GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / net / mac80211 / tx.c
blobcab0d21421d7afce8b18d9d400df444bcafbcbf9
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 * Transmit and frame generation functions.
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
40 /* misc utils */
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
98 return 0;
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
124 if (r->bitrate > txrate->bitrate)
125 break;
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
173 return cpu_to_le16(dur);
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
179 return local == wdev_priv(dev->ieee80211_ptr);
182 /* tx handlers */
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
186 struct ieee80211_local *local = tx->local;
187 struct ieee80211_if_managed *ifmgd;
189 /* driver doesn't support power save */
190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
191 return TX_CONTINUE;
193 /* hardware does dynamic power save */
194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
195 return TX_CONTINUE;
197 /* dynamic power save disabled */
198 if (local->hw.conf.dynamic_ps_timeout <= 0)
199 return TX_CONTINUE;
201 /* we are scanning, don't enable power save */
202 if (local->scanning)
203 return TX_CONTINUE;
205 if (!local->ps_sdata)
206 return TX_CONTINUE;
208 /* No point if we're going to suspend */
209 if (local->quiescing)
210 return TX_CONTINUE;
212 /* dynamic ps is supported only in managed mode */
213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
214 return TX_CONTINUE;
216 ifmgd = &tx->sdata->u.mgd;
218 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
219 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
220 && skb_get_queue_mapping(tx->skb) == 0)
221 return TX_CONTINUE;
223 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
224 ieee80211_stop_queues_by_reason(&local->hw,
225 IEEE80211_QUEUE_STOP_REASON_PS);
226 ieee80211_queue_work(&local->hw,
227 &local->dynamic_ps_disable_work);
230 mod_timer(&local->dynamic_ps_timer, jiffies +
231 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
233 return TX_CONTINUE;
236 static ieee80211_tx_result debug_noinline
237 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
240 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
241 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
242 u32 sta_flags;
244 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
245 return TX_CONTINUE;
247 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
248 !ieee80211_is_probe_req(hdr->frame_control) &&
249 !ieee80211_is_nullfunc(hdr->frame_control))
251 * When software scanning only nullfunc frames (to notify
252 * the sleep state to the AP) and probe requests (for the
253 * active scan) are allowed, all other frames should not be
254 * sent and we should not get here, but if we do
255 * nonetheless, drop them to avoid sending them
256 * off-channel. See the link below and
257 * ieee80211_start_scan() for more.
259 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
261 return TX_DROP;
263 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
264 return TX_CONTINUE;
266 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
267 return TX_CONTINUE;
269 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
271 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
272 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
273 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
274 ieee80211_is_data(hdr->frame_control))) {
275 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
276 printk(KERN_DEBUG "%s: dropped data frame to not "
277 "associated station %pM\n",
278 tx->sdata->name, hdr->addr1);
279 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
280 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
281 return TX_DROP;
283 } else {
284 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
285 tx->local->num_sta == 0 &&
286 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
288 * No associated STAs - no need to send multicast
289 * frames.
291 return TX_DROP;
293 return TX_CONTINUE;
296 return TX_CONTINUE;
299 /* This function is called whenever the AP is about to exceed the maximum limit
300 * of buffered frames for power saving STAs. This situation should not really
301 * happen often during normal operation, so dropping the oldest buffered packet
302 * from each queue should be OK to make some room for new frames. */
303 static void purge_old_ps_buffers(struct ieee80211_local *local)
305 int total = 0, purged = 0;
306 struct sk_buff *skb;
307 struct ieee80211_sub_if_data *sdata;
308 struct sta_info *sta;
311 * virtual interfaces are protected by RCU
313 rcu_read_lock();
315 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
316 struct ieee80211_if_ap *ap;
317 if (sdata->vif.type != NL80211_IFTYPE_AP)
318 continue;
319 ap = &sdata->u.ap;
320 skb = skb_dequeue(&ap->ps_bc_buf);
321 if (skb) {
322 purged++;
323 dev_kfree_skb(skb);
325 total += skb_queue_len(&ap->ps_bc_buf);
328 list_for_each_entry_rcu(sta, &local->sta_list, list) {
329 skb = skb_dequeue(&sta->ps_tx_buf);
330 if (skb) {
331 purged++;
332 dev_kfree_skb(skb);
334 total += skb_queue_len(&sta->ps_tx_buf);
337 rcu_read_unlock();
339 local->total_ps_buffered = total;
340 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
341 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
342 wiphy_name(local->hw.wiphy), purged);
343 #endif
346 static ieee80211_tx_result
347 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
349 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
350 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
353 * broadcast/multicast frame
355 * If any of the associated stations is in power save mode,
356 * the frame is buffered to be sent after DTIM beacon frame.
357 * This is done either by the hardware or us.
360 /* powersaving STAs only in AP/VLAN mode */
361 if (!tx->sdata->bss)
362 return TX_CONTINUE;
364 /* no buffering for ordered frames */
365 if (ieee80211_has_order(hdr->frame_control))
366 return TX_CONTINUE;
368 /* no stations in PS mode */
369 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
370 return TX_CONTINUE;
372 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
374 /* device releases frame after DTIM beacon */
375 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
376 return TX_CONTINUE;
378 /* buffered in mac80211 */
379 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
380 purge_old_ps_buffers(tx->local);
382 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
383 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
384 if (net_ratelimit())
385 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
386 tx->sdata->name);
387 #endif
388 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
389 } else
390 tx->local->total_ps_buffered++;
392 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
394 return TX_QUEUED;
397 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
398 struct sk_buff *skb)
400 if (!ieee80211_is_mgmt(fc))
401 return 0;
403 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
404 return 0;
406 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
407 skb->data))
408 return 0;
410 return 1;
413 static ieee80211_tx_result
414 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
416 struct sta_info *sta = tx->sta;
417 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
418 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
419 struct ieee80211_local *local = tx->local;
420 u32 staflags;
422 if (unlikely(!sta ||
423 ieee80211_is_probe_resp(hdr->frame_control) ||
424 ieee80211_is_auth(hdr->frame_control) ||
425 ieee80211_is_assoc_resp(hdr->frame_control) ||
426 ieee80211_is_reassoc_resp(hdr->frame_control)))
427 return TX_CONTINUE;
429 staflags = get_sta_flags(sta);
431 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
432 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
433 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
434 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
435 "before %d)\n",
436 sta->sta.addr, sta->sta.aid,
437 skb_queue_len(&sta->ps_tx_buf));
438 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
439 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
440 purge_old_ps_buffers(tx->local);
441 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
442 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
443 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
444 if (net_ratelimit()) {
445 printk(KERN_DEBUG "%s: STA %pM TX "
446 "buffer full - dropping oldest frame\n",
447 tx->sdata->name, sta->sta.addr);
449 #endif
450 dev_kfree_skb(old);
451 } else
452 tx->local->total_ps_buffered++;
455 * Queue frame to be sent after STA wakes up/polls,
456 * but don't set the TIM bit if the driver is blocking
457 * wakeup or poll response transmissions anyway.
459 if (skb_queue_empty(&sta->ps_tx_buf) &&
460 !(staflags & WLAN_STA_PS_DRIVER))
461 sta_info_set_tim_bit(sta);
463 info->control.jiffies = jiffies;
464 info->control.vif = &tx->sdata->vif;
465 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
466 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
468 if (!timer_pending(&local->sta_cleanup))
469 mod_timer(&local->sta_cleanup,
470 round_jiffies(jiffies +
471 STA_INFO_CLEANUP_INTERVAL));
473 return TX_QUEUED;
475 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
476 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
477 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
478 "set -> send frame\n", tx->sdata->name,
479 sta->sta.addr);
481 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
483 return TX_CONTINUE;
486 static ieee80211_tx_result debug_noinline
487 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
489 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
490 return TX_CONTINUE;
492 if (tx->flags & IEEE80211_TX_UNICAST)
493 return ieee80211_tx_h_unicast_ps_buf(tx);
494 else
495 return ieee80211_tx_h_multicast_ps_buf(tx);
498 static ieee80211_tx_result debug_noinline
499 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
501 struct ieee80211_key *key = NULL;
502 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
503 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
505 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
506 tx->key = NULL;
507 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
508 tx->key = key;
509 else if (ieee80211_is_mgmt(hdr->frame_control) &&
510 is_multicast_ether_addr(hdr->addr1) &&
511 ieee80211_is_robust_mgmt_frame(hdr) &&
512 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
513 tx->key = key;
514 else if ((key = rcu_dereference(tx->sdata->default_key)))
515 tx->key = key;
516 else if (tx->sdata->drop_unencrypted &&
517 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
518 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
519 (!ieee80211_is_robust_mgmt_frame(hdr) ||
520 (ieee80211_is_action(hdr->frame_control) &&
521 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
522 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
523 return TX_DROP;
524 } else
525 tx->key = NULL;
527 if (tx->key) {
528 bool skip_hw = false;
530 tx->key->tx_rx_count++;
531 /* TODO: add threshold stuff again */
533 switch (tx->key->conf.alg) {
534 case ALG_WEP:
535 if (ieee80211_is_auth(hdr->frame_control))
536 break;
537 case ALG_TKIP:
538 if (!ieee80211_is_data_present(hdr->frame_control))
539 tx->key = NULL;
540 break;
541 case ALG_CCMP:
542 if (!ieee80211_is_data_present(hdr->frame_control) &&
543 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
544 tx->skb))
545 tx->key = NULL;
546 else
547 skip_hw = (tx->key->conf.flags &
548 IEEE80211_KEY_FLAG_SW_MGMT) &&
549 ieee80211_is_mgmt(hdr->frame_control);
550 break;
551 case ALG_AES_CMAC:
552 if (!ieee80211_is_mgmt(hdr->frame_control))
553 tx->key = NULL;
554 break;
557 if (!skip_hw && tx->key &&
558 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
559 info->control.hw_key = &tx->key->conf;
562 return TX_CONTINUE;
565 static ieee80211_tx_result debug_noinline
566 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
568 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
569 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
570 struct ieee80211_supported_band *sband;
571 struct ieee80211_rate *rate;
572 int i;
573 u32 len;
574 bool inval = false, rts = false, short_preamble = false;
575 struct ieee80211_tx_rate_control txrc;
576 u32 sta_flags;
578 memset(&txrc, 0, sizeof(txrc));
580 sband = tx->local->hw.wiphy->bands[tx->channel->band];
582 len = min_t(u32, tx->skb->len + FCS_LEN,
583 tx->local->hw.wiphy->frag_threshold);
585 /* set up the tx rate control struct we give the RC algo */
586 txrc.hw = local_to_hw(tx->local);
587 txrc.sband = sband;
588 txrc.bss_conf = &tx->sdata->vif.bss_conf;
589 txrc.skb = tx->skb;
590 txrc.reported_rate.idx = -1;
591 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
592 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
593 txrc.max_rate_idx = -1;
594 else
595 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
596 txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP;
598 /* set up RTS protection if desired */
599 if (len > tx->local->hw.wiphy->rts_threshold) {
600 txrc.rts = rts = true;
604 * Use short preamble if the BSS can handle it, but not for
605 * management frames unless we know the receiver can handle
606 * that -- the management frame might be to a station that
607 * just wants a probe response.
609 if (tx->sdata->vif.bss_conf.use_short_preamble &&
610 (ieee80211_is_data(hdr->frame_control) ||
611 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
612 txrc.short_preamble = short_preamble = true;
614 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
617 * Lets not bother rate control if we're associated and cannot
618 * talk to the sta. This should not happen.
620 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
621 (sta_flags & WLAN_STA_ASSOC) &&
622 !rate_usable_index_exists(sband, &tx->sta->sta),
623 "%s: Dropped data frame as no usable bitrate found while "
624 "scanning and associated. Target station: "
625 "%pM on %d GHz band\n",
626 tx->sdata->name, hdr->addr1,
627 tx->channel->band ? 5 : 2))
628 return TX_DROP;
631 * If we're associated with the sta at this point we know we can at
632 * least send the frame at the lowest bit rate.
634 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
636 if (unlikely(info->control.rates[0].idx < 0))
637 return TX_DROP;
639 if (txrc.reported_rate.idx < 0)
640 txrc.reported_rate = info->control.rates[0];
642 if (tx->sta)
643 tx->sta->last_tx_rate = txrc.reported_rate;
645 if (unlikely(!info->control.rates[0].count))
646 info->control.rates[0].count = 1;
648 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
649 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
650 info->control.rates[0].count = 1;
652 if (is_multicast_ether_addr(hdr->addr1)) {
653 return TX_CONTINUE;
656 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
657 s8 baserate = 0;
659 rate = &sband->bitrates[info->control.rates[0].idx];
661 for (i = 0; i < sband->n_bitrates; i++) {
662 /* must be a basic rate */
663 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
664 continue;
665 /* must not be faster than the data rate */
666 if (sband->bitrates[i].bitrate > rate->bitrate)
667 continue;
668 /* maximum */
669 if (sband->bitrates[baserate].bitrate <
670 sband->bitrates[i].bitrate)
671 baserate = i;
674 info->control.rts_cts_rate_idx = baserate;
677 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
679 * make sure there's no valid rate following
680 * an invalid one, just in case drivers don't
681 * take the API seriously to stop at -1.
683 if (inval) {
684 info->control.rates[i].idx = -1;
685 continue;
687 if (info->control.rates[i].idx < 0) {
688 inval = true;
689 continue;
693 * For now assume MCS is already set up correctly, this
694 * needs to be fixed.
696 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
697 WARN_ON(info->control.rates[i].idx > 76);
698 continue;
701 /* set up RTS protection if desired */
702 if (rts)
703 info->control.rates[i].flags |=
704 IEEE80211_TX_RC_USE_RTS_CTS;
706 /* RC is busted */
707 if (WARN_ON_ONCE(info->control.rates[i].idx >=
708 sband->n_bitrates)) {
709 info->control.rates[i].idx = -1;
710 continue;
713 rate = &sband->bitrates[info->control.rates[i].idx];
715 /* set up short preamble */
716 if (short_preamble &&
717 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
718 info->control.rates[i].flags |=
719 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
721 /* set up G protection */
722 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
723 rate->flags & IEEE80211_RATE_ERP_G)
724 info->control.rates[i].flags |=
725 IEEE80211_TX_RC_USE_CTS_PROTECT;
728 return TX_CONTINUE;
731 static ieee80211_tx_result debug_noinline
732 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
734 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
735 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
736 u16 *seq;
737 u8 *qc;
738 int tid;
741 * Packet injection may want to control the sequence
742 * number, if we have no matching interface then we
743 * neither assign one ourselves nor ask the driver to.
745 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
746 return TX_CONTINUE;
748 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
749 return TX_CONTINUE;
751 if (ieee80211_hdrlen(hdr->frame_control) < 24)
752 return TX_CONTINUE;
755 * Anything but QoS data that has a sequence number field
756 * (is long enough) gets a sequence number from the global
757 * counter.
759 if (!ieee80211_is_data_qos(hdr->frame_control)) {
760 /* driver should assign sequence number */
761 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
762 /* for pure STA mode without beacons, we can do it */
763 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
764 tx->sdata->sequence_number += 0x10;
765 return TX_CONTINUE;
769 * This should be true for injected/management frames only, for
770 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
771 * above since they are not QoS-data frames.
773 if (!tx->sta)
774 return TX_CONTINUE;
776 /* include per-STA, per-TID sequence counter */
778 qc = ieee80211_get_qos_ctl(hdr);
779 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
780 seq = &tx->sta->tid_seq[tid];
782 hdr->seq_ctrl = cpu_to_le16(*seq);
784 /* Increase the sequence number. */
785 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
787 return TX_CONTINUE;
790 static int ieee80211_fragment(struct ieee80211_local *local,
791 struct sk_buff *skb, int hdrlen,
792 int frag_threshold)
794 struct sk_buff *tail = skb, *tmp;
795 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
796 int pos = hdrlen + per_fragm;
797 int rem = skb->len - hdrlen - per_fragm;
799 if (WARN_ON(rem < 0))
800 return -EINVAL;
802 while (rem) {
803 int fraglen = per_fragm;
805 if (fraglen > rem)
806 fraglen = rem;
807 rem -= fraglen;
808 tmp = dev_alloc_skb(local->tx_headroom +
809 frag_threshold +
810 IEEE80211_ENCRYPT_HEADROOM +
811 IEEE80211_ENCRYPT_TAILROOM);
812 if (!tmp)
813 return -ENOMEM;
814 tail->next = tmp;
815 tail = tmp;
816 skb_reserve(tmp, local->tx_headroom +
817 IEEE80211_ENCRYPT_HEADROOM);
818 /* copy control information */
819 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
820 skb_copy_queue_mapping(tmp, skb);
821 tmp->priority = skb->priority;
822 tmp->dev = skb->dev;
824 /* copy header and data */
825 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
826 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
828 pos += fraglen;
831 skb->len = hdrlen + per_fragm;
832 return 0;
835 static ieee80211_tx_result debug_noinline
836 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
838 struct sk_buff *skb = tx->skb;
839 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
840 struct ieee80211_hdr *hdr = (void *)skb->data;
841 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
842 int hdrlen;
843 int fragnum;
845 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
846 return TX_CONTINUE;
849 * Warn when submitting a fragmented A-MPDU frame and drop it.
850 * This scenario is handled in ieee80211_tx_prepare but extra
851 * caution taken here as fragmented ampdu may cause Tx stop.
853 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
854 return TX_DROP;
856 hdrlen = ieee80211_hdrlen(hdr->frame_control);
858 /* internal error, why is TX_FRAGMENTED set? */
859 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
860 return TX_DROP;
863 * Now fragment the frame. This will allocate all the fragments and
864 * chain them (using skb as the first fragment) to skb->next.
865 * During transmission, we will remove the successfully transmitted
866 * fragments from this list. When the low-level driver rejects one
867 * of the fragments then we will simply pretend to accept the skb
868 * but store it away as pending.
870 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
871 return TX_DROP;
873 /* update duration/seq/flags of fragments */
874 fragnum = 0;
875 do {
876 int next_len;
877 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
879 hdr = (void *)skb->data;
880 info = IEEE80211_SKB_CB(skb);
882 if (skb->next) {
883 hdr->frame_control |= morefrags;
884 next_len = skb->next->len;
886 * No multi-rate retries for fragmented frames, that
887 * would completely throw off the NAV at other STAs.
889 info->control.rates[1].idx = -1;
890 info->control.rates[2].idx = -1;
891 info->control.rates[3].idx = -1;
892 info->control.rates[4].idx = -1;
893 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
894 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
895 } else {
896 hdr->frame_control &= ~morefrags;
897 next_len = 0;
899 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
900 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
901 fragnum++;
902 } while ((skb = skb->next));
904 return TX_CONTINUE;
907 static ieee80211_tx_result debug_noinline
908 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
910 struct sk_buff *skb = tx->skb;
912 if (!tx->sta)
913 return TX_CONTINUE;
915 tx->sta->tx_packets++;
916 do {
917 tx->sta->tx_fragments++;
918 tx->sta->tx_bytes += skb->len;
919 } while ((skb = skb->next));
921 return TX_CONTINUE;
924 static ieee80211_tx_result debug_noinline
925 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
927 if (!tx->key)
928 return TX_CONTINUE;
930 switch (tx->key->conf.alg) {
931 case ALG_WEP:
932 return ieee80211_crypto_wep_encrypt(tx);
933 case ALG_TKIP:
934 return ieee80211_crypto_tkip_encrypt(tx);
935 case ALG_CCMP:
936 return ieee80211_crypto_ccmp_encrypt(tx);
937 case ALG_AES_CMAC:
938 return ieee80211_crypto_aes_cmac_encrypt(tx);
941 /* not reached */
942 WARN_ON(1);
943 return TX_DROP;
946 static ieee80211_tx_result debug_noinline
947 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
949 struct sk_buff *skb = tx->skb;
950 struct ieee80211_hdr *hdr;
951 int next_len;
952 bool group_addr;
954 do {
955 hdr = (void *) skb->data;
956 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
957 break; /* must not overwrite AID */
958 next_len = skb->next ? skb->next->len : 0;
959 group_addr = is_multicast_ether_addr(hdr->addr1);
961 hdr->duration_id =
962 ieee80211_duration(tx, group_addr, next_len);
963 } while ((skb = skb->next));
965 return TX_CONTINUE;
968 /* actual transmit path */
971 * deal with packet injection down monitor interface
972 * with Radiotap Header -- only called for monitor mode interface
974 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
975 struct sk_buff *skb)
978 * this is the moment to interpret and discard the radiotap header that
979 * must be at the start of the packet injected in Monitor mode
981 * Need to take some care with endian-ness since radiotap
982 * args are little-endian
985 struct ieee80211_radiotap_iterator iterator;
986 struct ieee80211_radiotap_header *rthdr =
987 (struct ieee80211_radiotap_header *) skb->data;
988 struct ieee80211_supported_band *sband;
989 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
990 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
991 NULL);
993 sband = tx->local->hw.wiphy->bands[tx->channel->band];
995 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
996 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
999 * for every radiotap entry that is present
1000 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1001 * entries present, or -EINVAL on error)
1004 while (!ret) {
1005 ret = ieee80211_radiotap_iterator_next(&iterator);
1007 if (ret)
1008 continue;
1010 /* see if this argument is something we can use */
1011 switch (iterator.this_arg_index) {
1013 * You must take care when dereferencing iterator.this_arg
1014 * for multibyte types... the pointer is not aligned. Use
1015 * get_unaligned((type *)iterator.this_arg) to dereference
1016 * iterator.this_arg for type "type" safely on all arches.
1018 case IEEE80211_RADIOTAP_FLAGS:
1019 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1021 * this indicates that the skb we have been
1022 * handed has the 32-bit FCS CRC at the end...
1023 * we should react to that by snipping it off
1024 * because it will be recomputed and added
1025 * on transmission
1027 if (skb->len < (iterator._max_length + FCS_LEN))
1028 return false;
1030 skb_trim(skb, skb->len - FCS_LEN);
1032 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1033 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1034 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
1035 tx->flags |= IEEE80211_TX_FRAGMENTED;
1036 break;
1039 * Please update the file
1040 * Documentation/networking/mac80211-injection.txt
1041 * when parsing new fields here.
1044 default:
1045 break;
1049 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1050 return false;
1053 * remove the radiotap header
1054 * iterator->_max_length was sanity-checked against
1055 * skb->len by iterator init
1057 skb_pull(skb, iterator._max_length);
1059 return true;
1062 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx,
1063 struct sk_buff *skb,
1064 struct ieee80211_tx_info *info,
1065 struct tid_ampdu_tx *tid_tx,
1066 int tid)
1068 bool queued = false;
1070 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1071 info->flags |= IEEE80211_TX_CTL_AMPDU;
1072 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) {
1074 * nothing -- this aggregation session is being started
1075 * but that might still fail with the driver
1077 } else {
1078 spin_lock(&tx->sta->lock);
1080 * Need to re-check now, because we may get here
1082 * 1) in the window during which the setup is actually
1083 * already done, but not marked yet because not all
1084 * packets are spliced over to the driver pending
1085 * queue yet -- if this happened we acquire the lock
1086 * either before or after the splice happens, but
1087 * need to recheck which of these cases happened.
1089 * 2) during session teardown, if the OPERATIONAL bit
1090 * was cleared due to the teardown but the pointer
1091 * hasn't been assigned NULL yet (or we loaded it
1092 * before it was assigned) -- in this case it may
1093 * now be NULL which means we should just let the
1094 * packet pass through because splicing the frames
1095 * back is already done.
1097 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1099 if (!tid_tx) {
1100 /* do nothing, let packet pass through */
1101 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1102 info->flags |= IEEE80211_TX_CTL_AMPDU;
1103 } else {
1104 queued = true;
1105 info->control.vif = &tx->sdata->vif;
1106 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1107 __skb_queue_tail(&tid_tx->pending, skb);
1109 spin_unlock(&tx->sta->lock);
1112 return queued;
1116 * initialises @tx
1118 static ieee80211_tx_result
1119 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1120 struct ieee80211_tx_data *tx,
1121 struct sk_buff *skb)
1123 struct ieee80211_local *local = sdata->local;
1124 struct ieee80211_hdr *hdr;
1125 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1126 int hdrlen, tid;
1127 u8 *qc;
1129 memset(tx, 0, sizeof(*tx));
1130 tx->skb = skb;
1131 tx->local = local;
1132 tx->sdata = sdata;
1133 tx->channel = local->hw.conf.channel;
1135 * Set this flag (used below to indicate "automatic fragmentation"),
1136 * it will be cleared/left by radiotap as desired.
1138 tx->flags |= IEEE80211_TX_FRAGMENTED;
1140 /* process and remove the injection radiotap header */
1141 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
1142 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1143 return TX_DROP;
1146 * __ieee80211_parse_tx_radiotap has now removed
1147 * the radiotap header that was present and pre-filled
1148 * 'tx' with tx control information.
1150 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
1154 * If this flag is set to true anywhere, and we get here,
1155 * we are doing the needed processing, so remove the flag
1156 * now.
1158 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1160 hdr = (struct ieee80211_hdr *) skb->data;
1162 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1163 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1164 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1165 return TX_DROP;
1166 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1167 tx->sta = sta_info_get_bss(sdata, hdr->addr1);
1169 if (!tx->sta)
1170 tx->sta = sta_info_get(sdata, hdr->addr1);
1172 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1173 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1174 struct tid_ampdu_tx *tid_tx;
1176 qc = ieee80211_get_qos_ctl(hdr);
1177 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1179 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]);
1180 if (tid_tx) {
1181 bool queued;
1183 queued = ieee80211_tx_prep_agg(tx, skb, info,
1184 tid_tx, tid);
1186 if (unlikely(queued))
1187 return TX_QUEUED;
1191 if (is_multicast_ether_addr(hdr->addr1)) {
1192 tx->flags &= ~IEEE80211_TX_UNICAST;
1193 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1194 } else {
1195 tx->flags |= IEEE80211_TX_UNICAST;
1196 if (unlikely(local->wifi_wme_noack_test))
1197 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1198 else
1199 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1202 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1203 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1204 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1205 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1206 tx->flags |= IEEE80211_TX_FRAGMENTED;
1207 else
1208 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1211 if (!tx->sta)
1212 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1213 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1214 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1216 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1217 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1218 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1219 tx->ethertype = (pos[0] << 8) | pos[1];
1221 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1223 return TX_CONTINUE;
1226 static int __ieee80211_tx(struct ieee80211_local *local,
1227 struct sk_buff **skbp,
1228 struct sta_info *sta,
1229 bool txpending)
1231 struct sk_buff *skb = *skbp, *next;
1232 struct ieee80211_tx_info *info;
1233 struct ieee80211_sub_if_data *sdata;
1234 unsigned long flags;
1235 int ret, len;
1236 bool fragm = false;
1238 while (skb) {
1239 int q = skb_get_queue_mapping(skb);
1241 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1242 ret = IEEE80211_TX_OK;
1243 if (local->queue_stop_reasons[q] ||
1244 (!txpending && !skb_queue_empty(&local->pending[q])))
1245 ret = IEEE80211_TX_PENDING;
1246 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1247 if (ret != IEEE80211_TX_OK)
1248 return ret;
1250 info = IEEE80211_SKB_CB(skb);
1252 if (fragm)
1253 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1254 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1256 next = skb->next;
1257 len = skb->len;
1259 if (next)
1260 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1262 sdata = vif_to_sdata(info->control.vif);
1264 switch (sdata->vif.type) {
1265 case NL80211_IFTYPE_MONITOR:
1266 info->control.vif = NULL;
1267 break;
1268 case NL80211_IFTYPE_AP_VLAN:
1269 info->control.vif = &container_of(sdata->bss,
1270 struct ieee80211_sub_if_data, u.ap)->vif;
1271 break;
1272 default:
1273 /* keep */
1274 break;
1277 if (sta && sta->uploaded)
1278 info->control.sta = &sta->sta;
1279 else
1280 info->control.sta = NULL;
1282 ret = drv_tx(local, skb);
1283 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1284 dev_kfree_skb(skb);
1285 ret = NETDEV_TX_OK;
1287 if (ret != NETDEV_TX_OK) {
1288 info->control.vif = &sdata->vif;
1289 return IEEE80211_TX_AGAIN;
1292 *skbp = skb = next;
1293 ieee80211_led_tx(local, 1);
1294 fragm = true;
1297 return IEEE80211_TX_OK;
1301 * Invoke TX handlers, return 0 on success and non-zero if the
1302 * frame was dropped or queued.
1304 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1306 struct sk_buff *skb = tx->skb;
1307 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1308 ieee80211_tx_result res = TX_DROP;
1310 #define CALL_TXH(txh) \
1311 do { \
1312 res = txh(tx); \
1313 if (res != TX_CONTINUE) \
1314 goto txh_done; \
1315 } while (0)
1317 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1318 CALL_TXH(ieee80211_tx_h_check_assoc);
1319 CALL_TXH(ieee80211_tx_h_ps_buf);
1320 CALL_TXH(ieee80211_tx_h_select_key);
1321 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1322 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1324 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1325 goto txh_done;
1327 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1328 CALL_TXH(ieee80211_tx_h_sequence);
1329 CALL_TXH(ieee80211_tx_h_fragment);
1330 /* handlers after fragment must be aware of tx info fragmentation! */
1331 CALL_TXH(ieee80211_tx_h_stats);
1332 CALL_TXH(ieee80211_tx_h_encrypt);
1333 CALL_TXH(ieee80211_tx_h_calculate_duration);
1334 #undef CALL_TXH
1336 txh_done:
1337 if (unlikely(res == TX_DROP)) {
1338 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1339 while (skb) {
1340 struct sk_buff *next;
1342 next = skb->next;
1343 dev_kfree_skb(skb);
1344 skb = next;
1346 return -1;
1347 } else if (unlikely(res == TX_QUEUED)) {
1348 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1349 return -1;
1352 return 0;
1355 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1356 struct sk_buff *skb, bool txpending)
1358 struct ieee80211_local *local = sdata->local;
1359 struct ieee80211_tx_data tx;
1360 ieee80211_tx_result res_prepare;
1361 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1362 struct sk_buff *next;
1363 unsigned long flags;
1364 int ret, retries;
1365 u16 queue;
1367 queue = skb_get_queue_mapping(skb);
1369 if (unlikely(skb->len < 10)) {
1370 dev_kfree_skb(skb);
1371 return;
1374 rcu_read_lock();
1376 /* initialises tx */
1377 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1379 if (unlikely(res_prepare == TX_DROP)) {
1380 dev_kfree_skb(skb);
1381 rcu_read_unlock();
1382 return;
1383 } else if (unlikely(res_prepare == TX_QUEUED)) {
1384 rcu_read_unlock();
1385 return;
1388 tx.channel = local->hw.conf.channel;
1389 info->band = tx.channel->band;
1391 if (invoke_tx_handlers(&tx))
1392 goto out;
1394 retries = 0;
1395 retry:
1396 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1397 switch (ret) {
1398 case IEEE80211_TX_OK:
1399 break;
1400 case IEEE80211_TX_AGAIN:
1402 * Since there are no fragmented frames on A-MPDU
1403 * queues, there's no reason for a driver to reject
1404 * a frame there, warn and drop it.
1406 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1407 goto drop;
1408 /* fall through */
1409 case IEEE80211_TX_PENDING:
1410 skb = tx.skb;
1412 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1414 if (local->queue_stop_reasons[queue] ||
1415 !skb_queue_empty(&local->pending[queue])) {
1417 * if queue is stopped, queue up frames for later
1418 * transmission from the tasklet
1420 do {
1421 next = skb->next;
1422 skb->next = NULL;
1423 if (unlikely(txpending))
1424 __skb_queue_head(&local->pending[queue],
1425 skb);
1426 else
1427 __skb_queue_tail(&local->pending[queue],
1428 skb);
1429 } while ((skb = next));
1431 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1432 flags);
1433 } else {
1435 * otherwise retry, but this is a race condition or
1436 * a driver bug (which we warn about if it persists)
1438 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1439 flags);
1441 retries++;
1442 if (WARN(retries > 10, "tx refused but queue active\n"))
1443 goto drop;
1444 goto retry;
1447 out:
1448 rcu_read_unlock();
1449 return;
1451 drop:
1452 rcu_read_unlock();
1454 skb = tx.skb;
1455 while (skb) {
1456 next = skb->next;
1457 dev_kfree_skb(skb);
1458 skb = next;
1462 /* device xmit handlers */
1464 static int ieee80211_skb_resize(struct ieee80211_local *local,
1465 struct sk_buff *skb,
1466 int head_need, bool may_encrypt)
1468 int tail_need = 0;
1471 * This could be optimised, devices that do full hardware
1472 * crypto (including TKIP MMIC) need no tailroom... But we
1473 * have no drivers for such devices currently.
1475 if (may_encrypt) {
1476 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1477 tail_need -= skb_tailroom(skb);
1478 tail_need = max_t(int, tail_need, 0);
1481 if (head_need || tail_need) {
1482 /* Sorry. Can't account for this any more */
1483 skb_orphan(skb);
1486 if (skb_header_cloned(skb))
1487 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1488 else
1489 I802_DEBUG_INC(local->tx_expand_skb_head);
1491 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1492 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1493 wiphy_name(local->hw.wiphy));
1494 return -ENOMEM;
1497 /* update truesize too */
1498 skb->truesize += head_need + tail_need;
1500 return 0;
1503 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1504 struct sk_buff *skb)
1506 struct ieee80211_local *local = sdata->local;
1507 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1508 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1509 struct ieee80211_sub_if_data *tmp_sdata;
1510 int headroom;
1511 bool may_encrypt;
1513 rcu_read_lock();
1515 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1516 int hdrlen;
1517 u16 len_rthdr;
1519 info->flags |= IEEE80211_TX_CTL_INJECTED |
1520 IEEE80211_TX_INTFL_HAS_RADIOTAP;
1522 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1523 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1524 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1526 /* check the header is complete in the frame */
1527 if (likely(skb->len >= len_rthdr + hdrlen)) {
1529 * We process outgoing injected frames that have a
1530 * local address we handle as though they are our
1531 * own frames.
1532 * This code here isn't entirely correct, the local
1533 * MAC address is not necessarily enough to find
1534 * the interface to use; for that proper VLAN/WDS
1535 * support we will need a different mechanism.
1538 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1539 list) {
1540 if (!ieee80211_sdata_running(tmp_sdata))
1541 continue;
1542 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1543 continue;
1544 if (compare_ether_addr(tmp_sdata->vif.addr,
1545 hdr->addr2) == 0) {
1546 sdata = tmp_sdata;
1547 break;
1553 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1555 headroom = local->tx_headroom;
1556 if (may_encrypt)
1557 headroom += IEEE80211_ENCRYPT_HEADROOM;
1558 headroom -= skb_headroom(skb);
1559 headroom = max_t(int, 0, headroom);
1561 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1562 dev_kfree_skb(skb);
1563 rcu_read_unlock();
1564 return;
1567 info->control.vif = &sdata->vif;
1569 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1570 ieee80211_is_data(hdr->frame_control) &&
1571 !is_multicast_ether_addr(hdr->addr1))
1572 if (mesh_nexthop_lookup(skb, sdata)) {
1573 /* skb queued: don't free */
1574 rcu_read_unlock();
1575 return;
1578 ieee80211_set_qos_hdr(local, skb);
1579 ieee80211_tx(sdata, skb, false);
1580 rcu_read_unlock();
1583 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1584 struct net_device *dev)
1586 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1587 struct ieee80211_channel *chan = local->hw.conf.channel;
1588 struct ieee80211_radiotap_header *prthdr =
1589 (struct ieee80211_radiotap_header *)skb->data;
1590 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1591 u16 len_rthdr;
1594 * Frame injection is not allowed if beaconing is not allowed
1595 * or if we need radar detection. Beaconing is usually not allowed when
1596 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1597 * Passive scan is also used in world regulatory domains where
1598 * your country is not known and as such it should be treated as
1599 * NO TX unless the channel is explicitly allowed in which case
1600 * your current regulatory domain would not have the passive scan
1601 * flag.
1603 * Since AP mode uses monitor interfaces to inject/TX management
1604 * frames we can make AP mode the exception to this rule once it
1605 * supports radar detection as its implementation can deal with
1606 * radar detection by itself. We can do that later by adding a
1607 * monitor flag interfaces used for AP support.
1609 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1610 IEEE80211_CHAN_PASSIVE_SCAN)))
1611 goto fail;
1613 /* check for not even having the fixed radiotap header part */
1614 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1615 goto fail; /* too short to be possibly valid */
1617 /* is it a header version we can trust to find length from? */
1618 if (unlikely(prthdr->it_version))
1619 goto fail; /* only version 0 is supported */
1621 /* then there must be a radiotap header with a length we can use */
1622 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1624 /* does the skb contain enough to deliver on the alleged length? */
1625 if (unlikely(skb->len < len_rthdr))
1626 goto fail; /* skb too short for claimed rt header extent */
1629 * fix up the pointers accounting for the radiotap
1630 * header still being in there. We are being given
1631 * a precooked IEEE80211 header so no need for
1632 * normal processing
1634 skb_set_mac_header(skb, len_rthdr);
1636 * these are just fixed to the end of the rt area since we
1637 * don't have any better information and at this point, nobody cares
1639 skb_set_network_header(skb, len_rthdr);
1640 skb_set_transport_header(skb, len_rthdr);
1642 memset(info, 0, sizeof(*info));
1644 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1646 /* pass the radiotap header up to xmit */
1647 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1648 return NETDEV_TX_OK;
1650 fail:
1651 dev_kfree_skb(skb);
1652 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1656 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1657 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1658 * @skb: packet to be sent
1659 * @dev: incoming interface
1661 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1662 * not be freed, and caller is responsible for either retrying later or freeing
1663 * skb).
1665 * This function takes in an Ethernet header and encapsulates it with suitable
1666 * IEEE 802.11 header based on which interface the packet is coming in. The
1667 * encapsulated packet will then be passed to master interface, wlan#.11, for
1668 * transmission (through low-level driver).
1670 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1671 struct net_device *dev)
1673 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1674 struct ieee80211_local *local = sdata->local;
1675 struct ieee80211_tx_info *info;
1676 int ret = NETDEV_TX_BUSY, head_need;
1677 u16 ethertype, hdrlen, meshhdrlen = 0;
1678 __le16 fc;
1679 struct ieee80211_hdr hdr;
1680 struct ieee80211s_hdr mesh_hdr;
1681 const u8 *encaps_data;
1682 int encaps_len, skip_header_bytes;
1683 int nh_pos, h_pos;
1684 struct sta_info *sta = NULL;
1685 u32 sta_flags = 0;
1686 struct sk_buff *tmp_skb;
1688 if (unlikely(skb->len < ETH_HLEN)) {
1689 ret = NETDEV_TX_OK;
1690 goto fail;
1693 /* convert Ethernet header to proper 802.11 header (based on
1694 * operation mode) */
1695 ethertype = (skb->data[12] << 8) | skb->data[13];
1696 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1698 switch (sdata->vif.type) {
1699 case NL80211_IFTYPE_AP_VLAN:
1700 rcu_read_lock();
1701 sta = rcu_dereference(sdata->u.vlan.sta);
1702 if (sta) {
1703 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1704 /* RA TA DA SA */
1705 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1706 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1707 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1708 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1709 hdrlen = 30;
1710 sta_flags = get_sta_flags(sta);
1712 rcu_read_unlock();
1713 if (sta)
1714 break;
1715 /* fall through */
1716 case NL80211_IFTYPE_AP:
1717 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1718 /* DA BSSID SA */
1719 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1720 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1721 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1722 hdrlen = 24;
1723 break;
1724 case NL80211_IFTYPE_WDS:
1725 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1726 /* RA TA DA SA */
1727 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1728 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1729 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1730 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1731 hdrlen = 30;
1732 break;
1733 #ifdef CONFIG_MAC80211_MESH
1734 case NL80211_IFTYPE_MESH_POINT:
1735 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1736 /* Do not send frames with mesh_ttl == 0 */
1737 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1738 ret = NETDEV_TX_OK;
1739 goto fail;
1742 if (compare_ether_addr(sdata->vif.addr,
1743 skb->data + ETH_ALEN) == 0) {
1744 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1745 skb->data, skb->data + ETH_ALEN);
1746 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1747 sdata, NULL, NULL, NULL);
1748 } else {
1749 /* packet from other interface */
1750 struct mesh_path *mppath;
1751 int is_mesh_mcast = 1;
1752 const u8 *mesh_da;
1754 rcu_read_lock();
1755 if (is_multicast_ether_addr(skb->data))
1756 /* DA TA mSA AE:SA */
1757 mesh_da = skb->data;
1758 else {
1759 static const u8 bcast[ETH_ALEN] =
1760 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1762 mppath = mpp_path_lookup(skb->data, sdata);
1763 if (mppath) {
1764 /* RA TA mDA mSA AE:DA SA */
1765 mesh_da = mppath->mpp;
1766 is_mesh_mcast = 0;
1767 } else {
1768 /* DA TA mSA AE:SA */
1769 mesh_da = bcast;
1772 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1773 mesh_da, sdata->vif.addr);
1774 rcu_read_unlock();
1775 if (is_mesh_mcast)
1776 meshhdrlen =
1777 ieee80211_new_mesh_header(&mesh_hdr,
1778 sdata,
1779 skb->data + ETH_ALEN,
1780 NULL,
1781 NULL);
1782 else
1783 meshhdrlen =
1784 ieee80211_new_mesh_header(&mesh_hdr,
1785 sdata,
1786 NULL,
1787 skb->data,
1788 skb->data + ETH_ALEN);
1791 break;
1792 #endif
1793 case NL80211_IFTYPE_STATION:
1794 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1795 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) {
1796 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1797 /* RA TA DA SA */
1798 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1799 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1800 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1801 hdrlen = 30;
1802 } else {
1803 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1804 /* BSSID SA DA */
1805 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1806 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1807 hdrlen = 24;
1809 break;
1810 case NL80211_IFTYPE_ADHOC:
1811 /* DA SA BSSID */
1812 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1813 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1814 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1815 hdrlen = 24;
1816 break;
1817 default:
1818 ret = NETDEV_TX_OK;
1819 goto fail;
1823 * There's no need to try to look up the destination
1824 * if it is a multicast address (which can only happen
1825 * in AP mode)
1827 if (!is_multicast_ether_addr(hdr.addr1)) {
1828 rcu_read_lock();
1829 sta = sta_info_get(sdata, hdr.addr1);
1830 if (sta)
1831 sta_flags = get_sta_flags(sta);
1832 rcu_read_unlock();
1835 /* receiver and we are QoS enabled, use a QoS type frame */
1836 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1837 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1838 hdrlen += 2;
1842 * Drop unicast frames to unauthorised stations unless they are
1843 * EAPOL frames from the local station.
1845 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1846 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1847 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1848 !(ethertype == ETH_P_PAE &&
1849 compare_ether_addr(sdata->vif.addr,
1850 skb->data + ETH_ALEN) == 0))) {
1851 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1852 if (net_ratelimit())
1853 printk(KERN_DEBUG "%s: dropped frame to %pM"
1854 " (unauthorized port)\n", dev->name,
1855 hdr.addr1);
1856 #endif
1858 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1860 ret = NETDEV_TX_OK;
1861 goto fail;
1865 * If the skb is shared we need to obtain our own copy.
1867 if (skb_shared(skb)) {
1868 tmp_skb = skb;
1869 skb = skb_copy(skb, GFP_ATOMIC);
1870 kfree_skb(tmp_skb);
1872 if (!skb) {
1873 ret = NETDEV_TX_OK;
1874 goto fail;
1878 hdr.frame_control = fc;
1879 hdr.duration_id = 0;
1880 hdr.seq_ctrl = 0;
1882 skip_header_bytes = ETH_HLEN;
1883 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1884 encaps_data = bridge_tunnel_header;
1885 encaps_len = sizeof(bridge_tunnel_header);
1886 skip_header_bytes -= 2;
1887 } else if (ethertype >= 0x600) {
1888 encaps_data = rfc1042_header;
1889 encaps_len = sizeof(rfc1042_header);
1890 skip_header_bytes -= 2;
1891 } else {
1892 encaps_data = NULL;
1893 encaps_len = 0;
1896 nh_pos = skb_network_header(skb) - skb->data;
1897 h_pos = skb_transport_header(skb) - skb->data;
1899 skb_pull(skb, skip_header_bytes);
1900 nh_pos -= skip_header_bytes;
1901 h_pos -= skip_header_bytes;
1903 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1906 * So we need to modify the skb header and hence need a copy of
1907 * that. The head_need variable above doesn't, so far, include
1908 * the needed header space that we don't need right away. If we
1909 * can, then we don't reallocate right now but only after the
1910 * frame arrives at the master device (if it does...)
1912 * If we cannot, however, then we will reallocate to include all
1913 * the ever needed space. Also, if we need to reallocate it anyway,
1914 * make it big enough for everything we may ever need.
1917 if (head_need > 0 || skb_cloned(skb)) {
1918 head_need += IEEE80211_ENCRYPT_HEADROOM;
1919 head_need += local->tx_headroom;
1920 head_need = max_t(int, 0, head_need);
1921 if (ieee80211_skb_resize(local, skb, head_need, true))
1922 goto fail;
1925 if (encaps_data) {
1926 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1927 nh_pos += encaps_len;
1928 h_pos += encaps_len;
1931 #ifdef CONFIG_MAC80211_MESH
1932 if (meshhdrlen > 0) {
1933 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1934 nh_pos += meshhdrlen;
1935 h_pos += meshhdrlen;
1937 #endif
1939 if (ieee80211_is_data_qos(fc)) {
1940 __le16 *qos_control;
1942 qos_control = (__le16*) skb_push(skb, 2);
1943 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1945 * Maybe we could actually set some fields here, for now just
1946 * initialise to zero to indicate no special operation.
1948 *qos_control = 0;
1949 } else
1950 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1952 nh_pos += hdrlen;
1953 h_pos += hdrlen;
1955 dev->stats.tx_packets++;
1956 dev->stats.tx_bytes += skb->len;
1958 /* Update skb pointers to various headers since this modified frame
1959 * is going to go through Linux networking code that may potentially
1960 * need things like pointer to IP header. */
1961 skb_set_mac_header(skb, 0);
1962 skb_set_network_header(skb, nh_pos);
1963 skb_set_transport_header(skb, h_pos);
1965 info = IEEE80211_SKB_CB(skb);
1966 memset(info, 0, sizeof(*info));
1968 dev->trans_start = jiffies;
1969 ieee80211_xmit(sdata, skb);
1971 return NETDEV_TX_OK;
1973 fail:
1974 if (ret == NETDEV_TX_OK)
1975 dev_kfree_skb(skb);
1977 return ret;
1982 * ieee80211_clear_tx_pending may not be called in a context where
1983 * it is possible that it packets could come in again.
1985 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1987 int i;
1989 for (i = 0; i < local->hw.queues; i++)
1990 skb_queue_purge(&local->pending[i]);
1993 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1994 struct sk_buff *skb)
1996 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1997 struct ieee80211_sub_if_data *sdata;
1998 struct sta_info *sta;
1999 struct ieee80211_hdr *hdr;
2000 int ret;
2001 bool result = true;
2003 sdata = vif_to_sdata(info->control.vif);
2005 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
2006 ieee80211_tx(sdata, skb, true);
2007 } else {
2008 hdr = (struct ieee80211_hdr *)skb->data;
2009 sta = sta_info_get(sdata, hdr->addr1);
2011 ret = __ieee80211_tx(local, &skb, sta, true);
2012 if (ret != IEEE80211_TX_OK)
2013 result = false;
2016 return result;
2020 * Transmit all pending packets. Called from tasklet.
2022 void ieee80211_tx_pending(unsigned long data)
2024 struct ieee80211_local *local = (struct ieee80211_local *)data;
2025 struct ieee80211_sub_if_data *sdata;
2026 unsigned long flags;
2027 int i;
2028 bool txok;
2030 rcu_read_lock();
2032 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
2033 for (i = 0; i < local->hw.queues; i++) {
2035 * If queue is stopped by something other than due to pending
2036 * frames, or we have no pending frames, proceed to next queue.
2038 if (local->queue_stop_reasons[i] ||
2039 skb_queue_empty(&local->pending[i]))
2040 continue;
2042 while (!skb_queue_empty(&local->pending[i])) {
2043 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2044 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2046 if (WARN_ON(!info->control.vif)) {
2047 kfree_skb(skb);
2048 continue;
2051 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2052 flags);
2054 txok = ieee80211_tx_pending_skb(local, skb);
2055 if (!txok)
2056 __skb_queue_head(&local->pending[i], skb);
2057 spin_lock_irqsave(&local->queue_stop_reason_lock,
2058 flags);
2059 if (!txok)
2060 break;
2063 if (skb_queue_empty(&local->pending[i]))
2064 list_for_each_entry_rcu(sdata, &local->interfaces, list)
2065 netif_tx_wake_queue(
2066 netdev_get_tx_queue(sdata->dev, i));
2068 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2070 rcu_read_unlock();
2073 /* functions for drivers to get certain frames */
2075 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2076 struct sk_buff *skb,
2077 struct beacon_data *beacon)
2079 u8 *pos, *tim;
2080 int aid0 = 0;
2081 int i, have_bits = 0, n1, n2;
2083 /* Generate bitmap for TIM only if there are any STAs in power save
2084 * mode. */
2085 if (atomic_read(&bss->num_sta_ps) > 0)
2086 /* in the hope that this is faster than
2087 * checking byte-for-byte */
2088 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2089 IEEE80211_MAX_AID+1);
2091 if (bss->dtim_count == 0)
2092 bss->dtim_count = beacon->dtim_period - 1;
2093 else
2094 bss->dtim_count--;
2096 tim = pos = (u8 *) skb_put(skb, 6);
2097 *pos++ = WLAN_EID_TIM;
2098 *pos++ = 4;
2099 *pos++ = bss->dtim_count;
2100 *pos++ = beacon->dtim_period;
2102 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2103 aid0 = 1;
2105 if (have_bits) {
2106 /* Find largest even number N1 so that bits numbered 1 through
2107 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2108 * (N2 + 1) x 8 through 2007 are 0. */
2109 n1 = 0;
2110 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2111 if (bss->tim[i]) {
2112 n1 = i & 0xfe;
2113 break;
2116 n2 = n1;
2117 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2118 if (bss->tim[i]) {
2119 n2 = i;
2120 break;
2124 /* Bitmap control */
2125 *pos++ = n1 | aid0;
2126 /* Part Virt Bitmap */
2127 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2129 tim[1] = n2 - n1 + 4;
2130 skb_put(skb, n2 - n1);
2131 } else {
2132 *pos++ = aid0; /* Bitmap control */
2133 *pos++ = 0; /* Part Virt Bitmap */
2137 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2138 struct ieee80211_vif *vif,
2139 u16 *tim_offset, u16 *tim_length)
2141 struct ieee80211_local *local = hw_to_local(hw);
2142 struct sk_buff *skb = NULL;
2143 struct ieee80211_tx_info *info;
2144 struct ieee80211_sub_if_data *sdata = NULL;
2145 struct ieee80211_if_ap *ap = NULL;
2146 struct beacon_data *beacon;
2147 struct ieee80211_supported_band *sband;
2148 enum ieee80211_band band = local->hw.conf.channel->band;
2149 struct ieee80211_tx_rate_control txrc;
2151 sband = local->hw.wiphy->bands[band];
2153 rcu_read_lock();
2155 sdata = vif_to_sdata(vif);
2157 if (!ieee80211_sdata_running(sdata))
2158 goto out;
2160 if (tim_offset)
2161 *tim_offset = 0;
2162 if (tim_length)
2163 *tim_length = 0;
2165 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2166 ap = &sdata->u.ap;
2167 beacon = rcu_dereference(ap->beacon);
2168 if (ap && beacon) {
2170 * headroom, head length,
2171 * tail length and maximum TIM length
2173 skb = dev_alloc_skb(local->tx_headroom +
2174 beacon->head_len +
2175 beacon->tail_len + 256);
2176 if (!skb)
2177 goto out;
2179 skb_reserve(skb, local->tx_headroom);
2180 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2181 beacon->head_len);
2184 * Not very nice, but we want to allow the driver to call
2185 * ieee80211_beacon_get() as a response to the set_tim()
2186 * callback. That, however, is already invoked under the
2187 * sta_lock to guarantee consistent and race-free update
2188 * of the tim bitmap in mac80211 and the driver.
2190 if (local->tim_in_locked_section) {
2191 ieee80211_beacon_add_tim(ap, skb, beacon);
2192 } else {
2193 unsigned long flags;
2195 spin_lock_irqsave(&local->sta_lock, flags);
2196 ieee80211_beacon_add_tim(ap, skb, beacon);
2197 spin_unlock_irqrestore(&local->sta_lock, flags);
2200 if (tim_offset)
2201 *tim_offset = beacon->head_len;
2202 if (tim_length)
2203 *tim_length = skb->len - beacon->head_len;
2205 if (beacon->tail)
2206 memcpy(skb_put(skb, beacon->tail_len),
2207 beacon->tail, beacon->tail_len);
2208 } else
2209 goto out;
2210 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2211 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2212 struct ieee80211_hdr *hdr;
2213 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2215 if (!presp)
2216 goto out;
2218 skb = skb_copy(presp, GFP_ATOMIC);
2219 if (!skb)
2220 goto out;
2222 hdr = (struct ieee80211_hdr *) skb->data;
2223 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2224 IEEE80211_STYPE_BEACON);
2225 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2226 struct ieee80211_mgmt *mgmt;
2227 u8 *pos;
2229 /* headroom, head length, tail length and maximum TIM length */
2230 skb = dev_alloc_skb(local->tx_headroom + 400);
2231 if (!skb)
2232 goto out;
2234 skb_reserve(skb, local->hw.extra_tx_headroom);
2235 mgmt = (struct ieee80211_mgmt *)
2236 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2237 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2238 mgmt->frame_control =
2239 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2240 memset(mgmt->da, 0xff, ETH_ALEN);
2241 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2242 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2243 mgmt->u.beacon.beacon_int =
2244 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2245 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2247 pos = skb_put(skb, 2);
2248 *pos++ = WLAN_EID_SSID;
2249 *pos++ = 0x0;
2251 mesh_mgmt_ies_add(skb, sdata);
2252 } else {
2253 WARN_ON(1);
2254 goto out;
2257 info = IEEE80211_SKB_CB(skb);
2259 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2260 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2261 info->band = band;
2263 memset(&txrc, 0, sizeof(txrc));
2264 txrc.hw = hw;
2265 txrc.sband = sband;
2266 txrc.bss_conf = &sdata->vif.bss_conf;
2267 txrc.skb = skb;
2268 txrc.reported_rate.idx = -1;
2269 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2270 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2271 txrc.max_rate_idx = -1;
2272 else
2273 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2274 txrc.ap = true;
2275 rate_control_get_rate(sdata, NULL, &txrc);
2277 info->control.vif = vif;
2279 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT |
2280 IEEE80211_TX_CTL_ASSIGN_SEQ |
2281 IEEE80211_TX_CTL_FIRST_FRAGMENT;
2282 out:
2283 rcu_read_unlock();
2284 return skb;
2286 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2288 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2289 struct ieee80211_vif *vif)
2291 struct ieee80211_sub_if_data *sdata;
2292 struct ieee80211_if_managed *ifmgd;
2293 struct ieee80211_pspoll *pspoll;
2294 struct ieee80211_local *local;
2295 struct sk_buff *skb;
2297 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2298 return NULL;
2300 sdata = vif_to_sdata(vif);
2301 ifmgd = &sdata->u.mgd;
2302 local = sdata->local;
2304 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2305 if (!skb) {
2306 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2307 "pspoll template\n", sdata->name);
2308 return NULL;
2310 skb_reserve(skb, local->hw.extra_tx_headroom);
2312 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2313 memset(pspoll, 0, sizeof(*pspoll));
2314 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2315 IEEE80211_STYPE_PSPOLL);
2316 pspoll->aid = cpu_to_le16(ifmgd->aid);
2318 /* aid in PS-Poll has its two MSBs each set to 1 */
2319 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2321 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2322 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2324 return skb;
2326 EXPORT_SYMBOL(ieee80211_pspoll_get);
2328 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2329 struct ieee80211_vif *vif)
2331 struct ieee80211_hdr_3addr *nullfunc;
2332 struct ieee80211_sub_if_data *sdata;
2333 struct ieee80211_if_managed *ifmgd;
2334 struct ieee80211_local *local;
2335 struct sk_buff *skb;
2337 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2338 return NULL;
2340 sdata = vif_to_sdata(vif);
2341 ifmgd = &sdata->u.mgd;
2342 local = sdata->local;
2344 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2345 if (!skb) {
2346 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2347 "template\n", sdata->name);
2348 return NULL;
2350 skb_reserve(skb, local->hw.extra_tx_headroom);
2352 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2353 sizeof(*nullfunc));
2354 memset(nullfunc, 0, sizeof(*nullfunc));
2355 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2356 IEEE80211_STYPE_NULLFUNC |
2357 IEEE80211_FCTL_TODS);
2358 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2359 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2360 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2362 return skb;
2364 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2366 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2367 struct ieee80211_vif *vif,
2368 const u8 *ssid, size_t ssid_len,
2369 const u8 *ie, size_t ie_len)
2371 struct ieee80211_sub_if_data *sdata;
2372 struct ieee80211_local *local;
2373 struct ieee80211_hdr_3addr *hdr;
2374 struct sk_buff *skb;
2375 size_t ie_ssid_len;
2376 u8 *pos;
2378 sdata = vif_to_sdata(vif);
2379 local = sdata->local;
2380 ie_ssid_len = 2 + ssid_len;
2382 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2383 ie_ssid_len + ie_len);
2384 if (!skb) {
2385 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2386 "request template\n", sdata->name);
2387 return NULL;
2390 skb_reserve(skb, local->hw.extra_tx_headroom);
2392 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2393 memset(hdr, 0, sizeof(*hdr));
2394 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2395 IEEE80211_STYPE_PROBE_REQ);
2396 memset(hdr->addr1, 0xff, ETH_ALEN);
2397 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2398 memset(hdr->addr3, 0xff, ETH_ALEN);
2400 pos = skb_put(skb, ie_ssid_len);
2401 *pos++ = WLAN_EID_SSID;
2402 *pos++ = ssid_len;
2403 if (ssid)
2404 memcpy(pos, ssid, ssid_len);
2405 pos += ssid_len;
2407 if (ie) {
2408 pos = skb_put(skb, ie_len);
2409 memcpy(pos, ie, ie_len);
2412 return skb;
2414 EXPORT_SYMBOL(ieee80211_probereq_get);
2416 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2417 const void *frame, size_t frame_len,
2418 const struct ieee80211_tx_info *frame_txctl,
2419 struct ieee80211_rts *rts)
2421 const struct ieee80211_hdr *hdr = frame;
2423 rts->frame_control =
2424 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2425 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2426 frame_txctl);
2427 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2428 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2430 EXPORT_SYMBOL(ieee80211_rts_get);
2432 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2433 const void *frame, size_t frame_len,
2434 const struct ieee80211_tx_info *frame_txctl,
2435 struct ieee80211_cts *cts)
2437 const struct ieee80211_hdr *hdr = frame;
2439 cts->frame_control =
2440 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2441 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2442 frame_len, frame_txctl);
2443 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2445 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2447 struct sk_buff *
2448 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2449 struct ieee80211_vif *vif)
2451 struct ieee80211_local *local = hw_to_local(hw);
2452 struct sk_buff *skb = NULL;
2453 struct sta_info *sta;
2454 struct ieee80211_tx_data tx;
2455 struct ieee80211_sub_if_data *sdata;
2456 struct ieee80211_if_ap *bss = NULL;
2457 struct beacon_data *beacon;
2458 struct ieee80211_tx_info *info;
2460 sdata = vif_to_sdata(vif);
2461 bss = &sdata->u.ap;
2463 rcu_read_lock();
2464 beacon = rcu_dereference(bss->beacon);
2466 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2467 goto out;
2469 if (bss->dtim_count != 0)
2470 goto out; /* send buffered bc/mc only after DTIM beacon */
2472 while (1) {
2473 skb = skb_dequeue(&bss->ps_bc_buf);
2474 if (!skb)
2475 goto out;
2476 local->total_ps_buffered--;
2478 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2479 struct ieee80211_hdr *hdr =
2480 (struct ieee80211_hdr *) skb->data;
2481 /* more buffered multicast/broadcast frames ==> set
2482 * MoreData flag in IEEE 802.11 header to inform PS
2483 * STAs */
2484 hdr->frame_control |=
2485 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2488 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2489 break;
2490 dev_kfree_skb_any(skb);
2493 info = IEEE80211_SKB_CB(skb);
2495 sta = tx.sta;
2496 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2497 tx.channel = local->hw.conf.channel;
2498 info->band = tx.channel->band;
2500 if (invoke_tx_handlers(&tx))
2501 skb = NULL;
2502 out:
2503 rcu_read_unlock();
2505 return skb;
2507 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2509 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2511 skb_set_mac_header(skb, 0);
2512 skb_set_network_header(skb, 0);
2513 skb_set_transport_header(skb, 0);
2515 /* send all internal mgmt frames on VO */
2516 skb_set_queue_mapping(skb, 0);
2519 * The other path calling ieee80211_xmit is from the tasklet,
2520 * and while we can handle concurrent transmissions locking
2521 * requirements are that we do not come into tx with bhs on.
2523 local_bh_disable();
2524 ieee80211_xmit(sdata, skb);
2525 local_bh_enable();