GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / toolchains / hndtools-arm-linux-2.6.36-uclibc-4.5.3 / arm-brcm-linux-uclibcgnueabi / include / c++ / 4.5.3 / bits / stl_list.h
blob5fcbc4f347037b186be1cf88149b8f2c294da381
1 // List implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
40 * Copyright (c) 1996,1997
41 * Silicon Graphics Computer Systems, Inc.
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
52 /** @file stl_list.h
53 * This is an internal header file, included by other library headers.
54 * You should not attempt to use it directly.
57 #ifndef _STL_LIST_H
58 #define _STL_LIST_H 1
60 #include <bits/concept_check.h>
61 #include <initializer_list>
63 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
65 // Supporting structures are split into common and templated types; the
66 // latter publicly inherits from the former in an effort to reduce code
67 // duplication. This results in some "needless" static_cast'ing later on,
68 // but it's all safe downcasting.
70 /// Common part of a node in the %list.
71 struct _List_node_base
73 _List_node_base* _M_next;
74 _List_node_base* _M_prev;
76 static void
77 swap(_List_node_base& __x, _List_node_base& __y) throw ();
79 void
80 _M_transfer(_List_node_base * const __first,
81 _List_node_base * const __last) throw ();
83 void
84 _M_reverse() throw ();
86 void
87 _M_hook(_List_node_base * const __position) throw ();
89 void
90 _M_unhook() throw ();
93 /// An actual node in the %list.
94 template<typename _Tp>
95 struct _List_node : public _List_node_base
97 ///< User's data.
98 _Tp _M_data;
100 #ifdef __GXX_EXPERIMENTAL_CXX0X__
101 template<typename... _Args>
102 _List_node(_Args&&... __args)
103 : _List_node_base(), _M_data(std::forward<_Args>(__args)...) { }
104 #endif
108 * @brief A list::iterator.
110 * All the functions are op overloads.
112 template<typename _Tp>
113 struct _List_iterator
115 typedef _List_iterator<_Tp> _Self;
116 typedef _List_node<_Tp> _Node;
118 typedef ptrdiff_t difference_type;
119 typedef std::bidirectional_iterator_tag iterator_category;
120 typedef _Tp value_type;
121 typedef _Tp* pointer;
122 typedef _Tp& reference;
124 _List_iterator()
125 : _M_node() { }
127 explicit
128 _List_iterator(_List_node_base* __x)
129 : _M_node(__x) { }
131 // Must downcast from List_node_base to _List_node to get to _M_data.
132 reference
133 operator*() const
134 { return static_cast<_Node*>(_M_node)->_M_data; }
136 pointer
137 operator->() const
138 { return &static_cast<_Node*>(_M_node)->_M_data; }
140 _Self&
141 operator++()
143 _M_node = _M_node->_M_next;
144 return *this;
147 _Self
148 operator++(int)
150 _Self __tmp = *this;
151 _M_node = _M_node->_M_next;
152 return __tmp;
155 _Self&
156 operator--()
158 _M_node = _M_node->_M_prev;
159 return *this;
162 _Self
163 operator--(int)
165 _Self __tmp = *this;
166 _M_node = _M_node->_M_prev;
167 return __tmp;
170 bool
171 operator==(const _Self& __x) const
172 { return _M_node == __x._M_node; }
174 bool
175 operator!=(const _Self& __x) const
176 { return _M_node != __x._M_node; }
178 // The only member points to the %list element.
179 _List_node_base* _M_node;
183 * @brief A list::const_iterator.
185 * All the functions are op overloads.
187 template<typename _Tp>
188 struct _List_const_iterator
190 typedef _List_const_iterator<_Tp> _Self;
191 typedef const _List_node<_Tp> _Node;
192 typedef _List_iterator<_Tp> iterator;
194 typedef ptrdiff_t difference_type;
195 typedef std::bidirectional_iterator_tag iterator_category;
196 typedef _Tp value_type;
197 typedef const _Tp* pointer;
198 typedef const _Tp& reference;
200 _List_const_iterator()
201 : _M_node() { }
203 explicit
204 _List_const_iterator(const _List_node_base* __x)
205 : _M_node(__x) { }
207 _List_const_iterator(const iterator& __x)
208 : _M_node(__x._M_node) { }
210 // Must downcast from List_node_base to _List_node to get to
211 // _M_data.
212 reference
213 operator*() const
214 { return static_cast<_Node*>(_M_node)->_M_data; }
216 pointer
217 operator->() const
218 { return &static_cast<_Node*>(_M_node)->_M_data; }
220 _Self&
221 operator++()
223 _M_node = _M_node->_M_next;
224 return *this;
227 _Self
228 operator++(int)
230 _Self __tmp = *this;
231 _M_node = _M_node->_M_next;
232 return __tmp;
235 _Self&
236 operator--()
238 _M_node = _M_node->_M_prev;
239 return *this;
242 _Self
243 operator--(int)
245 _Self __tmp = *this;
246 _M_node = _M_node->_M_prev;
247 return __tmp;
250 bool
251 operator==(const _Self& __x) const
252 { return _M_node == __x._M_node; }
254 bool
255 operator!=(const _Self& __x) const
256 { return _M_node != __x._M_node; }
258 // The only member points to the %list element.
259 const _List_node_base* _M_node;
262 template<typename _Val>
263 inline bool
264 operator==(const _List_iterator<_Val>& __x,
265 const _List_const_iterator<_Val>& __y)
266 { return __x._M_node == __y._M_node; }
268 template<typename _Val>
269 inline bool
270 operator!=(const _List_iterator<_Val>& __x,
271 const _List_const_iterator<_Val>& __y)
272 { return __x._M_node != __y._M_node; }
275 /// See bits/stl_deque.h's _Deque_base for an explanation.
276 template<typename _Tp, typename _Alloc>
277 class _List_base
279 protected:
280 // NOTA BENE
281 // The stored instance is not actually of "allocator_type"'s
282 // type. Instead we rebind the type to
283 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
284 // should probably be the same. List_node<Tp> is not the same
285 // size as Tp (it's two pointers larger), and specializations on
286 // Tp may go unused because List_node<Tp> is being bound
287 // instead.
289 // We put this to the test in the constructors and in
290 // get_allocator, where we use conversions between
291 // allocator_type and _Node_alloc_type. The conversion is
292 // required by table 32 in [20.1.5].
293 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
294 _Node_alloc_type;
296 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
298 struct _List_impl
299 : public _Node_alloc_type
301 _List_node_base _M_node;
303 _List_impl()
304 : _Node_alloc_type(), _M_node()
307 _List_impl(const _Node_alloc_type& __a)
308 : _Node_alloc_type(__a), _M_node()
312 _List_impl _M_impl;
314 _List_node<_Tp>*
315 _M_get_node()
316 { return _M_impl._Node_alloc_type::allocate(1); }
318 void
319 _M_put_node(_List_node<_Tp>* __p)
320 { _M_impl._Node_alloc_type::deallocate(__p, 1); }
322 public:
323 typedef _Alloc allocator_type;
325 _Node_alloc_type&
326 _M_get_Node_allocator()
327 { return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
329 const _Node_alloc_type&
330 _M_get_Node_allocator() const
331 { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
333 _Tp_alloc_type
334 _M_get_Tp_allocator() const
335 { return _Tp_alloc_type(_M_get_Node_allocator()); }
337 allocator_type
338 get_allocator() const
339 { return allocator_type(_M_get_Node_allocator()); }
341 _List_base()
342 : _M_impl()
343 { _M_init(); }
345 _List_base(const allocator_type& __a)
346 : _M_impl(__a)
347 { _M_init(); }
349 #ifdef __GXX_EXPERIMENTAL_CXX0X__
350 _List_base(_List_base&& __x)
351 : _M_impl(__x._M_get_Node_allocator())
353 _M_init();
354 _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
356 #endif
358 // This is what actually destroys the list.
359 ~_List_base()
360 { _M_clear(); }
362 void
363 _M_clear();
365 void
366 _M_init()
368 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
369 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
374 * @brief A standard container with linear time access to elements,
375 * and fixed time insertion/deletion at any point in the sequence.
377 * @ingroup sequences
379 * Meets the requirements of a <a href="tables.html#65">container</a>, a
380 * <a href="tables.html#66">reversible container</a>, and a
381 * <a href="tables.html#67">sequence</a>, including the
382 * <a href="tables.html#68">optional sequence requirements</a> with the
383 * %exception of @c at and @c operator[].
385 * This is a @e doubly @e linked %list. Traversal up and down the
386 * %list requires linear time, but adding and removing elements (or
387 * @e nodes) is done in constant time, regardless of where the
388 * change takes place. Unlike std::vector and std::deque,
389 * random-access iterators are not provided, so subscripting ( @c
390 * [] ) access is not allowed. For algorithms which only need
391 * sequential access, this lack makes no difference.
393 * Also unlike the other standard containers, std::list provides
394 * specialized algorithms %unique to linked lists, such as
395 * splicing, sorting, and in-place reversal.
397 * A couple points on memory allocation for list<Tp>:
399 * First, we never actually allocate a Tp, we allocate
400 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
401 * that after elements from %list<X,Alloc1> are spliced into
402 * %list<X,Alloc2>, destroying the memory of the second %list is a
403 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
405 * Second, a %list conceptually represented as
406 * @code
407 * A <---> B <---> C <---> D
408 * @endcode
409 * is actually circular; a link exists between A and D. The %list
410 * class holds (as its only data member) a private list::iterator
411 * pointing to @e D, not to @e A! To get to the head of the %list,
412 * we start at the tail and move forward by one. When this member
413 * iterator's next/previous pointers refer to itself, the %list is
414 * %empty.
416 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
417 class list : protected _List_base<_Tp, _Alloc>
419 // concept requirements
420 typedef typename _Alloc::value_type _Alloc_value_type;
421 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
422 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
424 typedef _List_base<_Tp, _Alloc> _Base;
425 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
427 public:
428 typedef _Tp value_type;
429 typedef typename _Tp_alloc_type::pointer pointer;
430 typedef typename _Tp_alloc_type::const_pointer const_pointer;
431 typedef typename _Tp_alloc_type::reference reference;
432 typedef typename _Tp_alloc_type::const_reference const_reference;
433 typedef _List_iterator<_Tp> iterator;
434 typedef _List_const_iterator<_Tp> const_iterator;
435 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
436 typedef std::reverse_iterator<iterator> reverse_iterator;
437 typedef size_t size_type;
438 typedef ptrdiff_t difference_type;
439 typedef _Alloc allocator_type;
441 protected:
442 // Note that pointers-to-_Node's can be ctor-converted to
443 // iterator types.
444 typedef _List_node<_Tp> _Node;
446 using _Base::_M_impl;
447 using _Base::_M_put_node;
448 using _Base::_M_get_node;
449 using _Base::_M_get_Tp_allocator;
450 using _Base::_M_get_Node_allocator;
453 * @param x An instance of user data.
455 * Allocates space for a new node and constructs a copy of @a x in it.
457 #ifndef __GXX_EXPERIMENTAL_CXX0X__
458 _Node*
459 _M_create_node(const value_type& __x)
461 _Node* __p = this->_M_get_node();
462 __try
464 _M_get_Tp_allocator().construct(&__p->_M_data, __x);
466 __catch(...)
468 _M_put_node(__p);
469 __throw_exception_again;
471 return __p;
473 #else
474 template<typename... _Args>
475 _Node*
476 _M_create_node(_Args&&... __args)
478 _Node* __p = this->_M_get_node();
479 __try
481 _M_get_Node_allocator().construct(__p,
482 std::forward<_Args>(__args)...);
484 __catch(...)
486 _M_put_node(__p);
487 __throw_exception_again;
489 return __p;
491 #endif
493 public:
494 // [23.2.2.1] construct/copy/destroy
495 // (assign() and get_allocator() are also listed in this section)
497 * @brief Default constructor creates no elements.
499 list()
500 : _Base() { }
503 * @brief Creates a %list with no elements.
504 * @param a An allocator object.
506 explicit
507 list(const allocator_type& __a)
508 : _Base(__a) { }
511 * @brief Creates a %list with copies of an exemplar element.
512 * @param n The number of elements to initially create.
513 * @param value An element to copy.
514 * @param a An allocator object.
516 * This constructor fills the %list with @a n copies of @a value.
518 explicit
519 list(size_type __n, const value_type& __value = value_type(),
520 const allocator_type& __a = allocator_type())
521 : _Base(__a)
522 { _M_fill_initialize(__n, __value); }
525 * @brief %List copy constructor.
526 * @param x A %list of identical element and allocator types.
528 * The newly-created %list uses a copy of the allocation object used
529 * by @a x.
531 list(const list& __x)
532 : _Base(__x._M_get_Node_allocator())
533 { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
535 #ifdef __GXX_EXPERIMENTAL_CXX0X__
537 * @brief %List move constructor.
538 * @param x A %list of identical element and allocator types.
540 * The newly-created %list contains the exact contents of @a x.
541 * The contents of @a x are a valid, but unspecified %list.
543 list(list&& __x)
544 : _Base(std::forward<_Base>(__x)) { }
547 * @brief Builds a %list from an initializer_list
548 * @param l An initializer_list of value_type.
549 * @param a An allocator object.
551 * Create a %list consisting of copies of the elements in the
552 * initializer_list @a l. This is linear in l.size().
554 list(initializer_list<value_type> __l,
555 const allocator_type& __a = allocator_type())
556 : _Base(__a)
557 { _M_initialize_dispatch(__l.begin(), __l.end(), __false_type()); }
558 #endif
561 * @brief Builds a %list from a range.
562 * @param first An input iterator.
563 * @param last An input iterator.
564 * @param a An allocator object.
566 * Create a %list consisting of copies of the elements from
567 * [@a first,@a last). This is linear in N (where N is
568 * distance(@a first,@a last)).
570 template<typename _InputIterator>
571 list(_InputIterator __first, _InputIterator __last,
572 const allocator_type& __a = allocator_type())
573 : _Base(__a)
575 // Check whether it's an integral type. If so, it's not an iterator.
576 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
577 _M_initialize_dispatch(__first, __last, _Integral());
581 * No explicit dtor needed as the _Base dtor takes care of
582 * things. The _Base dtor only erases the elements, and note
583 * that if the elements themselves are pointers, the pointed-to
584 * memory is not touched in any way. Managing the pointer is
585 * the user's responsibility.
589 * @brief %List assignment operator.
590 * @param x A %list of identical element and allocator types.
592 * All the elements of @a x are copied, but unlike the copy
593 * constructor, the allocator object is not copied.
595 list&
596 operator=(const list& __x);
598 #ifdef __GXX_EXPERIMENTAL_CXX0X__
600 * @brief %List move assignment operator.
601 * @param x A %list of identical element and allocator types.
603 * The contents of @a x are moved into this %list (without copying).
604 * @a x is a valid, but unspecified %list
606 list&
607 operator=(list&& __x)
609 // NB: DR 1204.
610 // NB: DR 675.
611 this->clear();
612 this->swap(__x);
613 return *this;
617 * @brief %List initializer list assignment operator.
618 * @param l An initializer_list of value_type.
620 * Replace the contents of the %list with copies of the elements
621 * in the initializer_list @a l. This is linear in l.size().
623 list&
624 operator=(initializer_list<value_type> __l)
626 this->assign(__l.begin(), __l.end());
627 return *this;
629 #endif
632 * @brief Assigns a given value to a %list.
633 * @param n Number of elements to be assigned.
634 * @param val Value to be assigned.
636 * This function fills a %list with @a n copies of the given
637 * value. Note that the assignment completely changes the %list
638 * and that the resulting %list's size is the same as the number
639 * of elements assigned. Old data may be lost.
641 void
642 assign(size_type __n, const value_type& __val)
643 { _M_fill_assign(__n, __val); }
646 * @brief Assigns a range to a %list.
647 * @param first An input iterator.
648 * @param last An input iterator.
650 * This function fills a %list with copies of the elements in the
651 * range [@a first,@a last).
653 * Note that the assignment completely changes the %list and
654 * that the resulting %list's size is the same as the number of
655 * elements assigned. Old data may be lost.
657 template<typename _InputIterator>
658 void
659 assign(_InputIterator __first, _InputIterator __last)
661 // Check whether it's an integral type. If so, it's not an iterator.
662 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
663 _M_assign_dispatch(__first, __last, _Integral());
666 #ifdef __GXX_EXPERIMENTAL_CXX0X__
668 * @brief Assigns an initializer_list to a %list.
669 * @param l An initializer_list of value_type.
671 * Replace the contents of the %list with copies of the elements
672 * in the initializer_list @a l. This is linear in l.size().
674 void
675 assign(initializer_list<value_type> __l)
676 { this->assign(__l.begin(), __l.end()); }
677 #endif
679 /// Get a copy of the memory allocation object.
680 allocator_type
681 get_allocator() const
682 { return _Base::get_allocator(); }
684 // iterators
686 * Returns a read/write iterator that points to the first element in the
687 * %list. Iteration is done in ordinary element order.
689 iterator
690 begin()
691 { return iterator(this->_M_impl._M_node._M_next); }
694 * Returns a read-only (constant) iterator that points to the
695 * first element in the %list. Iteration is done in ordinary
696 * element order.
698 const_iterator
699 begin() const
700 { return const_iterator(this->_M_impl._M_node._M_next); }
703 * Returns a read/write iterator that points one past the last
704 * element in the %list. Iteration is done in ordinary element
705 * order.
707 iterator
708 end()
709 { return iterator(&this->_M_impl._M_node); }
712 * Returns a read-only (constant) iterator that points one past
713 * the last element in the %list. Iteration is done in ordinary
714 * element order.
716 const_iterator
717 end() const
718 { return const_iterator(&this->_M_impl._M_node); }
721 * Returns a read/write reverse iterator that points to the last
722 * element in the %list. Iteration is done in reverse element
723 * order.
725 reverse_iterator
726 rbegin()
727 { return reverse_iterator(end()); }
730 * Returns a read-only (constant) reverse iterator that points to
731 * the last element in the %list. Iteration is done in reverse
732 * element order.
734 const_reverse_iterator
735 rbegin() const
736 { return const_reverse_iterator(end()); }
739 * Returns a read/write reverse iterator that points to one
740 * before the first element in the %list. Iteration is done in
741 * reverse element order.
743 reverse_iterator
744 rend()
745 { return reverse_iterator(begin()); }
748 * Returns a read-only (constant) reverse iterator that points to one
749 * before the first element in the %list. Iteration is done in reverse
750 * element order.
752 const_reverse_iterator
753 rend() const
754 { return const_reverse_iterator(begin()); }
756 #ifdef __GXX_EXPERIMENTAL_CXX0X__
758 * Returns a read-only (constant) iterator that points to the
759 * first element in the %list. Iteration is done in ordinary
760 * element order.
762 const_iterator
763 cbegin() const
764 { return const_iterator(this->_M_impl._M_node._M_next); }
767 * Returns a read-only (constant) iterator that points one past
768 * the last element in the %list. Iteration is done in ordinary
769 * element order.
771 const_iterator
772 cend() const
773 { return const_iterator(&this->_M_impl._M_node); }
776 * Returns a read-only (constant) reverse iterator that points to
777 * the last element in the %list. Iteration is done in reverse
778 * element order.
780 const_reverse_iterator
781 crbegin() const
782 { return const_reverse_iterator(end()); }
785 * Returns a read-only (constant) reverse iterator that points to one
786 * before the first element in the %list. Iteration is done in reverse
787 * element order.
789 const_reverse_iterator
790 crend() const
791 { return const_reverse_iterator(begin()); }
792 #endif
794 // [23.2.2.2] capacity
796 * Returns true if the %list is empty. (Thus begin() would equal
797 * end().)
799 bool
800 empty() const
801 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
803 /** Returns the number of elements in the %list. */
804 size_type
805 size() const
806 { return std::distance(begin(), end()); }
808 /** Returns the size() of the largest possible %list. */
809 size_type
810 max_size() const
811 { return _M_get_Node_allocator().max_size(); }
814 * @brief Resizes the %list to the specified number of elements.
815 * @param new_size Number of elements the %list should contain.
816 * @param x Data with which new elements should be populated.
818 * This function will %resize the %list to the specified number
819 * of elements. If the number is smaller than the %list's
820 * current size the %list is truncated, otherwise the %list is
821 * extended and new elements are populated with given data.
823 void
824 resize(size_type __new_size, value_type __x = value_type());
826 // element access
828 * Returns a read/write reference to the data at the first
829 * element of the %list.
831 reference
832 front()
833 { return *begin(); }
836 * Returns a read-only (constant) reference to the data at the first
837 * element of the %list.
839 const_reference
840 front() const
841 { return *begin(); }
844 * Returns a read/write reference to the data at the last element
845 * of the %list.
847 reference
848 back()
850 iterator __tmp = end();
851 --__tmp;
852 return *__tmp;
856 * Returns a read-only (constant) reference to the data at the last
857 * element of the %list.
859 const_reference
860 back() const
862 const_iterator __tmp = end();
863 --__tmp;
864 return *__tmp;
867 // [23.2.2.3] modifiers
869 * @brief Add data to the front of the %list.
870 * @param x Data to be added.
872 * This is a typical stack operation. The function creates an
873 * element at the front of the %list and assigns the given data
874 * to it. Due to the nature of a %list this operation can be
875 * done in constant time, and does not invalidate iterators and
876 * references.
878 void
879 push_front(const value_type& __x)
880 { this->_M_insert(begin(), __x); }
882 #ifdef __GXX_EXPERIMENTAL_CXX0X__
883 void
884 push_front(value_type&& __x)
885 { this->_M_insert(begin(), std::move(__x)); }
887 template<typename... _Args>
888 void
889 emplace_front(_Args&&... __args)
890 { this->_M_insert(begin(), std::forward<_Args>(__args)...); }
891 #endif
894 * @brief Removes first element.
896 * This is a typical stack operation. It shrinks the %list by
897 * one. Due to the nature of a %list this operation can be done
898 * in constant time, and only invalidates iterators/references to
899 * the element being removed.
901 * Note that no data is returned, and if the first element's data
902 * is needed, it should be retrieved before pop_front() is
903 * called.
905 void
906 pop_front()
907 { this->_M_erase(begin()); }
910 * @brief Add data to the end of the %list.
911 * @param x Data to be added.
913 * This is a typical stack operation. The function creates an
914 * element at the end of the %list and assigns the given data to
915 * it. Due to the nature of a %list this operation can be done
916 * in constant time, and does not invalidate iterators and
917 * references.
919 void
920 push_back(const value_type& __x)
921 { this->_M_insert(end(), __x); }
923 #ifdef __GXX_EXPERIMENTAL_CXX0X__
924 void
925 push_back(value_type&& __x)
926 { this->_M_insert(end(), std::move(__x)); }
928 template<typename... _Args>
929 void
930 emplace_back(_Args&&... __args)
931 { this->_M_insert(end(), std::forward<_Args>(__args)...); }
932 #endif
935 * @brief Removes last element.
937 * This is a typical stack operation. It shrinks the %list by
938 * one. Due to the nature of a %list this operation can be done
939 * in constant time, and only invalidates iterators/references to
940 * the element being removed.
942 * Note that no data is returned, and if the last element's data
943 * is needed, it should be retrieved before pop_back() is called.
945 void
946 pop_back()
947 { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
949 #ifdef __GXX_EXPERIMENTAL_CXX0X__
951 * @brief Constructs object in %list before specified iterator.
952 * @param position A const_iterator into the %list.
953 * @param args Arguments.
954 * @return An iterator that points to the inserted data.
956 * This function will insert an object of type T constructed
957 * with T(std::forward<Args>(args)...) before the specified
958 * location. Due to the nature of a %list this operation can
959 * be done in constant time, and does not invalidate iterators
960 * and references.
962 template<typename... _Args>
963 iterator
964 emplace(iterator __position, _Args&&... __args);
965 #endif
968 * @brief Inserts given value into %list before specified iterator.
969 * @param position An iterator into the %list.
970 * @param x Data to be inserted.
971 * @return An iterator that points to the inserted data.
973 * This function will insert a copy of the given value before
974 * the specified location. Due to the nature of a %list this
975 * operation can be done in constant time, and does not
976 * invalidate iterators and references.
978 iterator
979 insert(iterator __position, const value_type& __x);
981 #ifdef __GXX_EXPERIMENTAL_CXX0X__
983 * @brief Inserts given rvalue into %list before specified iterator.
984 * @param position An iterator into the %list.
985 * @param x Data to be inserted.
986 * @return An iterator that points to the inserted data.
988 * This function will insert a copy of the given rvalue before
989 * the specified location. Due to the nature of a %list this
990 * operation can be done in constant time, and does not
991 * invalidate iterators and references.
993 iterator
994 insert(iterator __position, value_type&& __x)
995 { return emplace(__position, std::move(__x)); }
998 * @brief Inserts the contents of an initializer_list into %list
999 * before specified iterator.
1000 * @param p An iterator into the %list.
1001 * @param l An initializer_list of value_type.
1003 * This function will insert copies of the data in the
1004 * initializer_list @a l into the %list before the location
1005 * specified by @a p.
1007 * This operation is linear in the number of elements inserted and
1008 * does not invalidate iterators and references.
1010 void
1011 insert(iterator __p, initializer_list<value_type> __l)
1012 { this->insert(__p, __l.begin(), __l.end()); }
1013 #endif
1016 * @brief Inserts a number of copies of given data into the %list.
1017 * @param position An iterator into the %list.
1018 * @param n Number of elements to be inserted.
1019 * @param x Data to be inserted.
1021 * This function will insert a specified number of copies of the
1022 * given data before the location specified by @a position.
1024 * This operation is linear in the number of elements inserted and
1025 * does not invalidate iterators and references.
1027 void
1028 insert(iterator __position, size_type __n, const value_type& __x)
1030 list __tmp(__n, __x, _M_get_Node_allocator());
1031 splice(__position, __tmp);
1035 * @brief Inserts a range into the %list.
1036 * @param position An iterator into the %list.
1037 * @param first An input iterator.
1038 * @param last An input iterator.
1040 * This function will insert copies of the data in the range [@a
1041 * first,@a last) into the %list before the location specified by
1042 * @a position.
1044 * This operation is linear in the number of elements inserted and
1045 * does not invalidate iterators and references.
1047 template<typename _InputIterator>
1048 void
1049 insert(iterator __position, _InputIterator __first,
1050 _InputIterator __last)
1052 list __tmp(__first, __last, _M_get_Node_allocator());
1053 splice(__position, __tmp);
1057 * @brief Remove element at given position.
1058 * @param position Iterator pointing to element to be erased.
1059 * @return An iterator pointing to the next element (or end()).
1061 * This function will erase the element at the given position and thus
1062 * shorten the %list by one.
1064 * Due to the nature of a %list this operation can be done in
1065 * constant time, and only invalidates iterators/references to
1066 * the element being removed. The user is also cautioned that
1067 * this function only erases the element, and that if the element
1068 * is itself a pointer, the pointed-to memory is not touched in
1069 * any way. Managing the pointer is the user's responsibility.
1071 iterator
1072 erase(iterator __position);
1075 * @brief Remove a range of elements.
1076 * @param first Iterator pointing to the first element to be erased.
1077 * @param last Iterator pointing to one past the last element to be
1078 * erased.
1079 * @return An iterator pointing to the element pointed to by @a last
1080 * prior to erasing (or end()).
1082 * This function will erase the elements in the range @a
1083 * [first,last) and shorten the %list accordingly.
1085 * This operation is linear time in the size of the range and only
1086 * invalidates iterators/references to the element being removed.
1087 * The user is also cautioned that this function only erases the
1088 * elements, and that if the elements themselves are pointers, the
1089 * pointed-to memory is not touched in any way. Managing the pointer
1090 * is the user's responsibility.
1092 iterator
1093 erase(iterator __first, iterator __last)
1095 while (__first != __last)
1096 __first = erase(__first);
1097 return __last;
1101 * @brief Swaps data with another %list.
1102 * @param x A %list of the same element and allocator types.
1104 * This exchanges the elements between two lists in constant
1105 * time. Note that the global std::swap() function is
1106 * specialized such that std::swap(l1,l2) will feed to this
1107 * function.
1109 void
1110 swap(list& __x)
1112 _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
1114 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1115 // 431. Swapping containers with unequal allocators.
1116 std::__alloc_swap<typename _Base::_Node_alloc_type>::
1117 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
1121 * Erases all the elements. Note that this function only erases
1122 * the elements, and that if the elements themselves are
1123 * pointers, the pointed-to memory is not touched in any way.
1124 * Managing the pointer is the user's responsibility.
1126 void
1127 clear()
1129 _Base::_M_clear();
1130 _Base::_M_init();
1133 // [23.2.2.4] list operations
1135 * @brief Insert contents of another %list.
1136 * @param position Iterator referencing the element to insert before.
1137 * @param x Source list.
1139 * The elements of @a x are inserted in constant time in front of
1140 * the element referenced by @a position. @a x becomes an empty
1141 * list.
1143 * Requires this != @a x.
1145 void
1146 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1147 splice(iterator __position, list&& __x)
1148 #else
1149 splice(iterator __position, list& __x)
1150 #endif
1152 if (!__x.empty())
1154 _M_check_equal_allocators(__x);
1156 this->_M_transfer(__position, __x.begin(), __x.end());
1160 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1161 void
1162 splice(iterator __position, list& __x)
1163 { splice(__position, std::move(__x)); }
1164 #endif
1167 * @brief Insert element from another %list.
1168 * @param position Iterator referencing the element to insert before.
1169 * @param x Source list.
1170 * @param i Iterator referencing the element to move.
1172 * Removes the element in list @a x referenced by @a i and
1173 * inserts it into the current list before @a position.
1175 void
1176 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1177 splice(iterator __position, list&& __x, iterator __i)
1178 #else
1179 splice(iterator __position, list& __x, iterator __i)
1180 #endif
1182 iterator __j = __i;
1183 ++__j;
1184 if (__position == __i || __position == __j)
1185 return;
1187 if (this != &__x)
1188 _M_check_equal_allocators(__x);
1190 this->_M_transfer(__position, __i, __j);
1193 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1194 void
1195 splice(iterator __position, list& __x, iterator __i)
1196 { splice(__position, std::move(__x), __i); }
1197 #endif
1200 * @brief Insert range from another %list.
1201 * @param position Iterator referencing the element to insert before.
1202 * @param x Source list.
1203 * @param first Iterator referencing the start of range in x.
1204 * @param last Iterator referencing the end of range in x.
1206 * Removes elements in the range [first,last) and inserts them
1207 * before @a position in constant time.
1209 * Undefined if @a position is in [first,last).
1211 void
1212 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1213 splice(iterator __position, list&& __x, iterator __first,
1214 iterator __last)
1215 #else
1216 splice(iterator __position, list& __x, iterator __first,
1217 iterator __last)
1218 #endif
1220 if (__first != __last)
1222 if (this != &__x)
1223 _M_check_equal_allocators(__x);
1225 this->_M_transfer(__position, __first, __last);
1229 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1230 void
1231 splice(iterator __position, list& __x, iterator __first, iterator __last)
1232 { splice(__position, std::move(__x), __first, __last); }
1233 #endif
1236 * @brief Remove all elements equal to value.
1237 * @param value The value to remove.
1239 * Removes every element in the list equal to @a value.
1240 * Remaining elements stay in list order. Note that this
1241 * function only erases the elements, and that if the elements
1242 * themselves are pointers, the pointed-to memory is not
1243 * touched in any way. Managing the pointer is the user's
1244 * responsibility.
1246 void
1247 remove(const _Tp& __value);
1250 * @brief Remove all elements satisfying a predicate.
1251 * @param Predicate Unary predicate function or object.
1253 * Removes every element in the list for which the predicate
1254 * returns true. Remaining elements stay in list order. Note
1255 * that this function only erases the elements, and that if the
1256 * elements themselves are pointers, the pointed-to memory is
1257 * not touched in any way. Managing the pointer is the user's
1258 * responsibility.
1260 template<typename _Predicate>
1261 void
1262 remove_if(_Predicate);
1265 * @brief Remove consecutive duplicate elements.
1267 * For each consecutive set of elements with the same value,
1268 * remove all but the first one. Remaining elements stay in
1269 * list order. Note that this function only erases the
1270 * elements, and that if the elements themselves are pointers,
1271 * the pointed-to memory is not touched in any way. Managing
1272 * the pointer is the user's responsibility.
1274 void
1275 unique();
1278 * @brief Remove consecutive elements satisfying a predicate.
1279 * @param BinaryPredicate Binary predicate function or object.
1281 * For each consecutive set of elements [first,last) that
1282 * satisfy predicate(first,i) where i is an iterator in
1283 * [first,last), remove all but the first one. Remaining
1284 * elements stay in list order. Note that this function only
1285 * erases the elements, and that if the elements themselves are
1286 * pointers, the pointed-to memory is not touched in any way.
1287 * Managing the pointer is the user's responsibility.
1289 template<typename _BinaryPredicate>
1290 void
1291 unique(_BinaryPredicate);
1294 * @brief Merge sorted lists.
1295 * @param x Sorted list to merge.
1297 * Assumes that both @a x and this list are sorted according to
1298 * operator<(). Merges elements of @a x into this list in
1299 * sorted order, leaving @a x empty when complete. Elements in
1300 * this list precede elements in @a x that are equal.
1302 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1303 void
1304 merge(list&& __x);
1306 void
1307 merge(list& __x)
1308 { merge(std::move(__x)); }
1309 #else
1310 void
1311 merge(list& __x);
1312 #endif
1315 * @brief Merge sorted lists according to comparison function.
1316 * @param x Sorted list to merge.
1317 * @param StrictWeakOrdering Comparison function defining
1318 * sort order.
1320 * Assumes that both @a x and this list are sorted according to
1321 * StrictWeakOrdering. Merges elements of @a x into this list
1322 * in sorted order, leaving @a x empty when complete. Elements
1323 * in this list precede elements in @a x that are equivalent
1324 * according to StrictWeakOrdering().
1326 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1327 template<typename _StrictWeakOrdering>
1328 void
1329 merge(list&&, _StrictWeakOrdering);
1331 template<typename _StrictWeakOrdering>
1332 void
1333 merge(list& __x, _StrictWeakOrdering __comp)
1334 { merge(std::move(__x), __comp); }
1335 #else
1336 template<typename _StrictWeakOrdering>
1337 void
1338 merge(list&, _StrictWeakOrdering);
1339 #endif
1342 * @brief Reverse the elements in list.
1344 * Reverse the order of elements in the list in linear time.
1346 void
1347 reverse()
1348 { this->_M_impl._M_node._M_reverse(); }
1351 * @brief Sort the elements.
1353 * Sorts the elements of this list in NlogN time. Equivalent
1354 * elements remain in list order.
1356 void
1357 sort();
1360 * @brief Sort the elements according to comparison function.
1362 * Sorts the elements of this list in NlogN time. Equivalent
1363 * elements remain in list order.
1365 template<typename _StrictWeakOrdering>
1366 void
1367 sort(_StrictWeakOrdering);
1369 protected:
1370 // Internal constructor functions follow.
1372 // Called by the range constructor to implement [23.1.1]/9
1374 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1375 // 438. Ambiguity in the "do the right thing" clause
1376 template<typename _Integer>
1377 void
1378 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1379 { _M_fill_initialize(static_cast<size_type>(__n), __x); }
1381 // Called by the range constructor to implement [23.1.1]/9
1382 template<typename _InputIterator>
1383 void
1384 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1385 __false_type)
1387 for (; __first != __last; ++__first)
1388 push_back(*__first);
1391 // Called by list(n,v,a), and the range constructor when it turns out
1392 // to be the same thing.
1393 void
1394 _M_fill_initialize(size_type __n, const value_type& __x)
1396 for (; __n > 0; --__n)
1397 push_back(__x);
1401 // Internal assign functions follow.
1403 // Called by the range assign to implement [23.1.1]/9
1405 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1406 // 438. Ambiguity in the "do the right thing" clause
1407 template<typename _Integer>
1408 void
1409 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1410 { _M_fill_assign(__n, __val); }
1412 // Called by the range assign to implement [23.1.1]/9
1413 template<typename _InputIterator>
1414 void
1415 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1416 __false_type);
1418 // Called by assign(n,t), and the range assign when it turns out
1419 // to be the same thing.
1420 void
1421 _M_fill_assign(size_type __n, const value_type& __val);
1424 // Moves the elements from [first,last) before position.
1425 void
1426 _M_transfer(iterator __position, iterator __first, iterator __last)
1427 { __position._M_node->_M_transfer(__first._M_node, __last._M_node); }
1429 // Inserts new element at position given and with value given.
1430 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1431 void
1432 _M_insert(iterator __position, const value_type& __x)
1434 _Node* __tmp = _M_create_node(__x);
1435 __tmp->_M_hook(__position._M_node);
1437 #else
1438 template<typename... _Args>
1439 void
1440 _M_insert(iterator __position, _Args&&... __args)
1442 _Node* __tmp = _M_create_node(std::forward<_Args>(__args)...);
1443 __tmp->_M_hook(__position._M_node);
1445 #endif
1447 // Erases element at position given.
1448 void
1449 _M_erase(iterator __position)
1451 __position._M_node->_M_unhook();
1452 _Node* __n = static_cast<_Node*>(__position._M_node);
1453 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1454 _M_get_Node_allocator().destroy(__n);
1455 #else
1456 _M_get_Tp_allocator().destroy(&__n->_M_data);
1457 #endif
1458 _M_put_node(__n);
1461 // To implement the splice (and merge) bits of N1599.
1462 void
1463 _M_check_equal_allocators(list& __x)
1465 if (std::__alloc_neq<typename _Base::_Node_alloc_type>::
1466 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()))
1467 __throw_runtime_error(__N("list::_M_check_equal_allocators"));
1472 * @brief List equality comparison.
1473 * @param x A %list.
1474 * @param y A %list of the same type as @a x.
1475 * @return True iff the size and elements of the lists are equal.
1477 * This is an equivalence relation. It is linear in the size of
1478 * the lists. Lists are considered equivalent if their sizes are
1479 * equal, and if corresponding elements compare equal.
1481 template<typename _Tp, typename _Alloc>
1482 inline bool
1483 operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1485 typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1486 const_iterator __end1 = __x.end();
1487 const_iterator __end2 = __y.end();
1489 const_iterator __i1 = __x.begin();
1490 const_iterator __i2 = __y.begin();
1491 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1493 ++__i1;
1494 ++__i2;
1496 return __i1 == __end1 && __i2 == __end2;
1500 * @brief List ordering relation.
1501 * @param x A %list.
1502 * @param y A %list of the same type as @a x.
1503 * @return True iff @a x is lexicographically less than @a y.
1505 * This is a total ordering relation. It is linear in the size of the
1506 * lists. The elements must be comparable with @c <.
1508 * See std::lexicographical_compare() for how the determination is made.
1510 template<typename _Tp, typename _Alloc>
1511 inline bool
1512 operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1513 { return std::lexicographical_compare(__x.begin(), __x.end(),
1514 __y.begin(), __y.end()); }
1516 /// Based on operator==
1517 template<typename _Tp, typename _Alloc>
1518 inline bool
1519 operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1520 { return !(__x == __y); }
1522 /// Based on operator<
1523 template<typename _Tp, typename _Alloc>
1524 inline bool
1525 operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1526 { return __y < __x; }
1528 /// Based on operator<
1529 template<typename _Tp, typename _Alloc>
1530 inline bool
1531 operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1532 { return !(__y < __x); }
1534 /// Based on operator<
1535 template<typename _Tp, typename _Alloc>
1536 inline bool
1537 operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1538 { return !(__x < __y); }
1540 /// See std::list::swap().
1541 template<typename _Tp, typename _Alloc>
1542 inline void
1543 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1544 { __x.swap(__y); }
1546 _GLIBCXX_END_NESTED_NAMESPACE
1548 #endif /* _STL_LIST_H */