GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / net / sunrpc / svc_xprt.c
blobf9fa9f6d046b11bab32f6245a3b9fd4f1f78f099
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
18 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
20 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21 static int svc_deferred_recv(struct svc_rqst *rqstp);
22 static struct cache_deferred_req *svc_defer(struct cache_req *req);
23 static void svc_age_temp_xprts(unsigned long closure);
25 /* apparently the "standard" is that clients close
26 * idle connections after 5 minutes, servers after
27 * 6 minutes
28 * http://www.connectathon.org/talks96/nfstcp.pdf
30 static int svc_conn_age_period = 6*60;
32 /* List of registered transport classes */
33 static DEFINE_SPINLOCK(svc_xprt_class_lock);
34 static LIST_HEAD(svc_xprt_class_list);
36 /* SMP locking strategy:
38 * svc_pool->sp_lock protects most of the fields of that pool.
39 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40 * when both need to be taken (rare), svc_serv->sv_lock is first.
41 * BKL protects svc_serv->sv_nrthread.
42 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
43 * and the ->sk_info_authunix cache.
45 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46 * enqueued multiply. During normal transport processing this bit
47 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48 * Providers should not manipulate this bit directly.
50 * Some flags can be set to certain values at any time
51 * providing that certain rules are followed:
53 * XPT_CONN, XPT_DATA:
54 * - Can be set or cleared at any time.
55 * - After a set, svc_xprt_enqueue must be called to enqueue
56 * the transport for processing.
57 * - After a clear, the transport must be read/accepted.
58 * If this succeeds, it must be set again.
59 * XPT_CLOSE:
60 * - Can set at any time. It is never cleared.
61 * XPT_DEAD:
62 * - Can only be set while XPT_BUSY is held which ensures
63 * that no other thread will be using the transport or will
64 * try to set XPT_DEAD.
67 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
69 struct svc_xprt_class *cl;
70 int res = -EEXIST;
72 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
74 INIT_LIST_HEAD(&xcl->xcl_list);
75 spin_lock(&svc_xprt_class_lock);
76 /* Make sure there isn't already a class with the same name */
77 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79 goto out;
81 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82 res = 0;
83 out:
84 spin_unlock(&svc_xprt_class_lock);
85 return res;
87 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
89 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
91 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92 spin_lock(&svc_xprt_class_lock);
93 list_del_init(&xcl->xcl_list);
94 spin_unlock(&svc_xprt_class_lock);
96 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99 * Format the transport list for printing
101 int svc_print_xprts(char *buf, int maxlen)
103 struct list_head *le;
104 char tmpstr[80];
105 int len = 0;
106 buf[0] = '\0';
108 spin_lock(&svc_xprt_class_lock);
109 list_for_each(le, &svc_xprt_class_list) {
110 int slen;
111 struct svc_xprt_class *xcl =
112 list_entry(le, struct svc_xprt_class, xcl_list);
114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 slen = strlen(tmpstr);
116 if (len + slen > maxlen)
117 break;
118 len += slen;
119 strcat(buf, tmpstr);
121 spin_unlock(&svc_xprt_class_lock);
123 return len;
126 static void svc_xprt_free(struct kref *kref)
128 struct svc_xprt *xprt =
129 container_of(kref, struct svc_xprt, xpt_ref);
130 struct module *owner = xprt->xpt_class->xcl_owner;
131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) &&
132 xprt->xpt_auth_cache != NULL)
133 svcauth_unix_info_release(xprt->xpt_auth_cache);
134 xprt->xpt_ops->xpo_free(xprt);
135 module_put(owner);
138 void svc_xprt_put(struct svc_xprt *xprt)
140 kref_put(&xprt->xpt_ref, svc_xprt_free);
142 EXPORT_SYMBOL_GPL(svc_xprt_put);
145 * Called by transport drivers to initialize the transport independent
146 * portion of the transport instance.
148 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
149 struct svc_serv *serv)
151 memset(xprt, 0, sizeof(*xprt));
152 xprt->xpt_class = xcl;
153 xprt->xpt_ops = xcl->xcl_ops;
154 kref_init(&xprt->xpt_ref);
155 xprt->xpt_server = serv;
156 INIT_LIST_HEAD(&xprt->xpt_list);
157 INIT_LIST_HEAD(&xprt->xpt_ready);
158 INIT_LIST_HEAD(&xprt->xpt_deferred);
159 mutex_init(&xprt->xpt_mutex);
160 spin_lock_init(&xprt->xpt_lock);
161 set_bit(XPT_BUSY, &xprt->xpt_flags);
162 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
164 EXPORT_SYMBOL_GPL(svc_xprt_init);
166 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
167 struct svc_serv *serv,
168 const int family,
169 const unsigned short port,
170 int flags)
172 struct sockaddr_in sin = {
173 .sin_family = AF_INET,
174 .sin_addr.s_addr = htonl(INADDR_ANY),
175 .sin_port = htons(port),
177 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
178 struct sockaddr_in6 sin6 = {
179 .sin6_family = AF_INET6,
180 .sin6_addr = IN6ADDR_ANY_INIT,
181 .sin6_port = htons(port),
183 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
184 struct sockaddr *sap;
185 size_t len;
187 switch (family) {
188 case PF_INET:
189 sap = (struct sockaddr *)&sin;
190 len = sizeof(sin);
191 break;
192 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
193 case PF_INET6:
194 sap = (struct sockaddr *)&sin6;
195 len = sizeof(sin6);
196 break;
197 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
198 default:
199 return ERR_PTR(-EAFNOSUPPORT);
202 return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
205 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
206 const int family, const unsigned short port,
207 int flags)
209 struct svc_xprt_class *xcl;
211 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
212 spin_lock(&svc_xprt_class_lock);
213 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
214 struct svc_xprt *newxprt;
215 unsigned short newport;
217 if (strcmp(xprt_name, xcl->xcl_name))
218 continue;
220 if (!try_module_get(xcl->xcl_owner))
221 goto err;
223 spin_unlock(&svc_xprt_class_lock);
224 newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
225 if (IS_ERR(newxprt)) {
226 module_put(xcl->xcl_owner);
227 return PTR_ERR(newxprt);
230 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
231 spin_lock_bh(&serv->sv_lock);
232 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
233 spin_unlock_bh(&serv->sv_lock);
234 newport = svc_xprt_local_port(newxprt);
235 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
236 return newport;
238 err:
239 spin_unlock(&svc_xprt_class_lock);
240 dprintk("svc: transport %s not found\n", xprt_name);
242 /* This errno is exposed to user space. Provide a reasonable
243 * perror msg for a bad transport. */
244 return -EPROTONOSUPPORT;
246 EXPORT_SYMBOL_GPL(svc_create_xprt);
249 * Copy the local and remote xprt addresses to the rqstp structure
251 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
253 struct sockaddr *sin;
255 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
256 rqstp->rq_addrlen = xprt->xpt_remotelen;
259 * Destination address in request is needed for binding the
260 * source address in RPC replies/callbacks later.
262 sin = (struct sockaddr *)&xprt->xpt_local;
263 switch (sin->sa_family) {
264 case AF_INET:
265 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
266 break;
267 case AF_INET6:
268 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
269 break;
272 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
275 * svc_print_addr - Format rq_addr field for printing
276 * @rqstp: svc_rqst struct containing address to print
277 * @buf: target buffer for formatted address
278 * @len: length of target buffer
281 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
283 return __svc_print_addr(svc_addr(rqstp), buf, len);
285 EXPORT_SYMBOL_GPL(svc_print_addr);
288 * Queue up an idle server thread. Must have pool->sp_lock held.
289 * Note: this is really a stack rather than a queue, so that we only
290 * use as many different threads as we need, and the rest don't pollute
291 * the cache.
293 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
295 list_add(&rqstp->rq_list, &pool->sp_threads);
299 * Dequeue an nfsd thread. Must have pool->sp_lock held.
301 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
303 list_del(&rqstp->rq_list);
307 * Queue up a transport with data pending. If there are idle nfsd
308 * processes, wake 'em up.
311 void svc_xprt_enqueue(struct svc_xprt *xprt)
313 struct svc_serv *serv = xprt->xpt_server;
314 struct svc_pool *pool;
315 struct svc_rqst *rqstp;
316 int cpu;
318 if (!(xprt->xpt_flags &
319 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
320 return;
322 cpu = get_cpu();
323 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
324 put_cpu();
326 spin_lock_bh(&pool->sp_lock);
328 if (!list_empty(&pool->sp_threads) &&
329 !list_empty(&pool->sp_sockets))
330 printk(KERN_ERR
331 "svc_xprt_enqueue: "
332 "threads and transports both waiting??\n");
334 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
335 /* Don't enqueue dead transports */
336 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
337 goto out_unlock;
340 pool->sp_stats.packets++;
342 /* Mark transport as busy. It will remain in this state until
343 * the provider calls svc_xprt_received. We update XPT_BUSY
344 * atomically because it also guards against trying to enqueue
345 * the transport twice.
347 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
348 /* Don't enqueue transport while already enqueued */
349 dprintk("svc: transport %p busy, not enqueued\n", xprt);
350 goto out_unlock;
352 BUG_ON(xprt->xpt_pool != NULL);
353 xprt->xpt_pool = pool;
355 /* Handle pending connection */
356 if (test_bit(XPT_CONN, &xprt->xpt_flags))
357 goto process;
359 /* Handle close in-progress */
360 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
361 goto process;
363 /* Check if we have space to reply to a request */
364 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
365 /* Don't enqueue while not enough space for reply */
366 dprintk("svc: no write space, transport %p not enqueued\n",
367 xprt);
368 xprt->xpt_pool = NULL;
369 clear_bit(XPT_BUSY, &xprt->xpt_flags);
370 goto out_unlock;
373 process:
374 if (!list_empty(&pool->sp_threads)) {
375 rqstp = list_entry(pool->sp_threads.next,
376 struct svc_rqst,
377 rq_list);
378 dprintk("svc: transport %p served by daemon %p\n",
379 xprt, rqstp);
380 svc_thread_dequeue(pool, rqstp);
381 if (rqstp->rq_xprt)
382 printk(KERN_ERR
383 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
384 rqstp, rqstp->rq_xprt);
385 rqstp->rq_xprt = xprt;
386 svc_xprt_get(xprt);
387 rqstp->rq_reserved = serv->sv_max_mesg;
388 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
389 pool->sp_stats.threads_woken++;
390 BUG_ON(xprt->xpt_pool != pool);
391 wake_up(&rqstp->rq_wait);
392 } else {
393 dprintk("svc: transport %p put into queue\n", xprt);
394 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
395 pool->sp_stats.sockets_queued++;
396 BUG_ON(xprt->xpt_pool != pool);
399 out_unlock:
400 spin_unlock_bh(&pool->sp_lock);
402 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
405 * Dequeue the first transport. Must be called with the pool->sp_lock held.
407 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
409 struct svc_xprt *xprt;
411 if (list_empty(&pool->sp_sockets))
412 return NULL;
414 xprt = list_entry(pool->sp_sockets.next,
415 struct svc_xprt, xpt_ready);
416 list_del_init(&xprt->xpt_ready);
418 dprintk("svc: transport %p dequeued, inuse=%d\n",
419 xprt, atomic_read(&xprt->xpt_ref.refcount));
421 return xprt;
425 * svc_xprt_received conditionally queues the transport for processing
426 * by another thread. The caller must hold the XPT_BUSY bit and must
427 * not thereafter touch transport data.
429 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
430 * insufficient) data.
432 void svc_xprt_received(struct svc_xprt *xprt)
434 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
435 xprt->xpt_pool = NULL;
436 /* As soon as we clear busy, the xprt could be closed and
437 * 'put', so we need a reference to call svc_xprt_enqueue with:
439 svc_xprt_get(xprt);
440 clear_bit(XPT_BUSY, &xprt->xpt_flags);
441 svc_xprt_enqueue(xprt);
442 svc_xprt_put(xprt);
444 EXPORT_SYMBOL_GPL(svc_xprt_received);
447 * svc_reserve - change the space reserved for the reply to a request.
448 * @rqstp: The request in question
449 * @space: new max space to reserve
451 * Each request reserves some space on the output queue of the transport
452 * to make sure the reply fits. This function reduces that reserved
453 * space to be the amount of space used already, plus @space.
456 void svc_reserve(struct svc_rqst *rqstp, int space)
458 space += rqstp->rq_res.head[0].iov_len;
460 if (space < rqstp->rq_reserved) {
461 struct svc_xprt *xprt = rqstp->rq_xprt;
462 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
463 rqstp->rq_reserved = space;
465 svc_xprt_enqueue(xprt);
468 EXPORT_SYMBOL_GPL(svc_reserve);
470 static void svc_xprt_release(struct svc_rqst *rqstp)
472 struct svc_xprt *xprt = rqstp->rq_xprt;
474 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
476 kfree(rqstp->rq_deferred);
477 rqstp->rq_deferred = NULL;
479 svc_free_res_pages(rqstp);
480 rqstp->rq_res.page_len = 0;
481 rqstp->rq_res.page_base = 0;
483 /* Reset response buffer and release
484 * the reservation.
485 * But first, check that enough space was reserved
486 * for the reply, otherwise we have a bug!
488 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
489 printk(KERN_ERR "RPC request reserved %d but used %d\n",
490 rqstp->rq_reserved,
491 rqstp->rq_res.len);
493 rqstp->rq_res.head[0].iov_len = 0;
494 svc_reserve(rqstp, 0);
495 rqstp->rq_xprt = NULL;
497 svc_xprt_put(xprt);
501 * External function to wake up a server waiting for data
502 * This really only makes sense for services like lockd
503 * which have exactly one thread anyway.
505 void svc_wake_up(struct svc_serv *serv)
507 struct svc_rqst *rqstp;
508 unsigned int i;
509 struct svc_pool *pool;
511 for (i = 0; i < serv->sv_nrpools; i++) {
512 pool = &serv->sv_pools[i];
514 spin_lock_bh(&pool->sp_lock);
515 if (!list_empty(&pool->sp_threads)) {
516 rqstp = list_entry(pool->sp_threads.next,
517 struct svc_rqst,
518 rq_list);
519 dprintk("svc: daemon %p woken up.\n", rqstp);
521 svc_thread_dequeue(pool, rqstp);
522 rqstp->rq_xprt = NULL;
524 wake_up(&rqstp->rq_wait);
526 spin_unlock_bh(&pool->sp_lock);
529 EXPORT_SYMBOL_GPL(svc_wake_up);
531 int svc_port_is_privileged(struct sockaddr *sin)
533 switch (sin->sa_family) {
534 case AF_INET:
535 return ntohs(((struct sockaddr_in *)sin)->sin_port)
536 < PROT_SOCK;
537 case AF_INET6:
538 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
539 < PROT_SOCK;
540 default:
541 return 0;
546 * Make sure that we don't have too many active connections. If we have,
547 * something must be dropped. It's not clear what will happen if we allow
548 * "too many" connections, but when dealing with network-facing software,
549 * we have to code defensively. Here we do that by imposing hard limits.
551 * There's no point in trying to do random drop here for DoS
552 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
553 * attacker can easily beat that.
555 * The only somewhat efficient mechanism would be if drop old
556 * connections from the same IP first. But right now we don't even
557 * record the client IP in svc_sock.
559 * single-threaded services that expect a lot of clients will probably
560 * need to set sv_maxconn to override the default value which is based
561 * on the number of threads
563 static void svc_check_conn_limits(struct svc_serv *serv)
565 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
566 (serv->sv_nrthreads+3) * 20;
568 if (serv->sv_tmpcnt > limit) {
569 struct svc_xprt *xprt = NULL;
570 spin_lock_bh(&serv->sv_lock);
571 if (!list_empty(&serv->sv_tempsocks)) {
572 if (net_ratelimit()) {
573 /* Try to help the admin */
574 printk(KERN_NOTICE "%s: too many open "
575 "connections, consider increasing %s\n",
576 serv->sv_name, serv->sv_maxconn ?
577 "the max number of connections." :
578 "the number of threads.");
581 * Always select the oldest connection. It's not fair,
582 * but so is life
584 xprt = list_entry(serv->sv_tempsocks.prev,
585 struct svc_xprt,
586 xpt_list);
587 set_bit(XPT_CLOSE, &xprt->xpt_flags);
588 svc_xprt_get(xprt);
590 spin_unlock_bh(&serv->sv_lock);
592 if (xprt) {
593 svc_xprt_enqueue(xprt);
594 svc_xprt_put(xprt);
600 * Receive the next request on any transport. This code is carefully
601 * organised not to touch any cachelines in the shared svc_serv
602 * structure, only cachelines in the local svc_pool.
604 int svc_recv(struct svc_rqst *rqstp, long timeout)
606 struct svc_xprt *xprt = NULL;
607 struct svc_serv *serv = rqstp->rq_server;
608 struct svc_pool *pool = rqstp->rq_pool;
609 int len, i;
610 int pages;
611 struct xdr_buf *arg;
612 DECLARE_WAITQUEUE(wait, current);
613 long time_left;
615 dprintk("svc: server %p waiting for data (to = %ld)\n",
616 rqstp, timeout);
618 if (rqstp->rq_xprt)
619 printk(KERN_ERR
620 "svc_recv: service %p, transport not NULL!\n",
621 rqstp);
622 if (waitqueue_active(&rqstp->rq_wait))
623 printk(KERN_ERR
624 "svc_recv: service %p, wait queue active!\n",
625 rqstp);
627 /* now allocate needed pages. If we get a failure, sleep briefly */
628 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
629 for (i = 0; i < pages ; i++)
630 while (rqstp->rq_pages[i] == NULL) {
631 struct page *p = alloc_page(GFP_KERNEL);
632 if (!p) {
633 set_current_state(TASK_INTERRUPTIBLE);
634 if (signalled() || kthread_should_stop()) {
635 set_current_state(TASK_RUNNING);
636 return -EINTR;
638 schedule_timeout(msecs_to_jiffies(500));
640 rqstp->rq_pages[i] = p;
642 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
643 BUG_ON(pages >= RPCSVC_MAXPAGES);
645 /* Make arg->head point to first page and arg->pages point to rest */
646 arg = &rqstp->rq_arg;
647 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
648 arg->head[0].iov_len = PAGE_SIZE;
649 arg->pages = rqstp->rq_pages + 1;
650 arg->page_base = 0;
651 /* save at least one page for response */
652 arg->page_len = (pages-2)*PAGE_SIZE;
653 arg->len = (pages-1)*PAGE_SIZE;
654 arg->tail[0].iov_len = 0;
656 try_to_freeze();
657 cond_resched();
658 if (signalled() || kthread_should_stop())
659 return -EINTR;
661 spin_lock_bh(&pool->sp_lock);
662 xprt = svc_xprt_dequeue(pool);
663 if (xprt) {
664 rqstp->rq_xprt = xprt;
665 svc_xprt_get(xprt);
666 rqstp->rq_reserved = serv->sv_max_mesg;
667 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
668 } else {
669 /* No data pending. Go to sleep */
670 svc_thread_enqueue(pool, rqstp);
673 * We have to be able to interrupt this wait
674 * to bring down the daemons ...
676 set_current_state(TASK_INTERRUPTIBLE);
679 * checking kthread_should_stop() here allows us to avoid
680 * locking and signalling when stopping kthreads that call
681 * svc_recv. If the thread has already been woken up, then
682 * we can exit here without sleeping. If not, then it
683 * it'll be woken up quickly during the schedule_timeout
685 if (kthread_should_stop()) {
686 set_current_state(TASK_RUNNING);
687 spin_unlock_bh(&pool->sp_lock);
688 return -EINTR;
691 add_wait_queue(&rqstp->rq_wait, &wait);
692 spin_unlock_bh(&pool->sp_lock);
694 time_left = schedule_timeout(timeout);
696 try_to_freeze();
698 spin_lock_bh(&pool->sp_lock);
699 remove_wait_queue(&rqstp->rq_wait, &wait);
700 if (!time_left)
701 pool->sp_stats.threads_timedout++;
703 xprt = rqstp->rq_xprt;
704 if (!xprt) {
705 svc_thread_dequeue(pool, rqstp);
706 spin_unlock_bh(&pool->sp_lock);
707 dprintk("svc: server %p, no data yet\n", rqstp);
708 if (signalled() || kthread_should_stop())
709 return -EINTR;
710 else
711 return -EAGAIN;
714 spin_unlock_bh(&pool->sp_lock);
716 len = 0;
717 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
718 dprintk("svc_recv: found XPT_CLOSE\n");
719 svc_delete_xprt(xprt);
720 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
721 struct svc_xprt *newxpt;
722 newxpt = xprt->xpt_ops->xpo_accept(xprt);
723 if (newxpt) {
725 * We know this module_get will succeed because the
726 * listener holds a reference too
728 __module_get(newxpt->xpt_class->xcl_owner);
729 svc_check_conn_limits(xprt->xpt_server);
730 spin_lock_bh(&serv->sv_lock);
731 set_bit(XPT_TEMP, &newxpt->xpt_flags);
732 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
733 serv->sv_tmpcnt++;
734 if (serv->sv_temptimer.function == NULL) {
735 /* setup timer to age temp transports */
736 setup_timer(&serv->sv_temptimer,
737 svc_age_temp_xprts,
738 (unsigned long)serv);
739 mod_timer(&serv->sv_temptimer,
740 jiffies + svc_conn_age_period * HZ);
742 spin_unlock_bh(&serv->sv_lock);
743 svc_xprt_received(newxpt);
745 svc_xprt_received(xprt);
746 } else {
747 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
748 rqstp, pool->sp_id, xprt,
749 atomic_read(&xprt->xpt_ref.refcount));
750 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
751 if (rqstp->rq_deferred) {
752 svc_xprt_received(xprt);
753 len = svc_deferred_recv(rqstp);
754 } else {
755 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
756 svc_xprt_received(xprt);
758 dprintk("svc: got len=%d\n", len);
761 /* No data, incomplete (TCP) read, or accept() */
762 if (len == 0 || len == -EAGAIN) {
763 rqstp->rq_res.len = 0;
764 svc_xprt_release(rqstp);
765 return -EAGAIN;
767 clear_bit(XPT_OLD, &xprt->xpt_flags);
769 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
770 rqstp->rq_chandle.defer = svc_defer;
772 if (serv->sv_stats)
773 serv->sv_stats->netcnt++;
774 return len;
776 EXPORT_SYMBOL_GPL(svc_recv);
779 * Drop request
781 void svc_drop(struct svc_rqst *rqstp)
783 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
784 svc_xprt_release(rqstp);
786 EXPORT_SYMBOL_GPL(svc_drop);
789 * Return reply to client.
791 int svc_send(struct svc_rqst *rqstp)
793 struct svc_xprt *xprt;
794 int len;
795 struct xdr_buf *xb;
797 xprt = rqstp->rq_xprt;
798 if (!xprt)
799 return -EFAULT;
801 /* release the receive skb before sending the reply */
802 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
804 /* calculate over-all length */
805 xb = &rqstp->rq_res;
806 xb->len = xb->head[0].iov_len +
807 xb->page_len +
808 xb->tail[0].iov_len;
810 /* Grab mutex to serialize outgoing data. */
811 mutex_lock(&xprt->xpt_mutex);
812 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
813 len = -ENOTCONN;
814 else
815 len = xprt->xpt_ops->xpo_sendto(rqstp);
816 mutex_unlock(&xprt->xpt_mutex);
817 rpc_wake_up(&xprt->xpt_bc_pending);
818 svc_xprt_release(rqstp);
820 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
821 return 0;
822 return len;
826 * Timer function to close old temporary transports, using
827 * a mark-and-sweep algorithm.
829 static void svc_age_temp_xprts(unsigned long closure)
831 struct svc_serv *serv = (struct svc_serv *)closure;
832 struct svc_xprt *xprt;
833 struct list_head *le, *next;
834 LIST_HEAD(to_be_aged);
836 dprintk("svc_age_temp_xprts\n");
838 if (!spin_trylock_bh(&serv->sv_lock)) {
839 /* busy, try again 1 sec later */
840 dprintk("svc_age_temp_xprts: busy\n");
841 mod_timer(&serv->sv_temptimer, jiffies + HZ);
842 return;
845 list_for_each_safe(le, next, &serv->sv_tempsocks) {
846 xprt = list_entry(le, struct svc_xprt, xpt_list);
848 /* First time through, just mark it OLD. Second time
849 * through, close it. */
850 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
851 continue;
852 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
853 test_bit(XPT_BUSY, &xprt->xpt_flags))
854 continue;
855 svc_xprt_get(xprt);
856 list_move(le, &to_be_aged);
857 set_bit(XPT_CLOSE, &xprt->xpt_flags);
858 set_bit(XPT_DETACHED, &xprt->xpt_flags);
860 spin_unlock_bh(&serv->sv_lock);
862 while (!list_empty(&to_be_aged)) {
863 le = to_be_aged.next;
864 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
865 list_del_init(le);
866 xprt = list_entry(le, struct svc_xprt, xpt_list);
868 dprintk("queuing xprt %p for closing\n", xprt);
870 /* a thread will dequeue and close it soon */
871 svc_xprt_enqueue(xprt);
872 svc_xprt_put(xprt);
875 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
879 * Remove a dead transport
881 void svc_delete_xprt(struct svc_xprt *xprt)
883 struct svc_serv *serv = xprt->xpt_server;
884 struct svc_deferred_req *dr;
886 /* Only do this once */
887 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
888 return;
890 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
891 xprt->xpt_ops->xpo_detach(xprt);
893 spin_lock_bh(&serv->sv_lock);
894 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
895 list_del_init(&xprt->xpt_list);
897 * We used to delete the transport from whichever list
898 * it's sk_xprt.xpt_ready node was on, but we don't actually
899 * need to. This is because the only time we're called
900 * while still attached to a queue, the queue itself
901 * is about to be destroyed (in svc_destroy).
903 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
904 serv->sv_tmpcnt--;
905 spin_unlock_bh(&serv->sv_lock);
907 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
908 kfree(dr);
910 svc_xprt_put(xprt);
913 void svc_close_xprt(struct svc_xprt *xprt)
915 set_bit(XPT_CLOSE, &xprt->xpt_flags);
916 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
917 /* someone else will have to effect the close */
918 return;
920 svc_xprt_get(xprt);
921 svc_delete_xprt(xprt);
922 clear_bit(XPT_BUSY, &xprt->xpt_flags);
923 svc_xprt_put(xprt);
925 EXPORT_SYMBOL_GPL(svc_close_xprt);
927 void svc_close_all(struct list_head *xprt_list)
929 struct svc_xprt *xprt;
930 struct svc_xprt *tmp;
932 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
933 set_bit(XPT_CLOSE, &xprt->xpt_flags);
934 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
935 /* Waiting to be processed, but no threads left,
936 * So just remove it from the waiting list
938 list_del_init(&xprt->xpt_ready);
939 clear_bit(XPT_BUSY, &xprt->xpt_flags);
941 svc_close_xprt(xprt);
946 * Handle defer and revisit of requests
949 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
951 struct svc_deferred_req *dr =
952 container_of(dreq, struct svc_deferred_req, handle);
953 struct svc_xprt *xprt = dr->xprt;
955 spin_lock(&xprt->xpt_lock);
956 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
957 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
958 spin_unlock(&xprt->xpt_lock);
959 dprintk("revisit canceled\n");
960 svc_xprt_put(xprt);
961 kfree(dr);
962 return;
964 dprintk("revisit queued\n");
965 dr->xprt = NULL;
966 list_add(&dr->handle.recent, &xprt->xpt_deferred);
967 spin_unlock(&xprt->xpt_lock);
968 svc_xprt_enqueue(xprt);
969 svc_xprt_put(xprt);
973 * Save the request off for later processing. The request buffer looks
974 * like this:
976 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
978 * This code can only handle requests that consist of an xprt-header
979 * and rpc-header.
981 static struct cache_deferred_req *svc_defer(struct cache_req *req)
983 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
984 struct svc_deferred_req *dr;
986 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
987 return NULL;
988 if (rqstp->rq_deferred) {
989 dr = rqstp->rq_deferred;
990 rqstp->rq_deferred = NULL;
991 } else {
992 size_t skip;
993 size_t size;
994 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
995 dr = kmalloc(size, GFP_KERNEL);
996 if (dr == NULL)
997 return NULL;
999 dr->handle.owner = rqstp->rq_server;
1000 dr->prot = rqstp->rq_prot;
1001 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1002 dr->addrlen = rqstp->rq_addrlen;
1003 dr->daddr = rqstp->rq_daddr;
1004 dr->argslen = rqstp->rq_arg.len >> 2;
1005 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1007 /* back up head to the start of the buffer and copy */
1008 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1009 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1010 dr->argslen << 2);
1012 svc_xprt_get(rqstp->rq_xprt);
1013 dr->xprt = rqstp->rq_xprt;
1015 dr->handle.revisit = svc_revisit;
1016 return &dr->handle;
1020 * recv data from a deferred request into an active one
1022 static int svc_deferred_recv(struct svc_rqst *rqstp)
1024 struct svc_deferred_req *dr = rqstp->rq_deferred;
1026 /* setup iov_base past transport header */
1027 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1028 /* The iov_len does not include the transport header bytes */
1029 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1030 rqstp->rq_arg.page_len = 0;
1031 /* The rq_arg.len includes the transport header bytes */
1032 rqstp->rq_arg.len = dr->argslen<<2;
1033 rqstp->rq_prot = dr->prot;
1034 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1035 rqstp->rq_addrlen = dr->addrlen;
1036 /* Save off transport header len in case we get deferred again */
1037 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1038 rqstp->rq_daddr = dr->daddr;
1039 rqstp->rq_respages = rqstp->rq_pages;
1040 return (dr->argslen<<2) - dr->xprt_hlen;
1044 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1046 struct svc_deferred_req *dr = NULL;
1048 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1049 return NULL;
1050 spin_lock(&xprt->xpt_lock);
1051 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1052 if (!list_empty(&xprt->xpt_deferred)) {
1053 dr = list_entry(xprt->xpt_deferred.next,
1054 struct svc_deferred_req,
1055 handle.recent);
1056 list_del_init(&dr->handle.recent);
1057 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1059 spin_unlock(&xprt->xpt_lock);
1060 return dr;
1064 * svc_find_xprt - find an RPC transport instance
1065 * @serv: pointer to svc_serv to search
1066 * @xcl_name: C string containing transport's class name
1067 * @af: Address family of transport's local address
1068 * @port: transport's IP port number
1070 * Return the transport instance pointer for the endpoint accepting
1071 * connections/peer traffic from the specified transport class,
1072 * address family and port.
1074 * Specifying 0 for the address family or port is effectively a
1075 * wild-card, and will result in matching the first transport in the
1076 * service's list that has a matching class name.
1078 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1079 const sa_family_t af, const unsigned short port)
1081 struct svc_xprt *xprt;
1082 struct svc_xprt *found = NULL;
1084 /* Sanity check the args */
1085 if (serv == NULL || xcl_name == NULL)
1086 return found;
1088 spin_lock_bh(&serv->sv_lock);
1089 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1090 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1091 continue;
1092 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1093 continue;
1094 if (port != 0 && port != svc_xprt_local_port(xprt))
1095 continue;
1096 found = xprt;
1097 svc_xprt_get(xprt);
1098 break;
1100 spin_unlock_bh(&serv->sv_lock);
1101 return found;
1103 EXPORT_SYMBOL_GPL(svc_find_xprt);
1105 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1106 char *pos, int remaining)
1108 int len;
1110 len = snprintf(pos, remaining, "%s %u\n",
1111 xprt->xpt_class->xcl_name,
1112 svc_xprt_local_port(xprt));
1113 if (len >= remaining)
1114 return -ENAMETOOLONG;
1115 return len;
1119 * svc_xprt_names - format a buffer with a list of transport names
1120 * @serv: pointer to an RPC service
1121 * @buf: pointer to a buffer to be filled in
1122 * @buflen: length of buffer to be filled in
1124 * Fills in @buf with a string containing a list of transport names,
1125 * each name terminated with '\n'.
1127 * Returns positive length of the filled-in string on success; otherwise
1128 * a negative errno value is returned if an error occurs.
1130 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1132 struct svc_xprt *xprt;
1133 int len, totlen;
1134 char *pos;
1136 /* Sanity check args */
1137 if (!serv)
1138 return 0;
1140 spin_lock_bh(&serv->sv_lock);
1142 pos = buf;
1143 totlen = 0;
1144 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1145 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1146 if (len < 0) {
1147 *buf = '\0';
1148 totlen = len;
1150 if (len <= 0)
1151 break;
1153 pos += len;
1154 totlen += len;
1157 spin_unlock_bh(&serv->sv_lock);
1158 return totlen;
1160 EXPORT_SYMBOL_GPL(svc_xprt_names);
1163 /*----------------------------------------------------------------------------*/
1165 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1167 unsigned int pidx = (unsigned int)*pos;
1168 struct svc_serv *serv = m->private;
1170 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1172 if (!pidx)
1173 return SEQ_START_TOKEN;
1174 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1177 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1179 struct svc_pool *pool = p;
1180 struct svc_serv *serv = m->private;
1182 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1184 if (p == SEQ_START_TOKEN) {
1185 pool = &serv->sv_pools[0];
1186 } else {
1187 unsigned int pidx = (pool - &serv->sv_pools[0]);
1188 if (pidx < serv->sv_nrpools-1)
1189 pool = &serv->sv_pools[pidx+1];
1190 else
1191 pool = NULL;
1193 ++*pos;
1194 return pool;
1197 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1201 static int svc_pool_stats_show(struct seq_file *m, void *p)
1203 struct svc_pool *pool = p;
1205 if (p == SEQ_START_TOKEN) {
1206 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1207 return 0;
1210 seq_printf(m, "%u %lu %lu %lu %lu\n",
1211 pool->sp_id,
1212 pool->sp_stats.packets,
1213 pool->sp_stats.sockets_queued,
1214 pool->sp_stats.threads_woken,
1215 pool->sp_stats.threads_timedout);
1217 return 0;
1220 static const struct seq_operations svc_pool_stats_seq_ops = {
1221 .start = svc_pool_stats_start,
1222 .next = svc_pool_stats_next,
1223 .stop = svc_pool_stats_stop,
1224 .show = svc_pool_stats_show,
1227 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1229 int err;
1231 err = seq_open(file, &svc_pool_stats_seq_ops);
1232 if (!err)
1233 ((struct seq_file *) file->private_data)->private = serv;
1234 return err;
1236 EXPORT_SYMBOL(svc_pool_stats_open);
1238 /*----------------------------------------------------------------------------*/