GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / toolchains / hndtools-arm-linux-2.6.36-uclibc-4.5.3 / arm-brcm-linux-uclibcgnueabi / include / c++ / 4.5.3 / bits / stl_function.h
blobfd9c3589d699c50ba81ca63d193a746c5833c4ca
1 // Functor implementations -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
40 * Copyright (c) 1996-1998
41 * Silicon Graphics Computer Systems, Inc.
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
52 /** @file stl_function.h
53 * This is an internal header file, included by other library headers.
54 * You should not attempt to use it directly.
57 #ifndef _STL_FUNCTION_H
58 #define _STL_FUNCTION_H 1
60 _GLIBCXX_BEGIN_NAMESPACE(std)
62 // 20.3.1 base classes
63 /** @defgroup functors Function Objects
64 * @ingroup utilities
66 * Function objects, or @e functors, are objects with an @c operator()
67 * defined and accessible. They can be passed as arguments to algorithm
68 * templates and used in place of a function pointer. Not only is the
69 * resulting expressiveness of the library increased, but the generated
70 * code can be more efficient than what you might write by hand. When we
71 * refer to @a functors, then, generally we include function pointers in
72 * the description as well.
74 * Often, functors are only created as temporaries passed to algorithm
75 * calls, rather than being created as named variables.
77 * Two examples taken from the standard itself follow. To perform a
78 * by-element addition of two vectors @c a and @c b containing @c double,
79 * and put the result in @c a, use
80 * \code
81 * transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
82 * \endcode
83 * To negate every element in @c a, use
84 * \code
85 * transform(a.begin(), a.end(), a.begin(), negate<double>());
86 * \endcode
87 * The addition and negation functions will be inlined directly.
89 * The standard functors are derived from structs named @c unary_function
90 * and @c binary_function. These two classes contain nothing but typedefs,
91 * to aid in generic (template) programming. If you write your own
92 * functors, you might consider doing the same.
94 * @{
96 /**
97 * This is one of the @link functors functor base classes@endlink.
99 template<typename _Arg, typename _Result>
100 struct unary_function
102 typedef _Arg argument_type; ///< @c argument_type is the type of the
103 /// argument (no surprises here)
105 typedef _Result result_type; ///< @c result_type is the return type
109 * This is one of the @link functors functor base classes@endlink.
111 template<typename _Arg1, typename _Arg2, typename _Result>
112 struct binary_function
114 typedef _Arg1 first_argument_type; ///< the type of the first argument
115 /// (no surprises here)
117 typedef _Arg2 second_argument_type; ///< the type of the second argument
118 typedef _Result result_type; ///< type of the return type
120 /** @} */
122 // 20.3.2 arithmetic
123 /** @defgroup arithmetic_functors Arithmetic Classes
124 * @ingroup functors
126 * Because basic math often needs to be done during an algorithm,
127 * the library provides functors for those operations. See the
128 * documentation for @link functors the base classes@endlink
129 * for examples of their use.
131 * @{
133 /// One of the @link arithmetic_functors math functors@endlink.
134 template<typename _Tp>
135 struct plus : public binary_function<_Tp, _Tp, _Tp>
138 operator()(const _Tp& __x, const _Tp& __y) const
139 { return __x + __y; }
142 /// One of the @link arithmetic_functors math functors@endlink.
143 template<typename _Tp>
144 struct minus : public binary_function<_Tp, _Tp, _Tp>
147 operator()(const _Tp& __x, const _Tp& __y) const
148 { return __x - __y; }
151 /// One of the @link arithmetic_functors math functors@endlink.
152 template<typename _Tp>
153 struct multiplies : public binary_function<_Tp, _Tp, _Tp>
156 operator()(const _Tp& __x, const _Tp& __y) const
157 { return __x * __y; }
160 /// One of the @link arithmetic_functors math functors@endlink.
161 template<typename _Tp>
162 struct divides : public binary_function<_Tp, _Tp, _Tp>
165 operator()(const _Tp& __x, const _Tp& __y) const
166 { return __x / __y; }
169 /// One of the @link arithmetic_functors math functors@endlink.
170 template<typename _Tp>
171 struct modulus : public binary_function<_Tp, _Tp, _Tp>
174 operator()(const _Tp& __x, const _Tp& __y) const
175 { return __x % __y; }
178 /// One of the @link arithmetic_functors math functors@endlink.
179 template<typename _Tp>
180 struct negate : public unary_function<_Tp, _Tp>
183 operator()(const _Tp& __x) const
184 { return -__x; }
186 /** @} */
188 // 20.3.3 comparisons
189 /** @defgroup comparison_functors Comparison Classes
190 * @ingroup functors
192 * The library provides six wrapper functors for all the basic comparisons
193 * in C++, like @c <.
195 * @{
197 /// One of the @link comparison_functors comparison functors@endlink.
198 template<typename _Tp>
199 struct equal_to : public binary_function<_Tp, _Tp, bool>
201 bool
202 operator()(const _Tp& __x, const _Tp& __y) const
203 { return __x == __y; }
206 /// One of the @link comparison_functors comparison functors@endlink.
207 template<typename _Tp>
208 struct not_equal_to : public binary_function<_Tp, _Tp, bool>
210 bool
211 operator()(const _Tp& __x, const _Tp& __y) const
212 { return __x != __y; }
215 /// One of the @link comparison_functors comparison functors@endlink.
216 template<typename _Tp>
217 struct greater : public binary_function<_Tp, _Tp, bool>
219 bool
220 operator()(const _Tp& __x, const _Tp& __y) const
221 { return __x > __y; }
224 /// One of the @link comparison_functors comparison functors@endlink.
225 template<typename _Tp>
226 struct less : public binary_function<_Tp, _Tp, bool>
228 bool
229 operator()(const _Tp& __x, const _Tp& __y) const
230 { return __x < __y; }
233 /// One of the @link comparison_functors comparison functors@endlink.
234 template<typename _Tp>
235 struct greater_equal : public binary_function<_Tp, _Tp, bool>
237 bool
238 operator()(const _Tp& __x, const _Tp& __y) const
239 { return __x >= __y; }
242 /// One of the @link comparison_functors comparison functors@endlink.
243 template<typename _Tp>
244 struct less_equal : public binary_function<_Tp, _Tp, bool>
246 bool
247 operator()(const _Tp& __x, const _Tp& __y) const
248 { return __x <= __y; }
250 /** @} */
252 // 20.3.4 logical operations
253 /** @defgroup logical_functors Boolean Operations Classes
254 * @ingroup functors
256 * Here are wrapper functors for Boolean operations: @c &&, @c ||,
257 * and @c !.
259 * @{
261 /// One of the @link logical_functors Boolean operations functors@endlink.
262 template<typename _Tp>
263 struct logical_and : public binary_function<_Tp, _Tp, bool>
265 bool
266 operator()(const _Tp& __x, const _Tp& __y) const
267 { return __x && __y; }
270 /// One of the @link logical_functors Boolean operations functors@endlink.
271 template<typename _Tp>
272 struct logical_or : public binary_function<_Tp, _Tp, bool>
274 bool
275 operator()(const _Tp& __x, const _Tp& __y) const
276 { return __x || __y; }
279 /// One of the @link logical_functors Boolean operations functors@endlink.
280 template<typename _Tp>
281 struct logical_not : public unary_function<_Tp, bool>
283 bool
284 operator()(const _Tp& __x) const
285 { return !__x; }
287 /** @} */
289 // _GLIBCXX_RESOLVE_LIB_DEFECTS
290 // DR 660. Missing Bitwise Operations.
291 template<typename _Tp>
292 struct bit_and : public binary_function<_Tp, _Tp, _Tp>
295 operator()(const _Tp& __x, const _Tp& __y) const
296 { return __x & __y; }
299 template<typename _Tp>
300 struct bit_or : public binary_function<_Tp, _Tp, _Tp>
303 operator()(const _Tp& __x, const _Tp& __y) const
304 { return __x | __y; }
307 template<typename _Tp>
308 struct bit_xor : public binary_function<_Tp, _Tp, _Tp>
311 operator()(const _Tp& __x, const _Tp& __y) const
312 { return __x ^ __y; }
315 // 20.3.5 negators
316 /** @defgroup negators Negators
317 * @ingroup functors
319 * The functions @c not1 and @c not2 each take a predicate functor
320 * and return an instance of @c unary_negate or
321 * @c binary_negate, respectively. These classes are functors whose
322 * @c operator() performs the stored predicate function and then returns
323 * the negation of the result.
325 * For example, given a vector of integers and a trivial predicate,
326 * \code
327 * struct IntGreaterThanThree
328 * : public std::unary_function<int, bool>
330 * bool operator() (int x) { return x > 3; }
331 * };
333 * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
334 * \endcode
335 * The call to @c find_if will locate the first index (i) of @c v for which
336 * <code>!(v[i] > 3)</code> is true.
338 * The not1/unary_negate combination works on predicates taking a single
339 * argument. The not2/binary_negate combination works on predicates which
340 * take two arguments.
342 * @{
344 /// One of the @link negators negation functors@endlink.
345 template<typename _Predicate>
346 class unary_negate
347 : public unary_function<typename _Predicate::argument_type, bool>
349 protected:
350 _Predicate _M_pred;
352 public:
353 explicit
354 unary_negate(const _Predicate& __x) : _M_pred(__x) { }
356 bool
357 operator()(const typename _Predicate::argument_type& __x) const
358 { return !_M_pred(__x); }
361 /// One of the @link negators negation functors@endlink.
362 template<typename _Predicate>
363 inline unary_negate<_Predicate>
364 not1(const _Predicate& __pred)
365 { return unary_negate<_Predicate>(__pred); }
367 /// One of the @link negators negation functors@endlink.
368 template<typename _Predicate>
369 class binary_negate
370 : public binary_function<typename _Predicate::first_argument_type,
371 typename _Predicate::second_argument_type, bool>
373 protected:
374 _Predicate _M_pred;
376 public:
377 explicit
378 binary_negate(const _Predicate& __x) : _M_pred(__x) { }
380 bool
381 operator()(const typename _Predicate::first_argument_type& __x,
382 const typename _Predicate::second_argument_type& __y) const
383 { return !_M_pred(__x, __y); }
386 /// One of the @link negators negation functors@endlink.
387 template<typename _Predicate>
388 inline binary_negate<_Predicate>
389 not2(const _Predicate& __pred)
390 { return binary_negate<_Predicate>(__pred); }
391 /** @} */
393 // 20.3.7 adaptors pointers functions
394 /** @defgroup pointer_adaptors Adaptors for pointers to functions
395 * @ingroup functors
397 * The advantage of function objects over pointers to functions is that
398 * the objects in the standard library declare nested typedefs describing
399 * their argument and result types with uniform names (e.g., @c result_type
400 * from the base classes @c unary_function and @c binary_function).
401 * Sometimes those typedefs are required, not just optional.
403 * Adaptors are provided to turn pointers to unary (single-argument) and
404 * binary (double-argument) functions into function objects. The
405 * long-winded functor @c pointer_to_unary_function is constructed with a
406 * function pointer @c f, and its @c operator() called with argument @c x
407 * returns @c f(x). The functor @c pointer_to_binary_function does the same
408 * thing, but with a double-argument @c f and @c operator().
410 * The function @c ptr_fun takes a pointer-to-function @c f and constructs
411 * an instance of the appropriate functor.
413 * @{
415 /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
416 template<typename _Arg, typename _Result>
417 class pointer_to_unary_function : public unary_function<_Arg, _Result>
419 protected:
420 _Result (*_M_ptr)(_Arg);
422 public:
423 pointer_to_unary_function() { }
425 explicit
426 pointer_to_unary_function(_Result (*__x)(_Arg))
427 : _M_ptr(__x) { }
429 _Result
430 operator()(_Arg __x) const
431 { return _M_ptr(__x); }
434 /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
435 template<typename _Arg, typename _Result>
436 inline pointer_to_unary_function<_Arg, _Result>
437 ptr_fun(_Result (*__x)(_Arg))
438 { return pointer_to_unary_function<_Arg, _Result>(__x); }
440 /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
441 template<typename _Arg1, typename _Arg2, typename _Result>
442 class pointer_to_binary_function
443 : public binary_function<_Arg1, _Arg2, _Result>
445 protected:
446 _Result (*_M_ptr)(_Arg1, _Arg2);
448 public:
449 pointer_to_binary_function() { }
451 explicit
452 pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
453 : _M_ptr(__x) { }
455 _Result
456 operator()(_Arg1 __x, _Arg2 __y) const
457 { return _M_ptr(__x, __y); }
460 /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
461 template<typename _Arg1, typename _Arg2, typename _Result>
462 inline pointer_to_binary_function<_Arg1, _Arg2, _Result>
463 ptr_fun(_Result (*__x)(_Arg1, _Arg2))
464 { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); }
465 /** @} */
467 template<typename _Tp>
468 struct _Identity : public unary_function<_Tp,_Tp>
470 _Tp&
471 operator()(_Tp& __x) const
472 { return __x; }
474 const _Tp&
475 operator()(const _Tp& __x) const
476 { return __x; }
479 template<typename _Pair>
480 struct _Select1st : public unary_function<_Pair,
481 typename _Pair::first_type>
483 typename _Pair::first_type&
484 operator()(_Pair& __x) const
485 { return __x.first; }
487 const typename _Pair::first_type&
488 operator()(const _Pair& __x) const
489 { return __x.first; }
492 template<typename _Pair>
493 struct _Select2nd : public unary_function<_Pair,
494 typename _Pair::second_type>
496 typename _Pair::second_type&
497 operator()(_Pair& __x) const
498 { return __x.second; }
500 const typename _Pair::second_type&
501 operator()(const _Pair& __x) const
502 { return __x.second; }
505 // 20.3.8 adaptors pointers members
506 /** @defgroup memory_adaptors Adaptors for pointers to members
507 * @ingroup functors
509 * There are a total of 8 = 2^3 function objects in this family.
510 * (1) Member functions taking no arguments vs member functions taking
511 * one argument.
512 * (2) Call through pointer vs call through reference.
513 * (3) Const vs non-const member function.
515 * All of this complexity is in the function objects themselves. You can
516 * ignore it by using the helper function mem_fun and mem_fun_ref,
517 * which create whichever type of adaptor is appropriate.
519 * @{
521 /// One of the @link memory_adaptors adaptors for member
522 /// pointers@endlink.
523 template<typename _Ret, typename _Tp>
524 class mem_fun_t : public unary_function<_Tp*, _Ret>
526 public:
527 explicit
528 mem_fun_t(_Ret (_Tp::*__pf)())
529 : _M_f(__pf) { }
531 _Ret
532 operator()(_Tp* __p) const
533 { return (__p->*_M_f)(); }
535 private:
536 _Ret (_Tp::*_M_f)();
539 /// One of the @link memory_adaptors adaptors for member
540 /// pointers@endlink.
541 template<typename _Ret, typename _Tp>
542 class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
544 public:
545 explicit
546 const_mem_fun_t(_Ret (_Tp::*__pf)() const)
547 : _M_f(__pf) { }
549 _Ret
550 operator()(const _Tp* __p) const
551 { return (__p->*_M_f)(); }
553 private:
554 _Ret (_Tp::*_M_f)() const;
557 /// One of the @link memory_adaptors adaptors for member
558 /// pointers@endlink.
559 template<typename _Ret, typename _Tp>
560 class mem_fun_ref_t : public unary_function<_Tp, _Ret>
562 public:
563 explicit
564 mem_fun_ref_t(_Ret (_Tp::*__pf)())
565 : _M_f(__pf) { }
567 _Ret
568 operator()(_Tp& __r) const
569 { return (__r.*_M_f)(); }
571 private:
572 _Ret (_Tp::*_M_f)();
575 /// One of the @link memory_adaptors adaptors for member
576 /// pointers@endlink.
577 template<typename _Ret, typename _Tp>
578 class const_mem_fun_ref_t : public unary_function<_Tp, _Ret>
580 public:
581 explicit
582 const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const)
583 : _M_f(__pf) { }
585 _Ret
586 operator()(const _Tp& __r) const
587 { return (__r.*_M_f)(); }
589 private:
590 _Ret (_Tp::*_M_f)() const;
593 /// One of the @link memory_adaptors adaptors for member
594 /// pointers@endlink.
595 template<typename _Ret, typename _Tp, typename _Arg>
596 class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret>
598 public:
599 explicit
600 mem_fun1_t(_Ret (_Tp::*__pf)(_Arg))
601 : _M_f(__pf) { }
603 _Ret
604 operator()(_Tp* __p, _Arg __x) const
605 { return (__p->*_M_f)(__x); }
607 private:
608 _Ret (_Tp::*_M_f)(_Arg);
611 /// One of the @link memory_adaptors adaptors for member
612 /// pointers@endlink.
613 template<typename _Ret, typename _Tp, typename _Arg>
614 class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret>
616 public:
617 explicit
618 const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const)
619 : _M_f(__pf) { }
621 _Ret
622 operator()(const _Tp* __p, _Arg __x) const
623 { return (__p->*_M_f)(__x); }
625 private:
626 _Ret (_Tp::*_M_f)(_Arg) const;
629 /// One of the @link memory_adaptors adaptors for member
630 /// pointers@endlink.
631 template<typename _Ret, typename _Tp, typename _Arg>
632 class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
634 public:
635 explicit
636 mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg))
637 : _M_f(__pf) { }
639 _Ret
640 operator()(_Tp& __r, _Arg __x) const
641 { return (__r.*_M_f)(__x); }
643 private:
644 _Ret (_Tp::*_M_f)(_Arg);
647 /// One of the @link memory_adaptors adaptors for member
648 /// pointers@endlink.
649 template<typename _Ret, typename _Tp, typename _Arg>
650 class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
652 public:
653 explicit
654 const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const)
655 : _M_f(__pf) { }
657 _Ret
658 operator()(const _Tp& __r, _Arg __x) const
659 { return (__r.*_M_f)(__x); }
661 private:
662 _Ret (_Tp::*_M_f)(_Arg) const;
665 // Mem_fun adaptor helper functions. There are only two:
666 // mem_fun and mem_fun_ref.
667 template<typename _Ret, typename _Tp>
668 inline mem_fun_t<_Ret, _Tp>
669 mem_fun(_Ret (_Tp::*__f)())
670 { return mem_fun_t<_Ret, _Tp>(__f); }
672 template<typename _Ret, typename _Tp>
673 inline const_mem_fun_t<_Ret, _Tp>
674 mem_fun(_Ret (_Tp::*__f)() const)
675 { return const_mem_fun_t<_Ret, _Tp>(__f); }
677 template<typename _Ret, typename _Tp>
678 inline mem_fun_ref_t<_Ret, _Tp>
679 mem_fun_ref(_Ret (_Tp::*__f)())
680 { return mem_fun_ref_t<_Ret, _Tp>(__f); }
682 template<typename _Ret, typename _Tp>
683 inline const_mem_fun_ref_t<_Ret, _Tp>
684 mem_fun_ref(_Ret (_Tp::*__f)() const)
685 { return const_mem_fun_ref_t<_Ret, _Tp>(__f); }
687 template<typename _Ret, typename _Tp, typename _Arg>
688 inline mem_fun1_t<_Ret, _Tp, _Arg>
689 mem_fun(_Ret (_Tp::*__f)(_Arg))
690 { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
692 template<typename _Ret, typename _Tp, typename _Arg>
693 inline const_mem_fun1_t<_Ret, _Tp, _Arg>
694 mem_fun(_Ret (_Tp::*__f)(_Arg) const)
695 { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
697 template<typename _Ret, typename _Tp, typename _Arg>
698 inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
699 mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
700 { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
702 template<typename _Ret, typename _Tp, typename _Arg>
703 inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
704 mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
705 { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
707 /** @} */
709 _GLIBCXX_END_NAMESPACE
711 #if !defined(__GXX_EXPERIMENTAL_CXX0X__) || _GLIBCXX_DEPRECATED
712 # include <backward/binders.h>
713 #endif
715 #endif /* _STL_FUNCTION_H */