortest code in bits is
253 used.
255 There are two different values for the two tables, since they code a
256 different number of possibilities each. The literal/length table
257 codes 286 possible values, or in a flat code, a little over eight
258 bits. The distance table codes 30 possible values, or a little less
259 than five bits, flat. The optimum values for speed end up being
260 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
261 The optimum values may differ though from machine to machine, and
262 possibly even between compilers. Your mileage may vary.
266 STATIC const int lbits = 9; /* bits in base literal/length lookup table */
267 STATIC const int dbits = 6; /* bits in base distance lookup table */
270 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
271 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
272 #define N_MAX 288 /* maximum number of codes in any set */
275 STATIC unsigned hufts; /* track memory usage */
278 STATIC int huft_build(b, n, s, d, e, t, m)
279 unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
280 unsigned n; /* number of codes (assumed <= N_MAX) */
281 unsigned s; /* number of simple-valued codes (0..s-1) */
282 const ush *d; /* list of base values for non-simple codes */
283 const ush *e; /* list of extra bits for non-simple codes */
284 struct huft **t; /* result: starting table */
285 int *m; /* maximum lookup bits, returns actual */
286 /* Given a list of code lengths and a maximum table size, make a set of
287 tables to decode that set of codes. Return zero on success, one if
288 the given code set is incomplete (the tables are still built in this
289 case), two if the input is invalid (all zero length codes or an
290 oversubscribed set of lengths), and three if not enough memory. */
292 unsigned a; /* counter for codes of length k */
293 unsigned c[BMAX+1]; /* bit length count table */
294 unsigned f; /* i repeats in table every f entries */
295 int g; /* maximum code length */
296 int h; /* table level */
297 register unsigned i; /* counter, current code */
298 register unsigned j; /* counter */
299 register int k; /* number of bits in current code */
300 int l; /* bits per table (returned in m) */
301 register unsigned *p; /* pointer into c[], b[], or v[] */
302 register struct huft *q; /* points to current table */
303 struct huft r; /* table entry for structure assignment */
304 struct huft *u[BMAX]; /* table stack */
305 unsigned v[N_MAX]; /* values in order of bit length */
306 register int w; /* bits before this table == (l * h) */
307 unsigned x[BMAX+1]; /* bit offsets, then code stack */
308 unsigned *xp; /* pointer into x */
309 int y; /* number of dummy codes added */
310 unsigned z; /* number of entries in current table */
312 DEBG("huft1 ");
314 /* Generate counts for each bit length */
315 memzero(c, sizeof(c));
316 p = b; i = n;
317 do {
318 Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
319 n-i, *p));
320 c[*p]++; /* assume all entries <= BMAX */
321 p++; /* Can't combine with above line (Solaris bug) */
322 } while (--i);
323 if (c[0] == n) /* null input--all zero length codes */
325 *t = (struct huft *)NULL;
326 *m = 0;
327 return 0;
330 DEBG("huft2 ");
332 /* Find minimum and maximum length, bound *m by those */
333 l = *m;
334 for (j = 1; j <= BMAX; j++)
335 if (c[j])
336 break;
337 k = j; /* minimum code length */
338 if ((unsigned)l < j)
339 l = j;
340 for (i = BMAX; i; i--)
341 if (c[i])
342 break;
343 g = i; /* maximum code length */
344 if ((unsigned)l > i)
345 l = i;
346 *m = l;
348 DEBG("huft3 ");
350 /* Adjust last length count to fill out codes, if needed */
351 for (y = 1 << j; j < i; j++, y <<= 1)
352 if ((y -= c[j]) < 0)
353 return 2; /* bad input: more codes than bits */
354 if ((y -= c[i]) < 0)
355 return 2;
356 c[i] += y;
358 DEBG("huft4 ");
360 /* Generate starting offsets into the value table for each length */
361 x[1] = j = 0;
362 p = c + 1; xp = x + 2;
363 while (--i) { /* note that i == g from above */
364 *xp++ = (j += *p++);
367 DEBG("huft5 ");
369 /* Make a table of values in order of bit lengths */
370 p = b; i = 0;
371 do {
372 if ((j = *p++) != 0)
373 v[x[j]++] = i;
374 } while (++i < n);
376 DEBG("h6 ");
378 /* Generate the Huffman codes and for each, make the table entries */
379 x[0] = i = 0; /* first Huffman code is zero */
380 p = v; /* grab values in bit order */
381 h = -1; /* no tables yet--level -1 */
382 w = -l; /* bits decoded == (l * h) */
383 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
384 q = (struct huft *)NULL; /* ditto */
385 z = 0; /* ditto */
386 DEBG("h6a ");
388 /* go through the bit lengths (k already is bits in shortest code) */
389 for (; k <= g; k++)
391 DEBG("h6b ");
392 a = c[k];
393 while (a--)
395 DEBG("h6b1 ");
396 /* here i is the Huffman code of length k bits for value *p */
397 /* make tables up to required level */
398 while (k > w + l)
400 DEBG1("1 ");
401 h++;
402 w += l; /* previous table always l bits */
404 /* compute minimum size table less than or equal to l bits */
405 z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
406 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
407 { /* too few codes for k-w bit table */
408 DEBG1("2 ");
409 f -= a + 1; /* deduct codes from patterns left */
410 xp = c + k;
411 while (++j < z) /* try smaller tables up to z bits */
413 if ((f <<= 1) <= *++xp)
414 break; /* enough codes to use up j bits */
415 f -= *xp; /* else deduct codes from patterns */
418 DEBG1("3 ");
419 z = 1 << j; /* table entries for j-bit table */
421 /* allocate and link in new table */
422 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
423 (struct huft *)NULL)
425 if (h)
426 huft_free(u[0]);
427 return 3; /* not enough memory */
429 DEBG1("4 ");
430 hufts += z + 1; /* track memory usage */
431 *t = q + 1; /* link to list for huft_free() */
432 *(t = &(q->v.t)) = (struct huft *)NULL;
433 u[h] = ++q; /* table starts after link */
435 DEBG1("5 ");
436 /* connect to last table, if there is one */
437 if (h)
439 x[h] = i; /* save pattern for backing up */
440 r.b = (uch)l; /* bits to dump before this table */
441 r.e = (uch)(16 + j); /* bits in this table */
442 r.v.t = q; /* pointer to this table */
443 j = i >> (w - l); /* (get around Turbo C bug) */
444 u[h-1][j] = r; /* connect to last table */
446 DEBG1("6 ");
448 DEBG("h6c ");
450 /* set up table entry in r */
451 r.b = (uch)(k - w);
452 if (p >= v + n)
453 r.e = 99; /* out of values--invalid code */
454 else if (*p < s)
456 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
457 r.v.n = (ush)(*p); /* simple code is just the value */
458 p++; /* one compiler does not like *p++ */
460 else
462 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
463 r.v.n = d[*p++ - s];
465 DEBG("h6d ");
467 /* fill code-like entries with r */
468 f = 1 << (k - w);
469 for (j = i >> w; j < z; j += f)
470 q[j] = r;
472 /* backwards increment the k-bit code i */
473 for (j = 1 << (k - 1); i & j; j >>= 1)
474 i ^= j;
475 i ^= j;
477 /* backup over finished tables */
478 while ((i & ((1 << w) - 1)) != x[h])
480 h--; /* don't need to update q */
481 w -= l;
483 DEBG("h6e ");
485 DEBG("h6f ");
488 DEBG("huft7 ");
490 /* Return true (1) if we were given an incomplete table */
491 return y != 0 && g != 1;
496 STATIC int huft_free(t)
497 struct huft *t; /* table to free */
498 /* Free the malloc'ed tables built by huft_build(), which makes a linked
499 list of the tables it made, with the links in a dummy first entry of
500 each table. */
502 register struct huft *p, *q;
505 /* Go through linked list, freeing from the malloced (t[-1]) address. */
506 p = t;
507 while (p != (struct huft *)NULL)
509 q = (--p)->v.t;
510 free((char*)p);
511 p = q;
513 return 0;
517 STATIC int inflate_codes(tl, td, bl, bd)
518 struct huft *tl, *td; /* literal/length and distance decoder tables */
519 int bl, bd; /* number of bits decoded by tl[] and td[] */
520 /* inflate (decompress) the codes in a deflated (compressed) block.
521 Return an error code or zero if it all goes ok. */
523 register unsigned e; /* table entry flag/number of extra bits */
524 unsigned n, d; /* length and index for copy */
525 unsigned w; /* current window position */
526 struct huft *t; /* pointer to table entry */
527 unsigned ml, md; /* masks for bl and bd bits */
528 register ulg b; /* bit buffer */
529 register unsigned k; /* number of bits in bit buffer */
532 /* make local copies of globals */
533 b = bb; /* initialize bit buffer */
534 k = bk;
535 w = wp; /* initialize window position */
537 /* inflate the coded data */
538 ml = mask_bits[bl]; /* precompute masks for speed */
539 md = mask_bits[bd];
540 for (;;) /* do until end of block */
542 NEEDBITS((unsigned)bl)
543 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
544 do {
545 if (e == 99)
546 return 1;
547 DUMPBITS(t->b)
548 e -= 16;
549 NEEDBITS(e)
550 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
551 DUMPBITS(t->b)
552 if (e == 16) /* then it's a literal */
554 slide[w++] = (uch)t->v.n;
555 Tracevv((stderr, "%c", slide[w-1]));
556 if (w == WSIZE)
558 flush_output(w);
559 w = 0;
562 else /* it's an EOB or a length */
564 /* exit if end of block */
565 if (e == 15)
566 break;
568 /* get length of block to copy */
569 NEEDBITS(e)
570 n = t->v.n + ((unsigned)b & mask_bits[e]);
571 DUMPBITS(e);
573 /* decode distance of block to copy */
574 NEEDBITS((unsigned)bd)
575 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
576 do {
577 if (e == 99)
578 return 1;
579 DUMPBITS(t->b)
580 e -= 16;
581 NEEDBITS(e)
582 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
583 DUMPBITS(t->b)
584 NEEDBITS(e)
585 d = w - t->v.n - ((unsigned)b & mask_bits[e]);
586 DUMPBITS(e)
587 Tracevv((stderr,"\\[%d,%d]", w-d, n));
589 /* do the copy */
590 do {
591 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
592 #if !defined(NOMEMCPY) && !defined(DEBUG)
593 if (w - d >= e) /* (this test assumes unsigned comparison) */
595 memcpy(slide + w, slide + d, e);
596 w += e;
597 d += e;
599 else /* do it slow to avoid memcpy() overlap */
600 #endif /* !NOMEMCPY */
601 do {
602 slide[w++] = slide[d++];
603 Tracevv((stderr, "%c", slide[w-1]));
604 } while (--e);
605 if (w == WSIZE)
607 flush_output(w);
608 w = 0;
610 } while (n);
615 /* restore the globals from the locals */
616 wp = w; /* restore global window pointer */
617 bb = b; /* restore global bit buffer */
618 bk = k;
620 /* done */
621 return 0;
626 STATIC int inflate_stored()
627 /* "decompress" an inflated type 0 (stored) block. */
629 unsigned n; /* number of bytes in block */
630 unsigned w; /* current window position */
631 register ulg b; /* bit buffer */
632 register unsigned k; /* number of bits in bit buffer */
634 DEBG("<stor");
636 /* make local copies of globals */
637 b = bb; /* initialize bit buffer */
638 k = bk;
639 w = wp; /* initialize window position */
642 /* go to byte boundary */
643 n = k & 7;
644 DUMPBITS(n);
647 /* get the length and its complement */
648 NEEDBITS(16)
649 n = ((unsigned)b & 0xffff);
650 DUMPBITS(16)
651 NEEDBITS(16)
652 if (n != (unsigned)((~b) & 0xffff))
653 return 1; /* error in compressed data */
654 DUMPBITS(16)
657 /* read and output the compressed data */
658 while (n--)
660 NEEDBITS(8)
661 slide[w++] = (uch)b;
662 if (w == WSIZE)
664 flush_output(w);
665 w = 0;
667 DUMPBITS(8)
671 /* restore the globals from the locals */
672 wp = w; /* restore global window pointer */
673 bb = b; /* restore global bit buffer */
674 bk = k;
676 DEBG(">");
677 return 0;
682 STATIC int inflate_fixed()
683 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
684 either replace this with a custom decoder, or at least precompute the
685 Huffman tables. */
687 int i; /* temporary variable */
688 struct huft *tl; /* literal/length code table */
689 struct huft *td; /* distance code table */
690 int bl; /* lookup bits for tl */
691 int bd; /* lookup bits for td */
692 unsigned l[288]; /* length list for huft_build */
694 DEBG("<fix");
696 /* set up literal table */
697 for (i = 0; i < 144; i++)
698 l[i] = 8;
699 for (; i < 256; i++)
700 l[i] = 9;
701 for (; i < 280; i++)
702 l[i] = 7;
703 for (; i < 288; i++) /* make a complete, but wrong code set */
704 l[i] = 8;
705 bl = 7;
706 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
707 return i;
710 /* set up distance table */
711 for (i = 0; i < 30; i++) /* make an incomplete code set */
712 l[i] = 5;
713 bd = 5;
714 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
716 huft_free(tl);
718 DEBG(">");
719 return i;
723 /* decompress until an end-of-block code */
724 if (inflate_codes(tl, td, bl, bd))
725 return 1;
728 /* free the decoding tables, return */
729 huft_free(tl);
730 huft_free(td);
731 return 0;
736 STATIC int inflate_dynamic()
737 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
739 int i; /* temporary variables */
740 unsigned j;
741 unsigned l; /* last length */
742 unsigned m; /* mask for bit lengths table */
743 unsigned n; /* number of lengths to get */
744 struct huft *tl; /* literal/length code table */
745 struct huft *td; /* distance code table */
746 int bl; /* lookup bits for tl */
747 int bd; /* lookup bits for td */
748 unsigned nb; /* number of bit length codes */
749 unsigned nl; /* number of literal/length codes */
750 unsigned nd; /* number of distance codes */
751 #ifdef PKZIP_BUG_WORKAROUND
752 unsigned ll[288+32]; /* literal/length and distance code lengths */
753 #else
754 unsigned ll[286+30]; /* literal/length and distance code lengths */
755 #endif
756 register ulg b; /* bit buffer */
757 register unsigned k; /* number of bits in bit buffer */
759 DEBG("<dyn");
761 /* make local bit buffer */
762 b = bb;
763 k = bk;
766 /* read in table lengths */
767 NEEDBITS(5)
768 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
769 DUMPBITS(5)
770 NEEDBITS(5)
771 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
772 DUMPBITS(5)
773 NEEDBITS(4)
774 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
775 DUMPBITS(4)
776 #ifdef PKZIP_BUG_WORKAROUND
777 if (nl > 288 || nd > 32)
778 #else
779 if (nl > 286 || nd > 30)
780 #endif
781 return 1; /* bad lengths */
783 DEBG("dyn1 ");
785 /* read in bit-length-code lengths */
786 for (j = 0; j < nb; j++)
788 NEEDBITS(3)
789 ll[border[j]] = (unsigned)b & 7;
790 DUMPBITS(3)
792 for (; j < 19; j++)
793 ll[border[j]] = 0;
795 DEBG("dyn2 ");
797 /* build decoding table for trees--single level, 7 bit lookup */
798 bl = 7;
799 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
801 if (i == 1)
802 huft_free(tl);
803 return i; /* incomplete code set */
806 DEBG("dyn3 ");
808 /* read in literal and distance code lengths */
809 n = nl + nd;
810 m = mask_bits[bl];
811 i = l = 0;
812 while ((unsigned)i < n)
814 NEEDBITS((unsigned)bl)
815 j = (td = tl + ((unsigned)b & m))->b;
816 DUMPBITS(j)
817 j = td->v.n;
818 if (j < 16) /* length of code in bits (0..15) */
819 ll[i++] = l = j; /* save last length in l */
820 else if (j == 16) /* repeat last length 3 to 6 times */
822 NEEDBITS(2)
823 j = 3 + ((unsigned)b & 3);
824 DUMPBITS(2)
825 if ((unsigned)i + j > n)
826 return 1;
827 while (j--)
828 ll[i++] = l;
830 else if (j == 17) /* 3 to 10 zero length codes */
832 NEEDBITS(3)
833 j = 3 + ((unsigned)b & 7);
834 DUMPBITS(3)
835 if ((unsigned)i + j > n)
836 return 1;
837 while (j--)
838 ll[i++] = 0;
839 l = 0;
841 else /* j == 18: 11 to 138 zero length codes */
843 NEEDBITS(7)
844 j = 11 + ((unsigned)b & 0x7f);
845 DUMPBITS(7)
846 if ((unsigned)i + j > n)
847 return 1;
848 while (j--)
849 ll[i++] = 0;
850 l = 0;
854 DEBG("dyn4 ");
856 /* free decoding table for trees */
857 huft_free(tl);
859 DEBG("dyn5 ");
861 /* restore the global bit buffer */
862 bb = b;
863 bk = k;
865 DEBG("dyn5a ");
867 /* build the decoding tables for literal/length and distance codes */
868 bl = lbits;
869 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
871 DEBG("dyn5b ");
872 if (i == 1) {
873 error(" incomplete literal tree\n");
874 huft_free(tl);
876 return i; /* incomplete code set */
878 DEBG("dyn5c ");
879 bd = dbits;
880 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
882 DEBG("dyn5d ");
883 if (i == 1) {
884 error(" incomplete distance tree\n");
885 #ifdef PKZIP_BUG_WORKAROUND
886 i = 0;
888 #else
889 huft_free(td);
891 huft_free(tl);
892 return i; /* incomplete code set */
893 #endif
896 DEBG("dyn6 ");
898 /* decompress until an end-of-block code */
899 if (inflate_codes(tl, td, bl, bd))
900 return 1;
902 DEBG("dyn7 ");
904 /* free the decoding tables, return */
905 huft_free(tl);
906 huft_free(td);
908 DEBG(">");
909 return 0;
914 STATIC int inflate_block(e)
915 int *e; /* last block flag */
916 /* decompress an inflated block */
918 unsigned t; /* block type */
919 register ulg b; /* bit buffer */
920 register unsigned k; /* number of bits in bit buffer */
922 DEBG("<blk");
924 /* make local bit buffer */
925 b = bb;
926 k = bk;
929 /* read in last block bit */
930 NEEDBITS(1)
931 *e = (int)b & 1;
932 DUMPBITS(1)
935 /* read in block type */
936 NEEDBITS(2)
937 t = (unsigned)b & 3;
938 DUMPBITS(2)
941 /* restore the global bit buffer */
942 bb = b;
943 bk = k;
945 /* inflate that block type */
946 if (t == 2)
947 return inflate_dynamic();
948 if (t == 0)
949 return inflate_stored();
950 if (t == 1)
951 return inflate_fixed();
953 DEBG(">");
955 /* bad block type */
956 return 2;
961 STATIC int inflate()
962 /* decompress an inflated entry */
964 int e; /* last block flag */
965 int r; /* result code */
966 unsigned h; /* maximum struct huft's malloc'ed */
967 void *ptr;
969 /* initialize window, bit buffer */
970 wp = 0;
971 bk = 0;
972 bb = 0;
975 /* decompress until the last block */
976 h = 0;
977 do {
978 hufts = 0;
979 gzip_mark(&ptr);
980 if ((r = inflate_block(&e)) != 0) {
981 gzip_release(&ptr);
982 return r;
984 gzip_release(&ptr);
985 if (hufts > h)
986 h = hufts;
987 } while (!e);
989 /* Undo too much lookahead. The next read will be byte aligned so we
990 * can discard unused bits in the last meaningful byte.
992 while (bk >= 8) {
993 bk -= 8;
994 inptr--;
997 /* flush out slide */
998 flush_output(wp);
1001 /* return success */
1002 #ifdef DEBUG
1003 fprintf(stderr, "<%u> ", h);
1004 #endif /* DEBUG */
1005 return 0;
1008 /**********************************************************************
1010 * The following are support routines for inflate.c
1012 **********************************************************************/
1014 static ulg crc_32_tab[256];
1015 static ulg crc; /* initialized in makecrc() so it'll reside in bss */
1016 #define CRC_VALUE (crc ^ 0xffffffffUL)
1019 * Code to compute the CRC-32 table. Borrowed from
1020 * gzip-1.0.3/makecrc.c.
1023 static void
1024 makecrc(void)
1026 /* Not copyrighted 1990 Mark Adler */
1028 unsigned long c; /* crc shift register */
1029 unsigned long e; /* polynomial exclusive-or pattern */
1030 int i; /* counter for all possible eight bit values */
1031 int k; /* byte being shifted into crc apparatus */
1033 /* terms of polynomial defining this crc (except x^32): */
1034 static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
1036 /* Make exclusive-or pattern from polynomial */
1037 e = 0;
1038 for (i = 0; i < sizeof(p)/sizeof(int); i++)
1039 e |= 1L << (31 - p[i]);
1041 crc_32_tab[0] = 0;
1043 for (i = 1; i < 256; i++)
1045 c = 0;
1046 for (k = i | 256; k != 1; k >>= 1)
1048 c = c & 1 ? (c >> 1) ^ e : c >> 1;
1049 if (k & 1)
1050 c ^= e;
1052 crc_32_tab[i] = c;
1055 /* this is initialized here so this code could reside in ROM */
1056 crc = (ulg)0xffffffffUL; /* shift register contents */
1059 /* gzip flag byte */
1060 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
1061 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
1062 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
1063 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
1064 #define COMMENT 0x10 /* bit 4 set: file comment present */
1065 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
1066 #define RESERVED 0xC0 /* bit 6,7: reserved */
1069 * Do the uncompression!
1071 static int gunzip(void)
1073 uch flags;
1074 unsigned char magic[2]; /* magic header */
1075 char method;
1076 ulg orig_crc = 0; /* original crc */
1077 ulg orig_len = 0; /* original uncompressed length */
1078 int res;
1080 magic[0] = (unsigned char)get_byte();
1081 magic[1] = (unsigned char)get_byte();
1082 method = (unsigned char)get_byte();
1084 if (magic[0] != 037 ||
1085 ((magic[1] != 0213) && (magic[1] != 0236))) {
1086 error("bad gzip magic numbers");
1087 return -1;
1090 /* We only support method #8, DEFLATED */
1091 if (method != 8) {
1092 error("internal error, invalid method");
1093 return -1;
1096 flags = (uch)get_byte();
1097 if ((flags & ENCRYPTED) != 0) {
1098 error("Input is encrypted\n");
1099 return -1;
1101 if ((flags & CONTINUATION) != 0) {
1102 error("Multi part input\n");
1103 return -1;
1105 if ((flags & RESERVED) != 0) {
1106 error("Input has invalid flags\n");
1107 return -1;
1109 (ulg)get_byte(); /* Get timestamp */
1110 ((ulg)get_byte()) << 8;
1111 ((ulg)get_byte()) << 16;
1112 ((ulg)get_byte()) << 24;
1114 (void)get_byte(); /* Ignore extra flags for the moment */
1115 (void)get_byte(); /* Ignore OS type for the moment */
1117 if ((flags & EXTRA_FIELD) != 0) {
1118 unsigned len = (unsigned)get_byte();
1119 len |= ((unsigned)get_byte())<<8;
1120 while (len--) (void)get_byte();
1123 /* Get original file name if it was truncated */
1124 if ((flags & ORIG_NAME) != 0) {
1125 /* Discard the old name */
1126 while (get_byte() != 0) /* null */ ;
1129 /* Discard file comment if any */
1130 if ((flags & COMMENT) != 0) {
1131 while (get_byte() != 0) /* null */ ;
1134 /* Decompress */
1135 if ((res = inflate())) {
1136 switch (res) {
1137 case 0:
1138 break;
1139 case 1:
1140 error("invalid compressed format (err=1)");
1141 break;
1142 case 2:
1143 error("invalid compressed format (err=2)");
1144 break;
1145 case 3:
1146 error("out of memory");
1147 break;
1148 default:
1149 error("invalid compressed format (other)");
1151 return -1;
1154 /* Get the crc and original length */
1155 /* crc32 (see algorithm.doc)
1156 * uncompressed input size modulo 2^32
1158 orig_crc = (ulg) get_byte();
1159 orig_crc |= (ulg) get_byte() << 8;
1160 orig_crc |= (ulg) get_byte() << 16;
1161 orig_crc |= (ulg) get_byte() << 24;
1163 orig_len = (ulg) get_byte();
1164 orig_len |= (ulg) get_byte() << 8;
1165 orig_len |= (ulg) get_byte() << 16;
1166 orig_len |= (ulg) get_byte() << 24;
1168 /* Validate decompression */
1169 if (orig_crc != CRC_VALUE) {
1170 error("crc error");
1171 return -1;
1173 if (orig_len != bytes_out) {
1174 error("length error");
1175 return -1;
1177 return 0;