GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / tools / misc / xz / src / liblzma / common / block_buffer_encoder.c
blob519c6a684d768de0f32121214751837b648a4bda
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file block_buffer_encoder.c
4 /// \brief Single-call .xz Block encoder
5 //
6 // Author: Lasse Collin
7 //
8 // This file has been put into the public domain.
9 // You can do whatever you want with this file.
11 ///////////////////////////////////////////////////////////////////////////////
13 #include "block_encoder.h"
14 #include "filter_encoder.h"
15 #include "lzma2_encoder.h"
16 #include "check.h"
19 /// Estimate the maximum size of the Block Header and Check fields for
20 /// a Block that uses LZMA2 uncompressed chunks. We could use
21 /// lzma_block_header_size() but this is simpler.
22 ///
23 /// Block Header Size + Block Flags + Compressed Size
24 /// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
25 /// and round up to the next multiple of four to take Header Padding
26 /// into account.
27 #define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
28 + LZMA_CHECK_SIZE_MAX + 3) & ~3)
31 static lzma_vli
32 lzma2_bound(lzma_vli uncompressed_size)
34 // Prevent integer overflow in overhead calculation.
35 if (uncompressed_size > COMPRESSED_SIZE_MAX)
36 return 0;
38 // Calculate the exact overhead of the LZMA2 headers: Round
39 // uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
40 // multiply by the size of per-chunk header, and add one byte for
41 // the end marker.
42 const lzma_vli overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1)
43 / LZMA2_CHUNK_MAX)
44 * LZMA2_HEADER_UNCOMPRESSED + 1;
46 // Catch the possible integer overflow.
47 if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size)
48 return 0;
50 return uncompressed_size + overhead;
54 extern LZMA_API(size_t)
55 lzma_block_buffer_bound(size_t uncompressed_size)
57 // For now, if the data doesn't compress, we always use uncompressed
58 // chunks of LZMA2. In future we may use Subblock filter too, but
59 // but for simplicity we probably will still use the same bound
60 // calculation even though Subblock filter would have slightly less
61 // overhead.
62 lzma_vli lzma2_size = lzma2_bound(uncompressed_size);
63 if (lzma2_size == 0)
64 return 0;
66 // Take Block Padding into account.
67 lzma2_size = (lzma2_size + 3) & ~LZMA_VLI_C(3);
69 #if SIZE_MAX < LZMA_VLI_MAX
70 // Catch the possible integer overflow on 32-bit systems. There's no
71 // overflow on 64-bit systems, because lzma2_bound() already takes
72 // into account the size of the headers in the Block.
73 if (SIZE_MAX - HEADERS_BOUND < lzma2_size)
74 return 0;
75 #endif
77 return HEADERS_BOUND + lzma2_size;
81 static lzma_ret
82 block_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size,
83 uint8_t *out, size_t *out_pos, size_t out_size)
85 // TODO: Figure out if the last filter is LZMA2 or Subblock and use
86 // that filter to encode the uncompressed chunks.
88 // Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
89 // all, but LZMA2 always requires a dictionary, so use the minimum
90 // value to minimize memory usage of the decoder.
91 lzma_options_lzma lzma2 = {
92 .dict_size = LZMA_DICT_SIZE_MIN,
95 lzma_filter filters[2];
96 filters[0].id = LZMA_FILTER_LZMA2;
97 filters[0].options = &lzma2;
98 filters[1].id = LZMA_VLI_UNKNOWN;
100 // Set the above filter options to *block temporarily so that we can
101 // encode the Block Header.
102 lzma_filter *filters_orig = block->filters;
103 block->filters = filters;
105 if (lzma_block_header_size(block) != LZMA_OK) {
106 block->filters = filters_orig;
107 return LZMA_PROG_ERROR;
110 // Check that there's enough output space. The caller has already
111 // set block->compressed_size to what lzma2_bound() has returned,
112 // so we can reuse that value. We know that compressed_size is a
113 // known valid VLI and header_size is a small value so their sum
114 // will never overflow.
115 assert(block->compressed_size == lzma2_bound(in_size));
116 if (out_size - *out_pos
117 < block->header_size + block->compressed_size) {
118 block->filters = filters_orig;
119 return LZMA_BUF_ERROR;
122 if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) {
123 block->filters = filters_orig;
124 return LZMA_PROG_ERROR;
127 block->filters = filters_orig;
128 *out_pos += block->header_size;
130 // Encode the data using LZMA2 uncompressed chunks.
131 size_t in_pos = 0;
132 uint8_t control = 0x01; // Dictionary reset
134 while (in_pos < in_size) {
135 // Control byte: Indicate uncompressed chunk, of which
136 // the first resets the dictionary.
137 out[(*out_pos)++] = control;
138 control = 0x02; // No dictionary reset
140 // Size of the uncompressed chunk
141 const size_t copy_size
142 = my_min(in_size - in_pos, LZMA2_CHUNK_MAX);
143 out[(*out_pos)++] = (copy_size - 1) >> 8;
144 out[(*out_pos)++] = (copy_size - 1) & 0xFF;
146 // The actual data
147 assert(*out_pos + copy_size <= out_size);
148 memcpy(out + *out_pos, in + in_pos, copy_size);
150 in_pos += copy_size;
151 *out_pos += copy_size;
154 // End marker
155 out[(*out_pos)++] = 0x00;
156 assert(*out_pos <= out_size);
158 return LZMA_OK;
162 static lzma_ret
163 block_encode_normal(lzma_block *block, lzma_allocator *allocator,
164 const uint8_t *in, size_t in_size,
165 uint8_t *out, size_t *out_pos, size_t out_size)
167 // Find out the size of the Block Header.
168 block->compressed_size = lzma2_bound(in_size);
169 if (block->compressed_size == 0)
170 return LZMA_DATA_ERROR;
172 block->uncompressed_size = in_size;
173 return_if_error(lzma_block_header_size(block));
175 // Reserve space for the Block Header and skip it for now.
176 if (out_size - *out_pos <= block->header_size)
177 return LZMA_BUF_ERROR;
179 const size_t out_start = *out_pos;
180 *out_pos += block->header_size;
182 // Limit out_size so that we stop encoding if the output would grow
183 // bigger than what uncompressed Block would be.
184 if (out_size - *out_pos > block->compressed_size)
185 out_size = *out_pos + block->compressed_size;
187 // TODO: In many common cases this could be optimized to use
188 // significantly less memory.
189 lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT;
190 lzma_ret ret = lzma_raw_encoder_init(
191 &raw_encoder, allocator, block->filters);
193 if (ret == LZMA_OK) {
194 size_t in_pos = 0;
195 ret = raw_encoder.code(raw_encoder.coder, allocator,
196 in, &in_pos, in_size, out, out_pos, out_size,
197 LZMA_FINISH);
200 // NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
201 lzma_next_end(&raw_encoder, allocator);
203 if (ret == LZMA_STREAM_END) {
204 // Compression was successful. Write the Block Header.
205 block->compressed_size
206 = *out_pos - (out_start + block->header_size);
207 ret = lzma_block_header_encode(block, out + out_start);
208 if (ret != LZMA_OK)
209 ret = LZMA_PROG_ERROR;
211 } else if (ret == LZMA_OK) {
212 // Output buffer became full.
213 ret = LZMA_BUF_ERROR;
216 // Reset *out_pos if something went wrong.
217 if (ret != LZMA_OK)
218 *out_pos = out_start;
220 return ret;
224 extern LZMA_API(lzma_ret)
225 lzma_block_buffer_encode(lzma_block *block, lzma_allocator *allocator,
226 const uint8_t *in, size_t in_size,
227 uint8_t *out, size_t *out_pos, size_t out_size)
229 // Validate the arguments.
230 if (block == NULL || (in == NULL && in_size != 0) || out == NULL
231 || out_pos == NULL || *out_pos > out_size)
232 return LZMA_PROG_ERROR;
234 // The contents of the structure may depend on the version so
235 // check the version before validating the contents of *block.
236 if (block->version != 0)
237 return LZMA_OPTIONS_ERROR;
239 if ((unsigned int)(block->check) > LZMA_CHECK_ID_MAX
240 || block->filters == NULL)
241 return LZMA_PROG_ERROR;
243 if (!lzma_check_is_supported(block->check))
244 return LZMA_UNSUPPORTED_CHECK;
246 // Size of a Block has to be a multiple of four, so limit the size
247 // here already. This way we don't need to check it again when adding
248 // Block Padding.
249 out_size -= (out_size - *out_pos) & 3;
251 // Get the size of the Check field.
252 const size_t check_size = lzma_check_size(block->check);
253 assert(check_size != UINT32_MAX);
255 // Reserve space for the Check field.
256 if (out_size - *out_pos <= check_size)
257 return LZMA_BUF_ERROR;
259 out_size -= check_size;
261 // Do the actual compression.
262 const lzma_ret ret = block_encode_normal(block, allocator,
263 in, in_size, out, out_pos, out_size);
264 if (ret != LZMA_OK) {
265 // If the error was something else than output buffer
266 // becoming full, return the error now.
267 if (ret != LZMA_BUF_ERROR)
268 return ret;
270 // The data was uncompressible (at least with the options
271 // given to us) or the output buffer was too small. Use the
272 // uncompressed chunks of LZMA2 to wrap the data into a valid
273 // Block. If we haven't been given enough output space, even
274 // this may fail.
275 return_if_error(block_encode_uncompressed(block, in, in_size,
276 out, out_pos, out_size));
279 assert(*out_pos <= out_size);
281 // Block Padding. No buffer overflow here, because we already adjusted
282 // out_size so that (out_size - out_start) is a multiple of four.
283 // Thus, if the buffer is full, the loop body can never run.
284 for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) {
285 assert(*out_pos < out_size);
286 out[(*out_pos)++] = 0x00;
289 // If there's no Check field, we are done now.
290 if (check_size > 0) {
291 // Calculate the integrity check. We reserved space for
292 // the Check field earlier so we don't need to check for
293 // available output space here.
294 lzma_check_state check;
295 lzma_check_init(&check, block->check);
296 lzma_check_update(&check, block->check, in, in_size);
297 lzma_check_finish(&check, block->check);
299 memcpy(block->raw_check, check.buffer.u8, check_size);
300 memcpy(out + *out_pos, check.buffer.u8, check_size);
301 *out_pos += check_size;
304 return LZMA_OK;