[SKBUFF]: add skb_morph & co.
[tomato.git] / release / src-rt / linux / linux-2.6 / include / linux / skbuff.h
blob7ba6744b65c5649d3186a198dd983e3ee998fb5f
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
67 * B. Checksumming on output.
69 * NONE: skb is checksummed by protocol or csum is not required.
71 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
72 * from skb->transport_header to the end and to record the checksum
73 * at skb->transport_header + skb->csum.
75 * Device must show its capabilities in dev->features, set
76 * at device setup time.
77 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * everything.
79 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
80 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
81 * TCP/UDP over IPv4. Sigh. Vendors like this
82 * way by an unknown reason. Though, see comment above
83 * about CHECKSUM_UNNECESSARY. 8)
85 * Any questions? No questions, good. --ANK
88 struct net_device;
89 struct scatterlist;
90 struct pipe_inode_info;
92 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
93 struct nf_conntrack {
94 atomic_t use;
96 #endif
98 #ifdef CONFIG_BRIDGE_NETFILTER
99 struct nf_bridge_info {
100 atomic_t use;
101 struct net_device *physindev;
102 struct net_device *physoutdev;
103 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
104 struct net_device *netoutdev;
105 #endif
106 unsigned int mask;
107 unsigned long data[32 / sizeof(unsigned long)];
109 #endif
111 struct sk_buff_head {
112 /* These two members must be first. */
113 struct sk_buff *next;
114 struct sk_buff *prev;
116 __u32 qlen;
117 spinlock_t lock;
120 struct sk_buff;
122 /* To allow 64K frame to be packed as single skb without frag_list */
123 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
125 typedef struct skb_frag_struct skb_frag_t;
127 struct skb_frag_struct {
128 struct page *page;
129 __u16 page_offset;
130 __u16 size;
133 /* This data is invariant across clones and lives at
134 * the end of the header data, ie. at skb->end.
136 struct skb_shared_info {
137 atomic_t dataref;
138 unsigned short nr_frags;
139 unsigned short gso_size;
140 /* Warning: this field is not always filled in (UFO)! */
141 unsigned short gso_segs;
142 unsigned short gso_type;
143 __be32 ip6_frag_id;
144 struct sk_buff *frag_list;
146 /* Intermediate layers must ensure that destructor_arg
147 * remains valid until skb destructor */
148 void * destructor_arg;
150 /* must be last field, see pskb_expand_head() */
151 skb_frag_t frags[MAX_SKB_FRAGS];
154 /* We divide dataref into two halves. The higher 16 bits hold references
155 * to the payload part of skb->data. The lower 16 bits hold references to
156 * the entire skb->data. A clone of a headerless skb holds the length of
157 * the header in skb->hdr_len.
159 * All users must obey the rule that the skb->data reference count must be
160 * greater than or equal to the payload reference count.
162 * Holding a reference to the payload part means that the user does not
163 * care about modifications to the header part of skb->data.
165 #define SKB_DATAREF_SHIFT 16
166 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
169 enum {
170 SKB_FCLONE_UNAVAILABLE,
171 SKB_FCLONE_ORIG,
172 SKB_FCLONE_CLONE,
175 enum {
176 SKB_GSO_TCPV4 = 1 << 0,
177 SKB_GSO_UDP = 1 << 1,
179 /* This indicates the skb is from an untrusted source. */
180 SKB_GSO_DODGY = 1 << 2,
182 /* This indicates the tcp segment has CWR set. */
183 SKB_GSO_TCP_ECN = 1 << 3,
185 SKB_GSO_TCPV6 = 1 << 4,
188 #if BITS_PER_LONG > 32
189 #define NET_SKBUFF_DATA_USES_OFFSET 1
190 #endif
192 #ifdef NET_SKBUFF_DATA_USES_OFFSET
193 typedef unsigned int sk_buff_data_t;
194 #else
195 typedef unsigned char *sk_buff_data_t;
196 #endif
198 /**
199 * struct sk_buff - socket buffer
200 * @next: Next buffer in list
201 * @prev: Previous buffer in list
202 * @sk: Socket we are owned by
203 * @tstamp: Time we arrived
204 * @dev: Device we arrived on/are leaving by
205 * @iif: ifindex of device we arrived on
206 * @transport_header: Transport layer header
207 * @network_header: Network layer header
208 * @mac_header: Link layer header
209 * @dst: destination entry
210 * @sp: the security path, used for xfrm
211 * @cb: Control buffer. Free for use by every layer. Put private vars here
212 * @len: Length of actual data
213 * @data_len: Data length
214 * @mac_len: Length of link layer header
215 * @hdr_len: writable header length of cloned skb
216 * @csum: Checksum (must include start/offset pair)
217 * @csum_start: Offset from skb->head where checksumming should start
218 * @csum_offset: Offset from csum_start where checksum should be stored
219 * @local_df: allow local fragmentation
220 * @cloned: Head may be cloned (check refcnt to be sure)
221 * @nohdr: Payload reference only, must not modify header
222 * @pkt_type: Packet class
223 * @fclone: skbuff clone status
224 * @ip_summed: Driver fed us an IP checksum
225 * @priority: Packet queueing priority
226 * @users: User count - see {datagram,tcp}.c
227 * @protocol: Packet protocol from driver
228 * @truesize: Buffer size
229 * @head: Head of buffer
230 * @data: Data head pointer
231 * @tail: Tail pointer
232 * @end: End pointer
233 * @destructor: Destruct function
234 * @mark: Generic packet mark
235 * @nfct: Associated connection, if any
236 * @ipvs_property: skbuff is owned by ipvs
237 * @nfctinfo: Relationship of this skb to the connection
238 * @nfct_reasm: netfilter conntrack re-assembly pointer
239 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
240 * @tc_index: Traffic control index
241 * @tc_verd: traffic control verdict
242 * @dma_cookie: a cookie to one of several possible DMA operations
243 * done by skb DMA functions
244 * @secmark: security marking
245 * @vlan_tci: vlan tag control information
248 struct sk_buff {
249 /* These two members must be first. */
250 struct sk_buff *next;
251 struct sk_buff *prev;
253 struct sock *sk;
254 ktime_t tstamp;
255 struct net_device *dev;
256 int iif;
257 /* 4 byte hole on 64 bit*/
259 struct dst_entry *dst;
260 struct sec_path *sp;
263 * This is the control buffer. It is free to use for every
264 * layer. Please put your private variables there. If you
265 * want to keep them across layers you have to do a skb_clone()
266 * first. This is owned by whoever has the skb queued ATM.
268 char cb[48];
270 unsigned int len,
271 data_len;
272 #ifdef HNDCTF
273 __u16 ctf_mac_len, /* This field is used by Broadcom CTF driver! */
274 #else
275 __u16 mac_len,
276 #endif
277 hdr_len;
278 union {
279 __wsum csum;
280 struct {
281 __u16 csum_start;
282 __u16 csum_offset;
285 __u32 priority;
286 __u8 local_df:1,
287 cloned:1,
288 ip_summed:2,
289 nohdr:1,
290 nfctinfo:3;
291 __u8 pkt_type:3,
292 fclone:2,
293 ipvs_property:1;
294 __be16 protocol;
296 void (*destructor)(struct sk_buff *skb);
298 __u32 mark;
300 sk_buff_data_t transport_header;
301 sk_buff_data_t network_header;
302 sk_buff_data_t mac_header;
303 /* These elements must be at the end, see alloc_skb() for details. */
304 sk_buff_data_t tail;
305 sk_buff_data_t end;
306 unsigned char *head,
307 *data;
308 unsigned int truesize;
309 atomic_t users;
310 unsigned char wl_idx;
311 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
312 struct nf_conntrack *nfct;
313 struct sk_buff *nfct_reasm;
314 /* Cache info */
315 __u16 nfcache;
316 #endif
317 #ifdef HNDCTF
318 __u16 mac_len;
319 #endif
320 #ifdef CONFIG_BRIDGE_NETFILTER
321 struct nf_bridge_info *nf_bridge;
322 #endif
323 #ifdef CONFIG_NET_SCHED
324 __u16 tc_index; /* traffic control index */
325 //#ifdef CONFIG_NET_CLS_ACT
326 __u16 tc_verd; /* traffic control verdict */
327 //#endif
328 #endif
329 #ifdef CONFIG_NET_DMA
330 dma_cookie_t dma_cookie;
331 #endif
332 #ifdef CONFIG_NETWORK_SECMARK
333 __u32 secmark;
334 #endif
335 __u16 vlan_tci;
336 #if defined(CONFIG_IMQ) || defined(CONFIG_IMQ_MODULE)
337 __u8 imq_flags;
338 struct nf_info *nf_info;
339 #endif
342 #ifdef __KERNEL__
344 * Handling routines are only of interest to the kernel
346 #include <linux/slab.h>
348 #include <asm/system.h>
350 extern void kfree_skb(struct sk_buff *skb);
351 extern void __kfree_skb(struct sk_buff *skb);
352 extern struct sk_buff *__alloc_skb(unsigned int size,
353 gfp_t priority, int fclone, int node);
354 static inline struct sk_buff *alloc_skb(unsigned int size,
355 gfp_t priority)
357 return __alloc_skb(size, priority, 0, -1);
360 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
361 gfp_t priority)
363 return __alloc_skb(size, priority, 1, -1);
366 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
367 extern struct sk_buff *skb_clone(struct sk_buff *skb,
368 gfp_t priority);
369 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
370 gfp_t priority);
371 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
372 gfp_t gfp_mask);
373 extern int pskb_expand_head(struct sk_buff *skb,
374 int nhead, int ntail,
375 gfp_t gfp_mask);
376 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
377 unsigned int headroom);
378 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
379 int newheadroom, int newtailroom,
380 gfp_t priority);
381 extern int skb_to_sgvec(struct sk_buff *skb,
382 struct scatterlist *sg, int offset,
383 int len);
384 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
385 struct sk_buff **trailer);
386 extern int skb_pad(struct sk_buff *skb, int pad);
387 #define dev_kfree_skb(a) kfree_skb(a)
388 extern void skb_over_panic(struct sk_buff *skb, int len,
389 void *here);
390 extern void skb_under_panic(struct sk_buff *skb, int len,
391 void *here);
393 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
394 int getfrag(void *from, char *to, int offset,
395 int len,int odd, struct sk_buff *skb),
396 void *from, int length);
398 struct skb_seq_state
400 __u32 lower_offset;
401 __u32 upper_offset;
402 __u32 frag_idx;
403 __u32 stepped_offset;
404 struct sk_buff *root_skb;
405 struct sk_buff *cur_skb;
406 __u8 *frag_data;
409 extern void skb_prepare_seq_read(struct sk_buff *skb,
410 unsigned int from, unsigned int to,
411 struct skb_seq_state *st);
412 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
413 struct skb_seq_state *st);
414 extern void skb_abort_seq_read(struct skb_seq_state *st);
416 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
417 unsigned int to, struct ts_config *config,
418 struct ts_state *state);
420 #ifdef NET_SKBUFF_DATA_USES_OFFSET
421 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
423 return skb->head + skb->end;
425 #else
426 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
428 return skb->end;
430 #endif
432 /* Internal */
433 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
436 * skb_queue_empty - check if a queue is empty
437 * @list: queue head
439 * Returns true if the queue is empty, false otherwise.
441 static inline int skb_queue_empty(const struct sk_buff_head *list)
443 return list->next == (struct sk_buff *)list;
447 * skb_get - reference buffer
448 * @skb: buffer to reference
450 * Makes another reference to a socket buffer and returns a pointer
451 * to the buffer.
453 static inline struct sk_buff *skb_get(struct sk_buff *skb)
455 atomic_inc(&skb->users);
456 return skb;
460 * If users == 1, we are the only owner and are can avoid redundant
461 * atomic change.
465 * skb_cloned - is the buffer a clone
466 * @skb: buffer to check
468 * Returns true if the buffer was generated with skb_clone() and is
469 * one of multiple shared copies of the buffer. Cloned buffers are
470 * shared data so must not be written to under normal circumstances.
472 static inline int skb_cloned(const struct sk_buff *skb)
474 return skb->cloned &&
475 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
479 * skb_header_cloned - is the header a clone
480 * @skb: buffer to check
482 * Returns true if modifying the header part of the buffer requires
483 * the data to be copied.
485 static inline int skb_header_cloned(const struct sk_buff *skb)
487 int dataref;
489 if (!skb->cloned)
490 return 0;
492 dataref = atomic_read(&skb_shinfo(skb)->dataref);
493 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
494 return dataref != 1;
498 * skb_header_release - release reference to header
499 * @skb: buffer to operate on
501 * Drop a reference to the header part of the buffer. This is done
502 * by acquiring a payload reference. You must not read from the header
503 * part of skb->data after this.
505 static inline void skb_header_release(struct sk_buff *skb)
507 BUG_ON(skb->nohdr);
508 skb->nohdr = 1;
509 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
513 * skb_shared - is the buffer shared
514 * @skb: buffer to check
516 * Returns true if more than one person has a reference to this
517 * buffer.
519 static inline int skb_shared(const struct sk_buff *skb)
521 return atomic_read(&skb->users) != 1;
525 * skb_share_check - check if buffer is shared and if so clone it
526 * @skb: buffer to check
527 * @pri: priority for memory allocation
529 * If the buffer is shared the buffer is cloned and the old copy
530 * drops a reference. A new clone with a single reference is returned.
531 * If the buffer is not shared the original buffer is returned. When
532 * being called from interrupt status or with spinlocks held pri must
533 * be GFP_ATOMIC.
535 * NULL is returned on a memory allocation failure.
537 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
538 gfp_t pri)
540 might_sleep_if(pri & __GFP_WAIT);
541 if (skb_shared(skb)) {
542 struct sk_buff *nskb = skb_clone(skb, pri);
543 kfree_skb(skb);
544 skb = nskb;
546 return skb;
550 * Copy shared buffers into a new sk_buff. We effectively do COW on
551 * packets to handle cases where we have a local reader and forward
552 * and a couple of other messy ones. The normal one is tcpdumping
553 * a packet thats being forwarded.
557 * skb_unshare - make a copy of a shared buffer
558 * @skb: buffer to check
559 * @pri: priority for memory allocation
561 * If the socket buffer is a clone then this function creates a new
562 * copy of the data, drops a reference count on the old copy and returns
563 * the new copy with the reference count at 1. If the buffer is not a clone
564 * the original buffer is returned. When called with a spinlock held or
565 * from interrupt state @pri must be %GFP_ATOMIC
567 * %NULL is returned on a memory allocation failure.
569 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
570 gfp_t pri)
572 might_sleep_if(pri & __GFP_WAIT);
573 if (skb_cloned(skb)) {
574 struct sk_buff *nskb = skb_copy(skb, pri);
575 kfree_skb(skb); /* Free our shared copy */
576 skb = nskb;
578 return skb;
582 * skb_peek
583 * @list_: list to peek at
585 * Peek an &sk_buff. Unlike most other operations you _MUST_
586 * be careful with this one. A peek leaves the buffer on the
587 * list and someone else may run off with it. You must hold
588 * the appropriate locks or have a private queue to do this.
590 * Returns %NULL for an empty list or a pointer to the head element.
591 * The reference count is not incremented and the reference is therefore
592 * volatile. Use with caution.
594 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
596 struct sk_buff *list = ((struct sk_buff *)list_)->next;
597 if (list == (struct sk_buff *)list_)
598 list = NULL;
599 return list;
603 * skb_peek_tail
604 * @list_: list to peek at
606 * Peek an &sk_buff. Unlike most other operations you _MUST_
607 * be careful with this one. A peek leaves the buffer on the
608 * list and someone else may run off with it. You must hold
609 * the appropriate locks or have a private queue to do this.
611 * Returns %NULL for an empty list or a pointer to the tail element.
612 * The reference count is not incremented and the reference is therefore
613 * volatile. Use with caution.
615 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
617 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
618 if (list == (struct sk_buff *)list_)
619 list = NULL;
620 return list;
624 * skb_queue_len - get queue length
625 * @list_: list to measure
627 * Return the length of an &sk_buff queue.
629 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
631 return list_->qlen;
635 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
636 * @list: queue to initialize
638 * This initializes only the list and queue length aspects of
639 * an sk_buff_head object. This allows to initialize the list
640 * aspects of an sk_buff_head without reinitializing things like
641 * the spinlock. It can also be used for on-stack sk_buff_head
642 * objects where the spinlock is known to not be used.
644 static inline void __skb_queue_head_init(struct sk_buff_head *list)
646 list->prev = list->next = (struct sk_buff *)list;
647 list->qlen = 0;
651 * This function creates a split out lock class for each invocation;
652 * this is needed for now since a whole lot of users of the skb-queue
653 * infrastructure in drivers have different locking usage (in hardirq)
654 * than the networking core (in softirq only). In the long run either the
655 * network layer or drivers should need annotation to consolidate the
656 * main types of usage into 3 classes.
658 static inline void skb_queue_head_init(struct sk_buff_head *list)
660 spin_lock_init(&list->lock);
661 __skb_queue_head_init(list);
664 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
665 struct lock_class_key *class)
667 skb_queue_head_init(list);
668 lockdep_set_class(&list->lock, class);
672 * Insert a packet on a list.
674 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
675 static inline void __skb_insert(struct sk_buff *newsk,
676 struct sk_buff *prev, struct sk_buff *next,
677 struct sk_buff_head *list)
679 newsk->next = next;
680 newsk->prev = prev;
681 next->prev = prev->next = newsk;
682 list->qlen++;
685 static inline void __skb_queue_splice(const struct sk_buff_head *list,
686 struct sk_buff *prev,
687 struct sk_buff *next)
689 struct sk_buff *first = list->next;
690 struct sk_buff *last = list->prev;
692 first->prev = prev;
693 prev->next = first;
695 last->next = next;
696 next->prev = last;
700 * skb_queue_splice - join two skb lists, this is designed for stacks
701 * @list: the new list to add
702 * @head: the place to add it in the first list
704 static inline void skb_queue_splice(const struct sk_buff_head *list,
705 struct sk_buff_head *head)
707 if (!skb_queue_empty(list)) {
708 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
709 head->qlen += list->qlen;
714 * skb_queue_splice - join two skb lists and reinitialise the emptied list
715 * @list: the new list to add
716 * @head: the place to add it in the first list
718 * The list at @list is reinitialised
720 static inline void skb_queue_splice_init(struct sk_buff_head *list,
721 struct sk_buff_head *head)
723 if (!skb_queue_empty(list)) {
724 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
725 head->qlen += list->qlen;
726 __skb_queue_head_init(list);
731 * skb_queue_splice_tail - join two skb lists, each list being a queue
732 * @list: the new list to add
733 * @head: the place to add it in the first list
735 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
736 struct sk_buff_head *head)
738 if (!skb_queue_empty(list)) {
739 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
740 head->qlen += list->qlen;
745 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
746 * @list: the new list to add
747 * @head: the place to add it in the first list
749 * Each of the lists is a queue.
750 * The list at @list is reinitialised
752 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
753 struct sk_buff_head *head)
755 if (!skb_queue_empty(list)) {
756 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
757 head->qlen += list->qlen;
758 __skb_queue_head_init(list);
763 * Insert an sk_buff at the start of a list.
765 * The "__skb_xxxx()" functions are the non-atomic ones that
766 * can only be called with interrupts disabled.
770 * __skb_queue_after - queue a buffer at the list head
771 * @list: list to use
772 * @prev: place after this buffer
773 * @newsk: buffer to queue
775 * Queue a buffer int the middle of a list. This function takes no locks
776 * and you must therefore hold required locks before calling it.
778 * A buffer cannot be placed on two lists at the same time.
780 static inline void __skb_queue_after(struct sk_buff_head *list,
781 struct sk_buff *prev,
782 struct sk_buff *newsk)
784 __skb_insert(newsk, prev, prev->next, list);
788 * __skb_queue_head - queue a buffer at the list head
789 * @list: list to use
790 * @newsk: buffer to queue
792 * Queue a buffer at the start of a list. This function takes no locks
793 * and you must therefore hold required locks before calling it.
795 * A buffer cannot be placed on two lists at the same time.
797 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
798 static inline void __skb_queue_head(struct sk_buff_head *list,
799 struct sk_buff *newsk)
801 __skb_queue_after(list, (struct sk_buff *)list, newsk);
804 static inline void __skb_queue_before(struct sk_buff_head *list,
805 struct sk_buff *next,
806 struct sk_buff *newsk)
808 __skb_insert(newsk, next->prev, next, list);
812 * __skb_queue_tail - queue a buffer at the list tail
813 * @list: list to use
814 * @newsk: buffer to queue
816 * Queue a buffer at the end of a list. This function takes no locks
817 * and you must therefore hold required locks before calling it.
819 * A buffer cannot be placed on two lists at the same time.
821 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
822 static inline void __skb_queue_tail(struct sk_buff_head *list,
823 struct sk_buff *newsk)
825 __skb_queue_before(list, (struct sk_buff *)list, newsk);
830 * remove sk_buff from list. _Must_ be called atomically, and with
831 * the list known..
833 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
834 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
836 struct sk_buff *next, *prev;
838 list->qlen--;
839 next = skb->next;
840 prev = skb->prev;
841 skb->next = skb->prev = NULL;
842 next->prev = prev;
843 prev->next = next;
847 * __skb_dequeue - remove from the head of the queue
848 * @list: list to dequeue from
850 * Remove the head of the list. This function does not take any locks
851 * so must be used with appropriate locks held only. The head item is
852 * returned or %NULL if the list is empty.
854 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
855 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
857 struct sk_buff *skb = skb_peek(list);
858 if (skb)
859 __skb_unlink(skb, list);
860 return skb;
865 * Place a packet after a given packet in a list.
867 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
868 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
870 __skb_insert(newsk, old, old->next, list);
874 /* XXX: more streamlined implementation */
877 * __skb_dequeue_tail - remove from the tail of the queue
878 * @list: list to dequeue from
880 * Remove the tail of the list. This function does not take any locks
881 * so must be used with appropriate locks held only. The tail item is
882 * returned or %NULL if the list is empty.
884 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
885 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
887 struct sk_buff *skb = skb_peek_tail(list);
888 if (skb)
889 __skb_unlink(skb, list);
890 return skb;
894 static inline int skb_is_nonlinear(const struct sk_buff *skb)
896 return skb->data_len;
899 static inline unsigned int skb_headlen(const struct sk_buff *skb)
901 return skb->len - skb->data_len;
904 static inline int skb_pagelen(const struct sk_buff *skb)
906 int i, len = 0;
908 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
909 len += skb_shinfo(skb)->frags[i].size;
910 return len + skb_headlen(skb);
913 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
914 struct page *page, int off, int size)
916 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
918 frag->page = page;
919 frag->page_offset = off;
920 frag->size = size;
921 skb_shinfo(skb)->nr_frags = i + 1;
924 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
925 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
926 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
928 #ifdef NET_SKBUFF_DATA_USES_OFFSET
929 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
931 return skb->head + skb->tail;
934 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
936 skb->tail = skb->data - skb->head;
939 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
941 skb_reset_tail_pointer(skb);
942 skb->tail += offset;
944 #else /* NET_SKBUFF_DATA_USES_OFFSET */
945 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
947 return skb->tail;
950 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
952 skb->tail = skb->data;
955 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
957 skb->tail = skb->data + offset;
960 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
963 * Add data to an sk_buff
965 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
967 unsigned char *tmp = skb_tail_pointer(skb);
968 SKB_LINEAR_ASSERT(skb);
969 skb->tail += len;
970 skb->len += len;
971 return tmp;
975 * skb_put - add data to a buffer
976 * @skb: buffer to use
977 * @len: amount of data to add
979 * This function extends the used data area of the buffer. If this would
980 * exceed the total buffer size the kernel will panic. A pointer to the
981 * first byte of the extra data is returned.
983 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
985 unsigned char *tmp = skb_tail_pointer(skb);
986 SKB_LINEAR_ASSERT(skb);
987 skb->tail += len;
988 skb->len += len;
989 if (unlikely(skb->tail > skb->end))
990 skb_over_panic(skb, len, current_text_addr());
991 return tmp;
994 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
996 skb->data -= len;
997 skb->len += len;
998 return skb->data;
1002 * skb_push - add data to the start of a buffer
1003 * @skb: buffer to use
1004 * @len: amount of data to add
1006 * This function extends the used data area of the buffer at the buffer
1007 * start. If this would exceed the total buffer headroom the kernel will
1008 * panic. A pointer to the first byte of the extra data is returned.
1010 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1012 skb->data -= len;
1013 skb->len += len;
1014 if (unlikely(skb->data<skb->head))
1015 skb_under_panic(skb, len, current_text_addr());
1016 return skb->data;
1019 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1021 skb->len -= len;
1022 BUG_ON(skb->len < skb->data_len);
1023 return skb->data += len;
1027 * skb_pull - remove data from the start of a buffer
1028 * @skb: buffer to use
1029 * @len: amount of data to remove
1031 * This function removes data from the start of a buffer, returning
1032 * the memory to the headroom. A pointer to the next data in the buffer
1033 * is returned. Once the data has been pulled future pushes will overwrite
1034 * the old data.
1036 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1038 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1041 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1043 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1045 if (len > skb_headlen(skb) &&
1046 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
1047 return NULL;
1048 skb->len -= len;
1049 return skb->data += len;
1052 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1054 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1057 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1059 if (likely(len <= skb_headlen(skb)))
1060 return 1;
1061 if (unlikely(len > skb->len))
1062 return 0;
1063 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
1067 * skb_headroom - bytes at buffer head
1068 * @skb: buffer to check
1070 * Return the number of bytes of free space at the head of an &sk_buff.
1072 static inline int skb_headroom(const struct sk_buff *skb)
1074 return skb->data - skb->head;
1078 * skb_tailroom - bytes at buffer end
1079 * @skb: buffer to check
1081 * Return the number of bytes of free space at the tail of an sk_buff
1083 static inline int skb_tailroom(const struct sk_buff *skb)
1085 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1089 * skb_reserve - adjust headroom
1090 * @skb: buffer to alter
1091 * @len: bytes to move
1093 * Increase the headroom of an empty &sk_buff by reducing the tail
1094 * room. This is only allowed for an empty buffer.
1096 static inline void skb_reserve(struct sk_buff *skb, int len)
1098 skb->data += len;
1099 skb->tail += len;
1102 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1103 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1105 return skb->head + skb->transport_header;
1108 static inline void skb_reset_transport_header(struct sk_buff *skb)
1110 skb->transport_header = skb->data - skb->head;
1113 static inline void skb_set_transport_header(struct sk_buff *skb,
1114 const int offset)
1116 skb_reset_transport_header(skb);
1117 skb->transport_header += offset;
1120 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1122 return skb->head + skb->network_header;
1125 static inline void skb_reset_network_header(struct sk_buff *skb)
1127 skb->network_header = skb->data - skb->head;
1130 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1132 skb_reset_network_header(skb);
1133 skb->network_header += offset;
1136 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1138 return skb->head + skb->mac_header;
1141 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1143 return skb->mac_header != ~0U;
1146 static inline void skb_reset_mac_header(struct sk_buff *skb)
1148 skb->mac_header = skb->data - skb->head;
1151 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1153 skb_reset_mac_header(skb);
1154 skb->mac_header += offset;
1157 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1159 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1161 return skb->transport_header;
1164 static inline void skb_reset_transport_header(struct sk_buff *skb)
1166 skb->transport_header = skb->data;
1169 static inline void skb_set_transport_header(struct sk_buff *skb,
1170 const int offset)
1172 skb->transport_header = skb->data + offset;
1175 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1177 return skb->network_header;
1180 static inline void skb_reset_network_header(struct sk_buff *skb)
1182 skb->network_header = skb->data;
1185 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1187 skb->network_header = skb->data + offset;
1190 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1192 return skb->mac_header;
1195 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1197 return skb->mac_header != NULL;
1200 static inline void skb_reset_mac_header(struct sk_buff *skb)
1202 skb->mac_header = skb->data;
1205 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1207 skb->mac_header = skb->data + offset;
1209 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1211 static inline int skb_transport_offset(const struct sk_buff *skb)
1213 return skb_transport_header(skb) - skb->data;
1216 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1218 return skb->transport_header - skb->network_header;
1221 static inline int skb_network_offset(const struct sk_buff *skb)
1223 return skb_network_header(skb) - skb->data;
1227 * CPUs often take a performance hit when accessing unaligned memory
1228 * locations. The actual performance hit varies, it can be small if the
1229 * hardware handles it or large if we have to take an exception and fix it
1230 * in software.
1232 * Since an ethernet header is 14 bytes network drivers often end up with
1233 * the IP header at an unaligned offset. The IP header can be aligned by
1234 * shifting the start of the packet by 2 bytes. Drivers should do this
1235 * with:
1237 * skb_reserve(NET_IP_ALIGN);
1239 * The downside to this alignment of the IP header is that the DMA is now
1240 * unaligned. On some architectures the cost of an unaligned DMA is high
1241 * and this cost outweighs the gains made by aligning the IP header.
1243 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1244 * to be overridden.
1246 #ifndef NET_IP_ALIGN
1247 #define NET_IP_ALIGN 2
1248 #endif
1251 * The networking layer reserves some headroom in skb data (via
1252 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1253 * the header has to grow. In the default case, if the header has to grow
1254 * 32 bytes or less we avoid the reallocation.
1256 * Unfortunately this headroom changes the DMA alignment of the resulting
1257 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1258 * on some architectures. An architecture can override this value,
1259 * perhaps setting it to a cacheline in size (since that will maintain
1260 * cacheline alignment of the DMA). It must be a power of 2.
1262 * Various parts of the networking layer expect at least 32 bytes of
1263 * headroom, you should not reduce this.
1265 * This has been changed to 64 to acommodate for routing between ethernet
1266 * and wireless, but only for new allocations
1268 #ifndef NET_SKB_PAD
1269 #define NET_SKB_PAD 32
1270 #endif
1272 #ifndef NET_SKB_PAD_ALLOC
1273 #define NET_SKB_PAD_ALLOC 64
1274 #endif
1276 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1278 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1280 if (unlikely(skb->data_len)) {
1281 WARN_ON(1);
1282 return;
1284 skb->len = len;
1285 skb_set_tail_pointer(skb, len);
1289 * skb_trim - remove end from a buffer
1290 * @skb: buffer to alter
1291 * @len: new length
1293 * Cut the length of a buffer down by removing data from the tail. If
1294 * the buffer is already under the length specified it is not modified.
1295 * The skb must be linear.
1297 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1299 if (skb->len > len)
1300 __skb_trim(skb, len);
1304 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1306 if (skb->data_len)
1307 return ___pskb_trim(skb, len);
1308 __skb_trim(skb, len);
1309 return 0;
1312 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1314 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1318 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1319 * @skb: buffer to alter
1320 * @len: new length
1322 * This is identical to pskb_trim except that the caller knows that
1323 * the skb is not cloned so we should never get an error due to out-
1324 * of-memory.
1326 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1328 int err = pskb_trim(skb, len);
1329 BUG_ON(err);
1333 * skb_orphan - orphan a buffer
1334 * @skb: buffer to orphan
1336 * If a buffer currently has an owner then we call the owner's
1337 * destructor function and make the @skb unowned. The buffer continues
1338 * to exist but is no longer charged to its former owner.
1340 static inline void skb_orphan(struct sk_buff *skb)
1342 if (skb->destructor)
1343 skb->destructor(skb);
1344 skb->destructor = NULL;
1345 skb->sk = NULL;
1349 * __skb_queue_purge - empty a list
1350 * @list: list to empty
1352 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1353 * the list and one reference dropped. This function does not take the
1354 * list lock and the caller must hold the relevant locks to use it.
1356 extern void skb_queue_purge(struct sk_buff_head *list);
1357 static inline void __skb_queue_purge(struct sk_buff_head *list)
1359 struct sk_buff *skb;
1360 while ((skb = __skb_dequeue(list)) != NULL)
1361 kfree_skb(skb);
1365 * __dev_alloc_skb - allocate an skbuff for receiving
1366 * @length: length to allocate
1367 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1369 * Allocate a new &sk_buff and assign it a usage count of one. The
1370 * buffer has unspecified headroom built in. Users should allocate
1371 * the headroom they think they need without accounting for the
1372 * built in space. The built in space is used for optimisations.
1374 * %NULL is returned if there is no free memory.
1376 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1377 gfp_t gfp_mask)
1379 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD_ALLOC, gfp_mask);
1380 if (likely(skb))
1381 skb_reserve(skb, NET_SKB_PAD_ALLOC);
1382 return skb;
1386 * dev_alloc_skb - allocate an skbuff for receiving
1387 * @length: length to allocate
1389 * Allocate a new &sk_buff and assign it a usage count of one. The
1390 * buffer has unspecified headroom built in. Users should allocate
1391 * the headroom they think they need without accounting for the
1392 * built in space. The built in space is used for optimisations.
1394 * %NULL is returned if there is no free memory. Although this function
1395 * allocates memory it can be called from an interrupt.
1397 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1399 return __dev_alloc_skb(length, GFP_ATOMIC);
1402 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1403 unsigned int length, gfp_t gfp_mask);
1406 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1407 * @dev: network device to receive on
1408 * @length: length to allocate
1410 * Allocate a new &sk_buff and assign it a usage count of one. The
1411 * buffer has unspecified headroom built in. Users should allocate
1412 * the headroom they think they need without accounting for the
1413 * built in space. The built in space is used for optimisations.
1415 * %NULL is returned if there is no free memory. Although this function
1416 * allocates memory it can be called from an interrupt.
1418 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1419 unsigned int length)
1421 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1425 * skb_clone_writable - is the header of a clone writable
1426 * @skb: buffer to check
1427 * @len: length up to which to write
1429 * Returns true if modifying the header part of the cloned buffer
1430 * does not requires the data to be copied.
1432 static inline int skb_clone_writable(struct sk_buff *skb, int len)
1434 return !skb_header_cloned(skb) &&
1435 skb_headroom(skb) + len <= skb->hdr_len;
1438 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1439 int cloned)
1441 int delta = 0;
1443 if (headroom < NET_SKB_PAD)
1444 headroom = NET_SKB_PAD;
1445 if (headroom > skb_headroom(skb))
1446 delta = headroom - skb_headroom(skb);
1448 if (delta || cloned)
1449 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD_ALLOC), 0,
1450 GFP_ATOMIC);
1451 return 0;
1455 * skb_cow - copy header of skb when it is required
1456 * @skb: buffer to cow
1457 * @headroom: needed headroom
1459 * If the skb passed lacks sufficient headroom or its data part
1460 * is shared, data is reallocated. If reallocation fails, an error
1461 * is returned and original skb is not changed.
1463 * The result is skb with writable area skb->head...skb->tail
1464 * and at least @headroom of space at head.
1466 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1468 return __skb_cow(skb, headroom, skb_cloned(skb));
1472 * skb_cow_head - skb_cow but only making the head writable
1473 * @skb: buffer to cow
1474 * @headroom: needed headroom
1476 * This function is identical to skb_cow except that we replace the
1477 * skb_cloned check by skb_header_cloned. It should be used when
1478 * you only need to push on some header and do not need to modify
1479 * the data.
1481 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1483 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1487 * skb_padto - pad an skbuff up to a minimal size
1488 * @skb: buffer to pad
1489 * @len: minimal length
1491 * Pads up a buffer to ensure the trailing bytes exist and are
1492 * blanked. If the buffer already contains sufficient data it
1493 * is untouched. Otherwise it is extended. Returns zero on
1494 * success. The skb is freed on error.
1497 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1499 unsigned int size = skb->len;
1500 if (likely(size >= len))
1501 return 0;
1502 return skb_pad(skb, len-size);
1505 static inline int skb_add_data(struct sk_buff *skb,
1506 char __user *from, int copy)
1508 const int off = skb->len;
1510 if (skb->ip_summed == CHECKSUM_NONE) {
1511 int err = 0;
1512 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1513 copy, 0, &err);
1514 if (!err) {
1515 skb->csum = csum_block_add(skb->csum, csum, off);
1516 return 0;
1518 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1519 return 0;
1521 __skb_trim(skb, off);
1522 return -EFAULT;
1525 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1526 struct page *page, int off)
1528 if (i) {
1529 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1531 return page == frag->page &&
1532 off == frag->page_offset + frag->size;
1534 return 0;
1537 static inline int __skb_linearize(struct sk_buff *skb)
1539 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1543 * skb_linearize - convert paged skb to linear one
1544 * @skb: buffer to linarize
1546 * If there is no free memory -ENOMEM is returned, otherwise zero
1547 * is returned and the old skb data released.
1549 static inline int skb_linearize(struct sk_buff *skb)
1551 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1555 * skb_linearize_cow - make sure skb is linear and writable
1556 * @skb: buffer to process
1558 * If there is no free memory -ENOMEM is returned, otherwise zero
1559 * is returned and the old skb data released.
1561 static inline int skb_linearize_cow(struct sk_buff *skb)
1563 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1564 __skb_linearize(skb) : 0;
1568 * skb_postpull_rcsum - update checksum for received skb after pull
1569 * @skb: buffer to update
1570 * @start: start of data before pull
1571 * @len: length of data pulled
1573 * After doing a pull on a received packet, you need to call this to
1574 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1575 * CHECKSUM_NONE so that it can be recomputed from scratch.
1578 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1579 const void *start, unsigned int len)
1581 if (skb->ip_summed == CHECKSUM_COMPLETE)
1582 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1585 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1588 * pskb_trim_rcsum - trim received skb and update checksum
1589 * @skb: buffer to trim
1590 * @len: new length
1592 * This is exactly the same as pskb_trim except that it ensures the
1593 * checksum of received packets are still valid after the operation.
1596 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1598 if (likely(len >= skb->len))
1599 return 0;
1600 if (skb->ip_summed == CHECKSUM_COMPLETE)
1601 skb->ip_summed = CHECKSUM_NONE;
1602 return __pskb_trim(skb, len);
1605 #define skb_queue_walk(queue, skb) \
1606 for (skb = (queue)->next; \
1607 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1608 skb = skb->next)
1610 #define skb_queue_walk_safe(queue, skb, tmp) \
1611 for (skb = (queue)->next, tmp = skb->next; \
1612 skb != (struct sk_buff *)(queue); \
1613 skb = tmp, tmp = skb->next)
1615 #define skb_queue_reverse_walk(queue, skb) \
1616 for (skb = (queue)->prev; \
1617 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1618 skb = skb->prev)
1621 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1622 int noblock, int *err);
1623 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1624 struct poll_table_struct *wait);
1625 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1626 int offset, struct iovec *to,
1627 int size);
1628 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1629 int hlen,
1630 struct iovec *iov);
1631 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1632 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1633 unsigned int flags);
1634 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1635 int len, __wsum csum);
1636 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1637 void *to, int len);
1638 extern int skb_store_bits(struct sk_buff *skb, int offset,
1639 const void *from, int len);
1640 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1641 int offset, u8 *to, int len,
1642 __wsum csum);
1643 extern int skb_splice_bits(struct sk_buff *skb,
1644 unsigned int offset,
1645 struct pipe_inode_info *pipe,
1646 unsigned int len,
1647 unsigned int flags);
1648 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1649 extern void skb_split(struct sk_buff *skb,
1650 struct sk_buff *skb1, const u32 len);
1652 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1654 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1655 int len, void *buffer)
1657 int hlen = skb_headlen(skb);
1659 if (hlen - offset >= len)
1660 return skb->data + offset;
1662 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1663 return NULL;
1665 return buffer;
1668 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1669 void *to,
1670 const unsigned int len)
1672 memcpy(to, skb->data, len);
1675 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1676 const int offset, void *to,
1677 const unsigned int len)
1679 memcpy(to, skb->data + offset, len);
1682 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1683 const void *from,
1684 const unsigned int len)
1686 memcpy(skb->data, from, len);
1689 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1690 const int offset,
1691 const void *from,
1692 const unsigned int len)
1694 memcpy(skb->data + offset, from, len);
1697 extern void skb_init(void);
1700 * skb_get_timestamp - get timestamp from a skb
1701 * @skb: skb to get stamp from
1702 * @stamp: pointer to struct timeval to store stamp in
1704 * Timestamps are stored in the skb as offsets to a base timestamp.
1705 * This function converts the offset back to a struct timeval and stores
1706 * it in stamp.
1708 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1710 *stamp = ktime_to_timeval(skb->tstamp);
1713 static inline void __net_timestamp(struct sk_buff *skb)
1715 skb->tstamp = ktime_get_real();
1718 static inline ktime_t net_timedelta(ktime_t t)
1720 return ktime_sub(ktime_get_real(), t);
1723 static inline ktime_t net_invalid_timestamp(void)
1725 return ktime_set(0, 0);
1728 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1729 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1731 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1733 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1737 * skb_checksum_complete - Calculate checksum of an entire packet
1738 * @skb: packet to process
1740 * This function calculates the checksum over the entire packet plus
1741 * the value of skb->csum. The latter can be used to supply the
1742 * checksum of a pseudo header as used by TCP/UDP. It returns the
1743 * checksum.
1745 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1746 * this function can be used to verify that checksum on received
1747 * packets. In that case the function should return zero if the
1748 * checksum is correct. In particular, this function will return zero
1749 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1750 * hardware has already verified the correctness of the checksum.
1752 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1754 return skb_csum_unnecessary(skb) ?
1755 0 : __skb_checksum_complete(skb);
1758 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1759 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1760 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1762 if (nfct && atomic_dec_and_test(&nfct->use))
1763 nf_conntrack_destroy(nfct);
1765 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1767 if (nfct)
1768 atomic_inc(&nfct->use);
1770 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1772 if (skb)
1773 atomic_inc(&skb->users);
1775 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1777 if (skb)
1778 kfree_skb(skb);
1780 #endif
1781 #ifdef CONFIG_BRIDGE_NETFILTER
1782 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1784 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1785 kfree(nf_bridge);
1787 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1789 if (nf_bridge)
1790 atomic_inc(&nf_bridge->use);
1792 #endif /* CONFIG_BRIDGE_NETFILTER */
1793 static inline void nf_reset(struct sk_buff *skb)
1795 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1796 nf_conntrack_put(skb->nfct);
1797 skb->nfct = NULL;
1798 nf_conntrack_put_reasm(skb->nfct_reasm);
1799 skb->nfct_reasm = NULL;
1800 #endif
1801 #ifdef CONFIG_BRIDGE_NETFILTER
1802 nf_bridge_put(skb->nf_bridge);
1803 skb->nf_bridge = NULL;
1804 #endif
1807 /* Note: This doesn't put any conntrack and bridge info in dst. */
1808 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1810 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1811 dst->nfct = src->nfct;
1812 nf_conntrack_get(src->nfct);
1813 dst->nfctinfo = src->nfctinfo;
1814 dst->nfct_reasm = src->nfct_reasm;
1815 nf_conntrack_get_reasm(src->nfct_reasm);
1816 #endif
1817 #ifdef CONFIG_BRIDGE_NETFILTER
1818 dst->nf_bridge = src->nf_bridge;
1819 nf_bridge_get(src->nf_bridge);
1820 #endif
1821 #if defined(CONFIG_IMQ) || defined(CONFIG_IMQ_MODULE)
1822 dst->imq_flags = src->imq_flags;
1823 dst->nf_info = src->nf_info;
1824 #endif
1827 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1829 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1830 nf_conntrack_put(dst->nfct);
1831 nf_conntrack_put_reasm(dst->nfct_reasm);
1832 #endif
1833 #ifdef CONFIG_BRIDGE_NETFILTER
1834 nf_bridge_put(dst->nf_bridge);
1835 #endif
1836 __nf_copy(dst, src);
1839 #ifdef CONFIG_NETWORK_SECMARK
1840 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1842 to->secmark = from->secmark;
1845 static inline void skb_init_secmark(struct sk_buff *skb)
1847 skb->secmark = 0;
1849 #else
1850 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1853 static inline void skb_init_secmark(struct sk_buff *skb)
1855 #endif
1857 static inline int skb_is_gso(const struct sk_buff *skb)
1859 return skb_shinfo(skb)->gso_size;
1862 static inline void skb_forward_csum(struct sk_buff *skb)
1864 /* Unfortunately we don't support this one. Any brave souls? */
1865 if (skb->ip_summed == CHECKSUM_COMPLETE)
1866 skb->ip_summed = CHECKSUM_NONE;
1869 #endif /* __KERNEL__ */
1870 #endif /* _LINUX_SKBUFF_H */