GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / mm / slub.c
blob4d3d0fb01be575d83e1cf57ab6019ba396b83814
1 /* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks and only
7 * uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
32 #include <typedefs.h>
33 #include <bcmdefs.h>
36 * Lock order:
37 * 1. slab_lock(page)
38 * 2. slab->list_lock
40 * The slab_lock protects operations on the object of a particular
41 * slab and its metadata in the page struct. If the slab lock
42 * has been taken then no allocations nor frees can be performed
43 * on the objects in the slab nor can the slab be added or removed
44 * from the partial or full lists since this would mean modifying
45 * the page_struct of the slab.
47 * The list_lock protects the partial and full list on each node and
48 * the partial slab counter. If taken then no new slabs may be added or
49 * removed from the lists nor make the number of partial slabs be modified.
50 * (Note that the total number of slabs is an atomic value that may be
51 * modified without taking the list lock).
53 * The list_lock is a centralized lock and thus we avoid taking it as
54 * much as possible. As long as SLUB does not have to handle partial
55 * slabs, operations can continue without any centralized lock. F.e.
56 * allocating a long series of objects that fill up slabs does not require
57 * the list lock.
59 * The lock order is sometimes inverted when we are trying to get a slab
60 * off a list. We take the list_lock and then look for a page on the list
61 * to use. While we do that objects in the slabs may be freed. We can
62 * only operate on the slab if we have also taken the slab_lock. So we use
63 * a slab_trylock() on the slab. If trylock was successful then no frees
64 * can occur anymore and we can use the slab for allocations etc. If the
65 * slab_trylock() does not succeed then frees are in progress in the slab and
66 * we must stay away from it for a while since we may cause a bouncing
67 * cacheline if we try to acquire the lock. So go onto the next slab.
68 * If all pages are busy then we may allocate a new slab instead of reusing
69 * a partial slab. A new slab has noone operating on it and thus there is
70 * no danger of cacheline contention.
72 * Interrupts are disabled during allocation and deallocation in order to
73 * make the slab allocator safe to use in the context of an irq. In addition
74 * interrupts are disabled to ensure that the processor does not change
75 * while handling per_cpu slabs, due to kernel preemption.
77 * SLUB assigns one slab for allocation to each processor.
78 * Allocations only occur from these slabs called cpu slabs.
80 * Slabs with free elements are kept on a partial list and during regular
81 * operations no list for full slabs is used. If an object in a full slab is
82 * freed then the slab will show up again on the partial lists.
83 * We track full slabs for debugging purposes though because otherwise we
84 * cannot scan all objects.
86 * Slabs are freed when they become empty. Teardown and setup is
87 * minimal so we rely on the page allocators per cpu caches for
88 * fast frees and allocs.
90 * Overloading of page flags that are otherwise used for LRU management.
92 * PageActive The slab is frozen and exempt from list processing.
93 * This means that the slab is dedicated to a purpose
94 * such as satisfying allocations for a specific
95 * processor. Objects may be freed in the slab while
96 * it is frozen but slab_free will then skip the usual
97 * list operations. It is up to the processor holding
98 * the slab to integrate the slab into the slab lists
99 * when the slab is no longer needed.
101 * One use of this flag is to mark slabs that are
102 * used for allocations. Then such a slab becomes a cpu
103 * slab. The cpu slab may be equipped with an additional
104 * freelist that allows lockless access to
105 * free objects in addition to the regular freelist
106 * that requires the slab lock.
108 * PageError Slab requires special handling due to debug
109 * options set. This moves slab handling out of
110 * the fast path and disables lockless freelists.
113 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
114 SLAB_TRACE | SLAB_DEBUG_FREE)
116 static inline int kmem_cache_debug(struct kmem_cache *s)
118 #ifdef CONFIG_SLUB_DEBUG
119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120 #else
121 return 0;
122 #endif
126 * Issues still to be resolved:
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
130 * - Variable sizing of the per node arrays
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
137 * Mininum number of partial slabs. These will be left on the partial
138 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 #define MIN_PARTIAL 5
143 * Maximum number of desirable partial slabs.
144 * The existence of more partial slabs makes kmem_cache_shrink
145 * sort the partial list by the number of objects in the.
147 #define MAX_PARTIAL 10
149 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
150 SLAB_POISON | SLAB_STORE_USER)
153 * Debugging flags that require metadata to be stored in the slab. These get
154 * disabled when slub_debug=O is used and a cache's min order increases with
155 * metadata.
157 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160 * Set of flags that will prevent slab merging
162 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
163 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
164 SLAB_FAILSLAB)
166 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
167 SLAB_CACHE_DMA | SLAB_NOTRACK)
169 #define OO_SHIFT 16
170 #define OO_MASK ((1 << OO_SHIFT) - 1)
171 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
173 /* Internal SLUB flags */
174 #define __OBJECT_POISON 0x80000000UL /* Poison object */
175 #define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */
177 static int kmem_size = sizeof(struct kmem_cache);
179 #ifdef CONFIG_SMP
180 static struct notifier_block slab_notifier;
181 #endif
183 static enum {
184 DOWN, /* No slab functionality available */
185 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
186 UP, /* Everything works but does not show up in sysfs */
187 SYSFS /* Sysfs up */
188 } slab_state = DOWN;
190 /* A list of all slab caches on the system */
191 static DECLARE_RWSEM(slub_lock);
192 static LIST_HEAD(slab_caches);
195 * Tracking user of a slab.
197 struct track {
198 unsigned long addr; /* Called from address */
199 int cpu; /* Was running on cpu */
200 int pid; /* Pid context */
201 unsigned long when; /* When did the operation occur */
204 enum track_item { TRACK_ALLOC, TRACK_FREE };
206 #ifdef CONFIG_SLUB_DEBUG
207 static int sysfs_slab_add(struct kmem_cache *);
208 static int sysfs_slab_alias(struct kmem_cache *, const char *);
209 static void sysfs_slab_remove(struct kmem_cache *);
211 #else
212 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
213 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
214 { return 0; }
215 static inline void sysfs_slab_remove(struct kmem_cache *s)
217 kfree(s);
220 #endif
222 static inline void stat(struct kmem_cache *s, enum stat_item si)
224 #ifdef CONFIG_SLUB_STATS
225 __this_cpu_inc(s->cpu_slab->stat[si]);
226 #endif
229 /********************************************************************
230 * Core slab cache functions
231 *******************************************************************/
233 int slab_is_available(void)
235 return slab_state >= UP;
238 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
240 #ifdef CONFIG_NUMA
241 return s->node[node];
242 #else
243 return &s->local_node;
244 #endif
247 /* Verify that a pointer has an address that is valid within a slab page */
248 static inline int check_valid_pointer(struct kmem_cache *s,
249 struct page *page, const void *object)
251 void *base;
253 if (!object)
254 return 1;
256 base = page_address(page);
257 if (object < base || object >= base + page->objects * s->size ||
258 (object - base) % s->size) {
259 return 0;
262 return 1;
265 static inline void *get_freepointer(struct kmem_cache *s, void *object)
267 return *(void **)(object + s->offset);
270 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
272 *(void **)(object + s->offset) = fp;
275 /* Loop over all objects in a slab */
276 #define for_each_object(__p, __s, __addr, __objects) \
277 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
278 __p += (__s)->size)
280 /* Scan freelist */
281 #define for_each_free_object(__p, __s, __free) \
282 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
284 /* Determine object index from a given position */
285 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
287 return (p - addr) / s->size;
290 static inline struct kmem_cache_order_objects oo_make(int order,
291 unsigned long size)
293 struct kmem_cache_order_objects x = {
294 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
297 return x;
300 static inline int oo_order(struct kmem_cache_order_objects x)
302 return x.x >> OO_SHIFT;
305 static inline int oo_objects(struct kmem_cache_order_objects x)
307 return x.x & OO_MASK;
310 #ifdef CONFIG_SLUB_DEBUG
312 * Debug settings:
314 #ifdef CONFIG_SLUB_DEBUG_ON
315 static int slub_debug = DEBUG_DEFAULT_FLAGS;
316 #else
317 static int slub_debug;
318 #endif
320 static char *slub_debug_slabs;
321 static int disable_higher_order_debug;
324 * Object debugging
326 static void print_section(char *text, u8 *addr, unsigned int length)
328 int i, offset;
329 int newline = 1;
330 char ascii[17];
332 ascii[16] = 0;
334 for (i = 0; i < length; i++) {
335 if (newline) {
336 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
337 newline = 0;
339 printk(KERN_CONT " %02x", addr[i]);
340 offset = i % 16;
341 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
342 if (offset == 15) {
343 printk(KERN_CONT " %s\n", ascii);
344 newline = 1;
347 if (!newline) {
348 i %= 16;
349 while (i < 16) {
350 printk(KERN_CONT " ");
351 ascii[i] = ' ';
352 i++;
354 printk(KERN_CONT " %s\n", ascii);
358 static struct track *get_track(struct kmem_cache *s, void *object,
359 enum track_item alloc)
361 struct track *p;
363 if (s->offset)
364 p = object + s->offset + sizeof(void *);
365 else
366 p = object + s->inuse;
368 return p + alloc;
371 static void set_track(struct kmem_cache *s, void *object,
372 enum track_item alloc, unsigned long addr)
374 struct track *p = get_track(s, object, alloc);
376 if (addr) {
377 p->addr = addr;
378 p->cpu = smp_processor_id();
379 p->pid = current->pid;
380 p->when = jiffies;
381 } else
382 memset(p, 0, sizeof(struct track));
385 static void init_tracking(struct kmem_cache *s, void *object)
387 if (!(s->flags & SLAB_STORE_USER))
388 return;
390 set_track(s, object, TRACK_FREE, 0UL);
391 set_track(s, object, TRACK_ALLOC, 0UL);
394 static void print_track(const char *s, struct track *t)
396 if (!t->addr)
397 return;
399 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
400 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
403 static void print_tracking(struct kmem_cache *s, void *object)
405 if (!(s->flags & SLAB_STORE_USER))
406 return;
408 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
409 print_track("Freed", get_track(s, object, TRACK_FREE));
412 static void print_page_info(struct page *page)
414 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
415 page, page->objects, page->inuse, page->freelist, page->flags);
419 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
421 va_list args;
422 char buf[100];
424 va_start(args, fmt);
425 vsnprintf(buf, sizeof(buf), fmt, args);
426 va_end(args);
427 printk(KERN_ERR "========================================"
428 "=====================================\n");
429 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
430 printk(KERN_ERR "----------------------------------------"
431 "-------------------------------------\n\n");
434 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
436 va_list args;
437 char buf[100];
439 va_start(args, fmt);
440 vsnprintf(buf, sizeof(buf), fmt, args);
441 va_end(args);
442 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
445 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
447 unsigned int off; /* Offset of last byte */
448 u8 *addr = page_address(page);
450 print_tracking(s, p);
452 print_page_info(page);
454 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
455 p, p - addr, get_freepointer(s, p));
457 if (p > addr + 16)
458 print_section("Bytes b4", p - 16, 16);
460 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
462 if (s->flags & SLAB_RED_ZONE)
463 print_section("Redzone", p + s->objsize,
464 s->inuse - s->objsize);
466 if (s->offset)
467 off = s->offset + sizeof(void *);
468 else
469 off = s->inuse;
471 if (s->flags & SLAB_STORE_USER)
472 off += 2 * sizeof(struct track);
474 if (off != s->size)
475 /* Beginning of the filler is the free pointer */
476 print_section("Padding", p + off, s->size - off);
478 dump_stack();
481 static void object_err(struct kmem_cache *s, struct page *page,
482 u8 *object, char *reason)
484 slab_bug(s, "%s", reason);
485 print_trailer(s, page, object);
488 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
490 va_list args;
491 char buf[100];
493 va_start(args, fmt);
494 vsnprintf(buf, sizeof(buf), fmt, args);
495 va_end(args);
496 slab_bug(s, "%s", buf);
497 print_page_info(page);
498 dump_stack();
501 static void init_object(struct kmem_cache *s, void *object, int active)
503 u8 *p = object;
505 if (s->flags & __OBJECT_POISON) {
506 memset(p, POISON_FREE, s->objsize - 1);
507 p[s->objsize - 1] = POISON_END;
510 if (s->flags & SLAB_RED_ZONE)
511 memset(p + s->objsize,
512 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
513 s->inuse - s->objsize);
516 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
518 while (bytes) {
519 if (*start != (u8)value)
520 return start;
521 start++;
522 bytes--;
524 return NULL;
527 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
528 void *from, void *to)
530 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
531 memset(from, data, to - from);
534 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
535 u8 *object, char *what,
536 u8 *start, unsigned int value, unsigned int bytes)
538 u8 *fault;
539 u8 *end;
541 fault = check_bytes(start, value, bytes);
542 if (!fault)
543 return 1;
545 end = start + bytes;
546 while (end > fault && end[-1] == value)
547 end--;
549 slab_bug(s, "%s overwritten", what);
550 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
551 fault, end - 1, fault[0], value);
552 print_trailer(s, page, object);
554 restore_bytes(s, what, value, fault, end);
555 return 0;
559 * Object layout:
561 * object address
562 * Bytes of the object to be managed.
563 * If the freepointer may overlay the object then the free
564 * pointer is the first word of the object.
566 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
567 * 0xa5 (POISON_END)
569 * object + s->objsize
570 * Padding to reach word boundary. This is also used for Redzoning.
571 * Padding is extended by another word if Redzoning is enabled and
572 * objsize == inuse.
574 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
575 * 0xcc (RED_ACTIVE) for objects in use.
577 * object + s->inuse
578 * Meta data starts here.
580 * A. Free pointer (if we cannot overwrite object on free)
581 * B. Tracking data for SLAB_STORE_USER
582 * C. Padding to reach required alignment boundary or at mininum
583 * one word if debugging is on to be able to detect writes
584 * before the word boundary.
586 * Padding is done using 0x5a (POISON_INUSE)
588 * object + s->size
589 * Nothing is used beyond s->size.
591 * If slabcaches are merged then the objsize and inuse boundaries are mostly
592 * ignored. And therefore no slab options that rely on these boundaries
593 * may be used with merged slabcaches.
596 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
598 unsigned long off = s->inuse; /* The end of info */
600 if (s->offset)
601 /* Freepointer is placed after the object. */
602 off += sizeof(void *);
604 if (s->flags & SLAB_STORE_USER)
605 /* We also have user information there */
606 off += 2 * sizeof(struct track);
608 if (s->size == off)
609 return 1;
611 return check_bytes_and_report(s, page, p, "Object padding",
612 p + off, POISON_INUSE, s->size - off);
615 /* Check the pad bytes at the end of a slab page */
616 static int slab_pad_check(struct kmem_cache *s, struct page *page)
618 u8 *start;
619 u8 *fault;
620 u8 *end;
621 int length;
622 int remainder;
624 if (!(s->flags & SLAB_POISON))
625 return 1;
627 start = page_address(page);
628 length = (PAGE_SIZE << compound_order(page));
629 end = start + length;
630 remainder = length % s->size;
631 if (!remainder)
632 return 1;
634 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
635 if (!fault)
636 return 1;
637 while (end > fault && end[-1] == POISON_INUSE)
638 end--;
640 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
641 print_section("Padding", end - remainder, remainder);
643 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
644 return 0;
647 static int check_object(struct kmem_cache *s, struct page *page,
648 void *object, int active)
650 u8 *p = object;
651 u8 *endobject = object + s->objsize;
653 if (s->flags & SLAB_RED_ZONE) {
654 unsigned int red =
655 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
657 if (!check_bytes_and_report(s, page, object, "Redzone",
658 endobject, red, s->inuse - s->objsize))
659 return 0;
660 } else {
661 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
662 check_bytes_and_report(s, page, p, "Alignment padding",
663 endobject, POISON_INUSE, s->inuse - s->objsize);
667 if (s->flags & SLAB_POISON) {
668 if (!active && (s->flags & __OBJECT_POISON) &&
669 (!check_bytes_and_report(s, page, p, "Poison", p,
670 POISON_FREE, s->objsize - 1) ||
671 !check_bytes_and_report(s, page, p, "Poison",
672 p + s->objsize - 1, POISON_END, 1)))
673 return 0;
675 * check_pad_bytes cleans up on its own.
677 check_pad_bytes(s, page, p);
680 if (!s->offset && active)
682 * Object and freepointer overlap. Cannot check
683 * freepointer while object is allocated.
685 return 1;
687 /* Check free pointer validity */
688 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
689 object_err(s, page, p, "Freepointer corrupt");
691 * No choice but to zap it and thus lose the remainder
692 * of the free objects in this slab. May cause
693 * another error because the object count is now wrong.
695 set_freepointer(s, p, NULL);
696 return 0;
698 return 1;
701 static int check_slab(struct kmem_cache *s, struct page *page)
703 int maxobj;
705 VM_BUG_ON(!irqs_disabled());
707 if (!PageSlab(page)) {
708 slab_err(s, page, "Not a valid slab page");
709 return 0;
712 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
713 if (page->objects > maxobj) {
714 slab_err(s, page, "objects %u > max %u",
715 s->name, page->objects, maxobj);
716 return 0;
718 if (page->inuse > page->objects) {
719 slab_err(s, page, "inuse %u > max %u",
720 s->name, page->inuse, page->objects);
721 return 0;
723 /* Slab_pad_check fixes things up after itself */
724 slab_pad_check(s, page);
725 return 1;
729 * Determine if a certain object on a page is on the freelist. Must hold the
730 * slab lock to guarantee that the chains are in a consistent state.
732 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
734 int nr = 0;
735 void *fp = page->freelist;
736 void *object = NULL;
737 unsigned long max_objects;
739 while (fp && nr <= page->objects) {
740 if (fp == search)
741 return 1;
742 if (!check_valid_pointer(s, page, fp)) {
743 if (object) {
744 object_err(s, page, object,
745 "Freechain corrupt");
746 set_freepointer(s, object, NULL);
747 break;
748 } else {
749 slab_err(s, page, "Freepointer corrupt");
750 page->freelist = NULL;
751 page->inuse = page->objects;
752 slab_fix(s, "Freelist cleared");
753 return 0;
755 break;
757 object = fp;
758 fp = get_freepointer(s, object);
759 nr++;
762 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
763 if (max_objects > MAX_OBJS_PER_PAGE)
764 max_objects = MAX_OBJS_PER_PAGE;
766 if (page->objects != max_objects) {
767 slab_err(s, page, "Wrong number of objects. Found %d but "
768 "should be %d", page->objects, max_objects);
769 page->objects = max_objects;
770 slab_fix(s, "Number of objects adjusted.");
772 if (page->inuse != page->objects - nr) {
773 slab_err(s, page, "Wrong object count. Counter is %d but "
774 "counted were %d", page->inuse, page->objects - nr);
775 page->inuse = page->objects - nr;
776 slab_fix(s, "Object count adjusted.");
778 return search == NULL;
781 static void trace(struct kmem_cache *s, struct page *page, void *object,
782 int alloc)
784 if (s->flags & SLAB_TRACE) {
785 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
786 s->name,
787 alloc ? "alloc" : "free",
788 object, page->inuse,
789 page->freelist);
791 if (!alloc)
792 print_section("Object", (void *)object, s->objsize);
794 dump_stack();
799 * Tracking of fully allocated slabs for debugging purposes.
801 static void add_full(struct kmem_cache_node *n, struct page *page)
803 spin_lock(&n->list_lock);
804 list_add(&page->lru, &n->full);
805 spin_unlock(&n->list_lock);
808 static void remove_full(struct kmem_cache *s, struct page *page)
810 struct kmem_cache_node *n;
812 if (!(s->flags & SLAB_STORE_USER))
813 return;
815 n = get_node(s, page_to_nid(page));
817 spin_lock(&n->list_lock);
818 list_del(&page->lru);
819 spin_unlock(&n->list_lock);
822 /* Tracking of the number of slabs for debugging purposes */
823 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
825 struct kmem_cache_node *n = get_node(s, node);
827 return atomic_long_read(&n->nr_slabs);
830 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
832 return atomic_long_read(&n->nr_slabs);
835 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
837 struct kmem_cache_node *n = get_node(s, node);
840 * May be called early in order to allocate a slab for the
841 * kmem_cache_node structure. Solve the chicken-egg
842 * dilemma by deferring the increment of the count during
843 * bootstrap (see early_kmem_cache_node_alloc).
845 if (!NUMA_BUILD || n) {
846 atomic_long_inc(&n->nr_slabs);
847 atomic_long_add(objects, &n->total_objects);
850 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
852 struct kmem_cache_node *n = get_node(s, node);
854 atomic_long_dec(&n->nr_slabs);
855 atomic_long_sub(objects, &n->total_objects);
858 /* Object debug checks for alloc/free paths */
859 static void setup_object_debug(struct kmem_cache *s, struct page *page,
860 void *object)
862 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
863 return;
865 init_object(s, object, 0);
866 init_tracking(s, object);
869 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
870 void *object, unsigned long addr)
872 if (!check_slab(s, page))
873 goto bad;
875 if (!on_freelist(s, page, object)) {
876 object_err(s, page, object, "Object already allocated");
877 goto bad;
880 if (!check_valid_pointer(s, page, object)) {
881 object_err(s, page, object, "Freelist Pointer check fails");
882 goto bad;
885 if (!check_object(s, page, object, 0))
886 goto bad;
888 /* Success perform special debug activities for allocs */
889 if (s->flags & SLAB_STORE_USER)
890 set_track(s, object, TRACK_ALLOC, addr);
891 trace(s, page, object, 1);
892 init_object(s, object, 1);
893 return 1;
895 bad:
896 if (PageSlab(page)) {
898 * If this is a slab page then lets do the best we can
899 * to avoid issues in the future. Marking all objects
900 * as used avoids touching the remaining objects.
902 slab_fix(s, "Marking all objects used");
903 page->inuse = page->objects;
904 page->freelist = NULL;
906 return 0;
909 static int free_debug_processing(struct kmem_cache *s, struct page *page,
910 void *object, unsigned long addr)
912 if (!check_slab(s, page))
913 goto fail;
915 if (!check_valid_pointer(s, page, object)) {
916 slab_err(s, page, "Invalid object pointer 0x%p", object);
917 goto fail;
920 if (on_freelist(s, page, object)) {
921 object_err(s, page, object, "Object already free");
922 goto fail;
925 if (!check_object(s, page, object, 1))
926 return 0;
928 if (unlikely(s != page->slab)) {
929 if (!PageSlab(page)) {
930 slab_err(s, page, "Attempt to free object(0x%p) "
931 "outside of slab", object);
932 } else if (!page->slab) {
933 printk(KERN_ERR
934 "SLUB <none>: no slab for object 0x%p.\n",
935 object);
936 dump_stack();
937 } else
938 object_err(s, page, object,
939 "page slab pointer corrupt.");
940 goto fail;
943 /* Special debug activities for freeing objects */
944 if (!PageSlubFrozen(page) && !page->freelist)
945 remove_full(s, page);
946 if (s->flags & SLAB_STORE_USER)
947 set_track(s, object, TRACK_FREE, addr);
948 trace(s, page, object, 0);
949 init_object(s, object, 0);
950 return 1;
952 fail:
953 slab_fix(s, "Object at 0x%p not freed", object);
954 return 0;
957 static int __init setup_slub_debug(char *str)
959 slub_debug = DEBUG_DEFAULT_FLAGS;
960 if (*str++ != '=' || !*str)
962 * No options specified. Switch on full debugging.
964 goto out;
966 if (*str == ',')
968 * No options but restriction on slabs. This means full
969 * debugging for slabs matching a pattern.
971 goto check_slabs;
973 if (tolower(*str) == 'o') {
975 * Avoid enabling debugging on caches if its minimum order
976 * would increase as a result.
978 disable_higher_order_debug = 1;
979 goto out;
982 slub_debug = 0;
983 if (*str == '-')
985 * Switch off all debugging measures.
987 goto out;
990 * Determine which debug features should be switched on
992 for (; *str && *str != ','; str++) {
993 switch (tolower(*str)) {
994 case 'f':
995 slub_debug |= SLAB_DEBUG_FREE;
996 break;
997 case 'z':
998 slub_debug |= SLAB_RED_ZONE;
999 break;
1000 case 'p':
1001 slub_debug |= SLAB_POISON;
1002 break;
1003 case 'u':
1004 slub_debug |= SLAB_STORE_USER;
1005 break;
1006 case 't':
1007 slub_debug |= SLAB_TRACE;
1008 break;
1009 case 'a':
1010 slub_debug |= SLAB_FAILSLAB;
1011 break;
1012 default:
1013 printk(KERN_ERR "slub_debug option '%c' "
1014 "unknown. skipped\n", *str);
1018 check_slabs:
1019 if (*str == ',')
1020 slub_debug_slabs = str + 1;
1021 out:
1022 return 1;
1025 __setup("slub_debug", setup_slub_debug);
1027 static unsigned long kmem_cache_flags(unsigned long objsize,
1028 unsigned long flags, const char *name,
1029 void (*ctor)(void *))
1032 * Enable debugging if selected on the kernel commandline.
1034 if (slub_debug && (!slub_debug_slabs ||
1035 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1036 flags |= slub_debug;
1038 return flags;
1040 #else
1041 static inline void setup_object_debug(struct kmem_cache *s,
1042 struct page *page, void *object) {}
1044 static inline int alloc_debug_processing(struct kmem_cache *s,
1045 struct page *page, void *object, unsigned long addr) { return 0; }
1047 static inline int free_debug_processing(struct kmem_cache *s,
1048 struct page *page, void *object, unsigned long addr) { return 0; }
1050 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1051 { return 1; }
1052 static inline int check_object(struct kmem_cache *s, struct page *page,
1053 void *object, int active) { return 1; }
1054 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1055 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1056 unsigned long flags, const char *name,
1057 void (*ctor)(void *))
1059 return flags;
1061 #define slub_debug 0
1063 #define disable_higher_order_debug 0
1065 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066 { return 0; }
1067 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1068 { return 0; }
1069 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1070 int objects) {}
1071 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1072 int objects) {}
1073 #endif
1076 * Slab allocation and freeing
1078 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1079 struct kmem_cache_order_objects oo)
1081 int order = oo_order(oo);
1083 flags |= __GFP_NOTRACK;
1085 if (node == NUMA_NO_NODE)
1086 return alloc_pages(flags, order);
1087 else
1088 return alloc_pages_exact_node(node, flags, order);
1091 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1093 struct page *page;
1094 struct kmem_cache_order_objects oo = s->oo;
1095 gfp_t alloc_gfp;
1097 flags |= s->allocflags;
1100 * Let the initial higher-order allocation fail under memory pressure
1101 * so we fall-back to the minimum order allocation.
1103 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1105 page = alloc_slab_page(alloc_gfp, node, oo);
1106 if (unlikely(!page)) {
1107 oo = s->min;
1109 * Allocation may have failed due to fragmentation.
1110 * Try a lower order alloc if possible
1112 page = alloc_slab_page(flags, node, oo);
1113 if (!page)
1114 return NULL;
1116 stat(s, ORDER_FALLBACK);
1119 if (kmemcheck_enabled
1120 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1121 int pages = 1 << oo_order(oo);
1123 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1126 * Objects from caches that have a constructor don't get
1127 * cleared when they're allocated, so we need to do it here.
1129 if (s->ctor)
1130 kmemcheck_mark_uninitialized_pages(page, pages);
1131 else
1132 kmemcheck_mark_unallocated_pages(page, pages);
1135 page->objects = oo_objects(oo);
1136 mod_zone_page_state(page_zone(page),
1137 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1138 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1139 1 << oo_order(oo));
1141 return page;
1144 static void setup_object(struct kmem_cache *s, struct page *page,
1145 void *object)
1147 setup_object_debug(s, page, object);
1148 if (unlikely(s->ctor))
1149 s->ctor(object);
1152 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1154 struct page *page;
1155 void *start;
1156 void *last;
1157 void *p;
1159 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1161 page = allocate_slab(s,
1162 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1163 if (!page)
1164 goto out;
1166 inc_slabs_node(s, page_to_nid(page), page->objects);
1167 page->slab = s;
1168 page->flags |= 1 << PG_slab;
1170 start = page_address(page);
1172 if (unlikely(s->flags & SLAB_POISON))
1173 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1175 last = start;
1176 for_each_object(p, s, start, page->objects) {
1177 setup_object(s, page, last);
1178 set_freepointer(s, last, p);
1179 last = p;
1181 setup_object(s, page, last);
1182 set_freepointer(s, last, NULL);
1184 page->freelist = start;
1185 page->inuse = 0;
1186 out:
1187 return page;
1190 static void __free_slab(struct kmem_cache *s, struct page *page)
1192 int order = compound_order(page);
1193 int pages = 1 << order;
1195 if (kmem_cache_debug(s)) {
1196 void *p;
1198 slab_pad_check(s, page);
1199 for_each_object(p, s, page_address(page),
1200 page->objects)
1201 check_object(s, page, p, 0);
1204 kmemcheck_free_shadow(page, compound_order(page));
1206 mod_zone_page_state(page_zone(page),
1207 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1208 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1209 -pages);
1211 __ClearPageSlab(page);
1212 reset_page_mapcount(page);
1213 if (current->reclaim_state)
1214 current->reclaim_state->reclaimed_slab += pages;
1215 __free_pages(page, order);
1218 static void rcu_free_slab(struct rcu_head *h)
1220 struct page *page;
1222 page = container_of((struct list_head *)h, struct page, lru);
1223 __free_slab(page->slab, page);
1226 static void free_slab(struct kmem_cache *s, struct page *page)
1228 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1230 * RCU free overloads the RCU head over the LRU
1232 struct rcu_head *head = (void *)&page->lru;
1234 call_rcu(head, rcu_free_slab);
1235 } else
1236 __free_slab(s, page);
1239 static void discard_slab(struct kmem_cache *s, struct page *page)
1241 dec_slabs_node(s, page_to_nid(page), page->objects);
1242 free_slab(s, page);
1246 * Per slab locking using the pagelock
1248 static __always_inline void slab_lock(struct page *page)
1250 bit_spin_lock(PG_locked, &page->flags);
1253 static __always_inline void slab_unlock(struct page *page)
1255 __bit_spin_unlock(PG_locked, &page->flags);
1258 static __always_inline int slab_trylock(struct page *page)
1260 int rc = 1;
1262 rc = bit_spin_trylock(PG_locked, &page->flags);
1263 return rc;
1267 * Management of partially allocated slabs
1269 static void add_partial(struct kmem_cache_node *n,
1270 struct page *page, int tail)
1272 spin_lock(&n->list_lock);
1273 n->nr_partial++;
1274 if (tail)
1275 list_add_tail(&page->lru, &n->partial);
1276 else
1277 list_add(&page->lru, &n->partial);
1278 spin_unlock(&n->list_lock);
1281 static void remove_partial(struct kmem_cache *s, struct page *page)
1283 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1285 spin_lock(&n->list_lock);
1286 list_del(&page->lru);
1287 n->nr_partial--;
1288 spin_unlock(&n->list_lock);
1292 * Lock slab and remove from the partial list.
1294 * Must hold list_lock.
1296 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1297 struct page *page)
1299 if (slab_trylock(page)) {
1300 list_del(&page->lru);
1301 n->nr_partial--;
1302 __SetPageSlubFrozen(page);
1303 return 1;
1305 return 0;
1309 * Try to allocate a partial slab from a specific node.
1311 static struct page *get_partial_node(struct kmem_cache_node *n)
1313 struct page *page;
1316 * Racy check. If we mistakenly see no partial slabs then we
1317 * just allocate an empty slab. If we mistakenly try to get a
1318 * partial slab and there is none available then get_partials()
1319 * will return NULL.
1321 if (!n || !n->nr_partial)
1322 return NULL;
1324 spin_lock(&n->list_lock);
1325 list_for_each_entry(page, &n->partial, lru)
1326 if (lock_and_freeze_slab(n, page))
1327 goto out;
1328 page = NULL;
1329 out:
1330 spin_unlock(&n->list_lock);
1331 return page;
1335 * Get a page from somewhere. Search in increasing NUMA distances.
1337 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1339 #ifdef CONFIG_NUMA
1340 struct zonelist *zonelist;
1341 struct zoneref *z;
1342 struct zone *zone;
1343 enum zone_type high_zoneidx = gfp_zone(flags);
1344 struct page *page;
1347 * The defrag ratio allows a configuration of the tradeoffs between
1348 * inter node defragmentation and node local allocations. A lower
1349 * defrag_ratio increases the tendency to do local allocations
1350 * instead of attempting to obtain partial slabs from other nodes.
1352 * If the defrag_ratio is set to 0 then kmalloc() always
1353 * returns node local objects. If the ratio is higher then kmalloc()
1354 * may return off node objects because partial slabs are obtained
1355 * from other nodes and filled up.
1357 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1358 * defrag_ratio = 1000) then every (well almost) allocation will
1359 * first attempt to defrag slab caches on other nodes. This means
1360 * scanning over all nodes to look for partial slabs which may be
1361 * expensive if we do it every time we are trying to find a slab
1362 * with available objects.
1364 if (!s->remote_node_defrag_ratio ||
1365 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1366 return NULL;
1368 get_mems_allowed();
1369 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1370 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1371 struct kmem_cache_node *n;
1373 n = get_node(s, zone_to_nid(zone));
1375 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1376 n->nr_partial > s->min_partial) {
1377 page = get_partial_node(n);
1378 if (page) {
1379 put_mems_allowed();
1380 return page;
1384 put_mems_allowed();
1385 #endif
1386 return NULL;
1390 * Get a partial page, lock it and return it.
1392 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1394 struct page *page;
1395 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1397 page = get_partial_node(get_node(s, searchnode));
1398 if (page || node != -1)
1399 return page;
1401 return get_any_partial(s, flags);
1405 * Move a page back to the lists.
1407 * Must be called with the slab lock held.
1409 * On exit the slab lock will have been dropped.
1411 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1413 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1415 __ClearPageSlubFrozen(page);
1416 if (page->inuse) {
1418 if (page->freelist) {
1419 add_partial(n, page, tail);
1420 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1421 } else {
1422 stat(s, DEACTIVATE_FULL);
1423 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1424 add_full(n, page);
1426 slab_unlock(page);
1427 } else {
1428 stat(s, DEACTIVATE_EMPTY);
1429 if (n->nr_partial < s->min_partial) {
1431 * Adding an empty slab to the partial slabs in order
1432 * to avoid page allocator overhead. This slab needs
1433 * to come after the other slabs with objects in
1434 * so that the others get filled first. That way the
1435 * size of the partial list stays small.
1437 * kmem_cache_shrink can reclaim any empty slabs from
1438 * the partial list.
1440 add_partial(n, page, 1);
1441 slab_unlock(page);
1442 } else {
1443 slab_unlock(page);
1444 stat(s, FREE_SLAB);
1445 discard_slab(s, page);
1451 * Remove the cpu slab
1453 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1455 struct page *page = c->page;
1456 int tail = 1;
1458 if (page->freelist)
1459 stat(s, DEACTIVATE_REMOTE_FREES);
1461 * Merge cpu freelist into slab freelist. Typically we get here
1462 * because both freelists are empty. So this is unlikely
1463 * to occur.
1465 while (unlikely(c->freelist)) {
1466 void **object;
1468 tail = 0; /* Hot objects. Put the slab first */
1470 /* Retrieve object from cpu_freelist */
1471 object = c->freelist;
1472 c->freelist = get_freepointer(s, c->freelist);
1474 /* And put onto the regular freelist */
1475 set_freepointer(s, object, page->freelist);
1476 page->freelist = object;
1477 page->inuse--;
1479 c->page = NULL;
1480 unfreeze_slab(s, page, tail);
1483 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1485 stat(s, CPUSLAB_FLUSH);
1486 slab_lock(c->page);
1487 deactivate_slab(s, c);
1491 * Flush cpu slab.
1493 * Called from IPI handler with interrupts disabled.
1495 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1497 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1499 if (likely(c && c->page))
1500 flush_slab(s, c);
1503 static void flush_cpu_slab(void *d)
1505 struct kmem_cache *s = d;
1507 __flush_cpu_slab(s, smp_processor_id());
1510 static void flush_all(struct kmem_cache *s)
1512 on_each_cpu(flush_cpu_slab, s, 1);
1516 * Check if the objects in a per cpu structure fit numa
1517 * locality expectations.
1519 static inline int node_match(struct kmem_cache_cpu *c, int node)
1521 #ifdef CONFIG_NUMA
1522 if (node != NUMA_NO_NODE && c->node != node)
1523 return 0;
1524 #endif
1525 return 1;
1528 static int count_free(struct page *page)
1530 return page->objects - page->inuse;
1533 static unsigned long count_partial(struct kmem_cache_node *n,
1534 int (*get_count)(struct page *))
1536 unsigned long flags;
1537 unsigned long x = 0;
1538 struct page *page;
1540 spin_lock_irqsave(&n->list_lock, flags);
1541 list_for_each_entry(page, &n->partial, lru)
1542 x += get_count(page);
1543 spin_unlock_irqrestore(&n->list_lock, flags);
1544 return x;
1547 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1549 #ifdef CONFIG_SLUB_DEBUG
1550 return atomic_long_read(&n->total_objects);
1551 #else
1552 return 0;
1553 #endif
1556 static noinline void
1557 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1559 int node;
1561 printk(KERN_WARNING
1562 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1563 nid, gfpflags);
1564 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1565 "default order: %d, min order: %d\n", s->name, s->objsize,
1566 s->size, oo_order(s->oo), oo_order(s->min));
1568 if (oo_order(s->min) > get_order(s->objsize))
1569 printk(KERN_WARNING " %s debugging increased min order, use "
1570 "slub_debug=O to disable.\n", s->name);
1572 for_each_online_node(node) {
1573 struct kmem_cache_node *n = get_node(s, node);
1574 unsigned long nr_slabs;
1575 unsigned long nr_objs;
1576 unsigned long nr_free;
1578 if (!n)
1579 continue;
1581 nr_free = count_partial(n, count_free);
1582 nr_slabs = node_nr_slabs(n);
1583 nr_objs = node_nr_objs(n);
1585 printk(KERN_WARNING
1586 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1587 node, nr_slabs, nr_objs, nr_free);
1592 * Slow path. The lockless freelist is empty or we need to perform
1593 * debugging duties.
1595 * Interrupts are disabled.
1597 * Processing is still very fast if new objects have been freed to the
1598 * regular freelist. In that case we simply take over the regular freelist
1599 * as the lockless freelist and zap the regular freelist.
1601 * If that is not working then we fall back to the partial lists. We take the
1602 * first element of the freelist as the object to allocate now and move the
1603 * rest of the freelist to the lockless freelist.
1605 * And if we were unable to get a new slab from the partial slab lists then
1606 * we need to allocate a new slab. This is the slowest path since it involves
1607 * a call to the page allocator and the setup of a new slab.
1609 static void * BCMFASTPATH_HOST __slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1610 unsigned long addr, struct kmem_cache_cpu *c)
1612 void **object;
1613 struct page *new;
1615 /* We handle __GFP_ZERO in the caller */
1616 gfpflags &= ~__GFP_ZERO;
1618 if (!c->page)
1619 goto new_slab;
1621 slab_lock(c->page);
1622 if (unlikely(!node_match(c, node)))
1623 goto another_slab;
1625 stat(s, ALLOC_REFILL);
1627 load_freelist:
1628 object = c->page->freelist;
1629 if (unlikely(!object))
1630 goto another_slab;
1631 if (kmem_cache_debug(s))
1632 goto debug;
1634 c->freelist = get_freepointer(s, object);
1635 c->page->inuse = c->page->objects;
1636 c->page->freelist = NULL;
1637 c->node = page_to_nid(c->page);
1638 unlock_out:
1639 slab_unlock(c->page);
1640 stat(s, ALLOC_SLOWPATH);
1641 return object;
1643 another_slab:
1644 deactivate_slab(s, c);
1646 new_slab:
1647 new = get_partial(s, gfpflags, node);
1648 if (new) {
1649 c->page = new;
1650 stat(s, ALLOC_FROM_PARTIAL);
1651 goto load_freelist;
1654 if (gfpflags & __GFP_WAIT)
1655 local_irq_enable();
1657 new = new_slab(s, gfpflags, node);
1659 if (gfpflags & __GFP_WAIT)
1660 local_irq_disable();
1662 if (new) {
1663 c = __this_cpu_ptr(s->cpu_slab);
1664 stat(s, ALLOC_SLAB);
1665 if (c->page)
1666 flush_slab(s, c);
1667 slab_lock(new);
1668 __SetPageSlubFrozen(new);
1669 c->page = new;
1670 goto load_freelist;
1672 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1673 slab_out_of_memory(s, gfpflags, node);
1674 return NULL;
1675 debug:
1676 if (!alloc_debug_processing(s, c->page, object, addr))
1677 goto another_slab;
1679 c->page->inuse++;
1680 c->page->freelist = get_freepointer(s, object);
1681 c->node = -1;
1682 goto unlock_out;
1686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1687 * have the fastpath folded into their functions. So no function call
1688 * overhead for requests that can be satisfied on the fastpath.
1690 * The fastpath works by first checking if the lockless freelist can be used.
1691 * If not then __slab_alloc is called for slow processing.
1693 * Otherwise we can simply pick the next object from the lockless free list.
1695 static __always_inline void *slab_alloc(struct kmem_cache *s,
1696 gfp_t gfpflags, int node, unsigned long addr)
1698 void **object;
1699 struct kmem_cache_cpu *c;
1700 unsigned long flags;
1702 gfpflags &= gfp_allowed_mask;
1704 lockdep_trace_alloc(gfpflags);
1705 might_sleep_if(gfpflags & __GFP_WAIT);
1707 if (should_failslab(s->objsize, gfpflags, s->flags))
1708 return NULL;
1710 local_irq_save(flags);
1711 c = __this_cpu_ptr(s->cpu_slab);
1712 object = c->freelist;
1713 if (unlikely(!object || !node_match(c, node)))
1715 object = __slab_alloc(s, gfpflags, node, addr, c);
1717 else {
1718 c->freelist = get_freepointer(s, object);
1719 stat(s, ALLOC_FASTPATH);
1721 local_irq_restore(flags);
1723 if (unlikely(gfpflags & __GFP_ZERO) && object)
1724 memset(object, 0, s->objsize);
1726 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1727 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1729 return object;
1732 void * BCMFASTPATH_HOST kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1734 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1736 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1738 return ret;
1740 EXPORT_SYMBOL(kmem_cache_alloc);
1742 #ifdef CONFIG_TRACING
1743 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1745 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1747 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1748 #endif
1750 #ifdef CONFIG_NUMA
1751 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1753 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1755 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1756 s->objsize, s->size, gfpflags, node);
1758 return ret;
1760 EXPORT_SYMBOL(kmem_cache_alloc_node);
1761 #endif
1763 #ifdef CONFIG_TRACING
1764 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1765 gfp_t gfpflags,
1766 int node)
1768 return slab_alloc(s, gfpflags, node, _RET_IP_);
1770 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1771 #endif
1774 * Slow patch handling. This may still be called frequently since objects
1775 * have a longer lifetime than the cpu slabs in most processing loads.
1777 * So we still attempt to reduce cache line usage. Just take the slab
1778 * lock and free the item. If there is no additional partial page
1779 * handling required then we can return immediately.
1781 static void BCMFASTPATH_HOST __slab_free(struct kmem_cache *s, struct page *page,
1782 void *x, unsigned long addr)
1784 void *prior;
1785 void **object = (void *)x;
1787 stat(s, FREE_SLOWPATH);
1788 slab_lock(page);
1790 if (kmem_cache_debug(s))
1791 goto debug;
1793 checks_ok:
1794 prior = page->freelist;
1795 set_freepointer(s, object, prior);
1796 page->freelist = object;
1797 page->inuse--;
1799 if (unlikely(PageSlubFrozen(page))) {
1800 stat(s, FREE_FROZEN);
1801 goto out_unlock;
1804 if (unlikely(!page->inuse))
1805 goto slab_empty;
1808 * Objects left in the slab. If it was not on the partial list before
1809 * then add it.
1811 if (unlikely(!prior)) {
1812 add_partial(get_node(s, page_to_nid(page)), page, 1);
1813 stat(s, FREE_ADD_PARTIAL);
1816 out_unlock:
1817 slab_unlock(page);
1818 return;
1820 slab_empty:
1821 if (prior) {
1823 * Slab still on the partial list.
1825 remove_partial(s, page);
1826 stat(s, FREE_REMOVE_PARTIAL);
1828 slab_unlock(page);
1829 stat(s, FREE_SLAB);
1830 discard_slab(s, page);
1831 return;
1833 debug:
1834 if (!free_debug_processing(s, page, x, addr))
1835 goto out_unlock;
1836 goto checks_ok;
1840 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1841 * can perform fastpath freeing without additional function calls.
1843 * The fastpath is only possible if we are freeing to the current cpu slab
1844 * of this processor. This typically the case if we have just allocated
1845 * the item before.
1847 * If fastpath is not possible then fall back to __slab_free where we deal
1848 * with all sorts of special processing.
1850 static __always_inline void slab_free(struct kmem_cache *s,
1851 struct page *page, void *x, unsigned long addr)
1853 void **object = (void *)x;
1854 struct kmem_cache_cpu *c;
1855 unsigned long flags;
1857 kmemleak_free_recursive(x, s->flags);
1858 local_irq_save(flags);
1859 c = __this_cpu_ptr(s->cpu_slab);
1860 kmemcheck_slab_free(s, object, s->objsize);
1861 debug_check_no_locks_freed(object, s->objsize);
1862 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1863 debug_check_no_obj_freed(object, s->objsize);
1864 if (likely(page == c->page && c->node >= 0)) {
1865 set_freepointer(s, object, c->freelist);
1866 c->freelist = object;
1867 stat(s, FREE_FASTPATH);
1868 } else
1869 __slab_free(s, page, x, addr);
1871 local_irq_restore(flags);
1874 void BCMFASTPATH_HOST kmem_cache_free(struct kmem_cache *s, void *x)
1876 struct page *page;
1878 page = virt_to_head_page(x);
1880 slab_free(s, page, x, _RET_IP_);
1882 trace_kmem_cache_free(_RET_IP_, x);
1884 EXPORT_SYMBOL(kmem_cache_free);
1886 /* Figure out on which slab page the object resides */
1887 static struct page *get_object_page(const void *x)
1889 struct page *page = virt_to_head_page(x);
1891 if (!PageSlab(page))
1892 return NULL;
1894 return page;
1898 * Object placement in a slab is made very easy because we always start at
1899 * offset 0. If we tune the size of the object to the alignment then we can
1900 * get the required alignment by putting one properly sized object after
1901 * another.
1903 * Notice that the allocation order determines the sizes of the per cpu
1904 * caches. Each processor has always one slab available for allocations.
1905 * Increasing the allocation order reduces the number of times that slabs
1906 * must be moved on and off the partial lists and is therefore a factor in
1907 * locking overhead.
1911 * Mininum / Maximum order of slab pages. This influences locking overhead
1912 * and slab fragmentation. A higher order reduces the number of partial slabs
1913 * and increases the number of allocations possible without having to
1914 * take the list_lock.
1916 static int slub_min_order;
1917 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1918 static int slub_min_objects;
1921 * Merge control. If this is set then no merging of slab caches will occur.
1922 * (Could be removed. This was introduced to pacify the merge skeptics.)
1924 static int slub_nomerge;
1927 * Calculate the order of allocation given an slab object size.
1929 * The order of allocation has significant impact on performance and other
1930 * system components. Generally order 0 allocations should be preferred since
1931 * order 0 does not cause fragmentation in the page allocator. Larger objects
1932 * be problematic to put into order 0 slabs because there may be too much
1933 * unused space left. We go to a higher order if more than 1/16th of the slab
1934 * would be wasted.
1936 * In order to reach satisfactory performance we must ensure that a minimum
1937 * number of objects is in one slab. Otherwise we may generate too much
1938 * activity on the partial lists which requires taking the list_lock. This is
1939 * less a concern for large slabs though which are rarely used.
1941 * slub_max_order specifies the order where we begin to stop considering the
1942 * number of objects in a slab as critical. If we reach slub_max_order then
1943 * we try to keep the page order as low as possible. So we accept more waste
1944 * of space in favor of a small page order.
1946 * Higher order allocations also allow the placement of more objects in a
1947 * slab and thereby reduce object handling overhead. If the user has
1948 * requested a higher mininum order then we start with that one instead of
1949 * the smallest order which will fit the object.
1951 static inline int slab_order(int size, int min_objects,
1952 int max_order, int fract_leftover)
1954 int order;
1955 int rem;
1956 int min_order = slub_min_order;
1958 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1959 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1961 for (order = max(min_order,
1962 fls(min_objects * size - 1) - PAGE_SHIFT);
1963 order <= max_order; order++) {
1965 unsigned long slab_size = PAGE_SIZE << order;
1967 if (slab_size < min_objects * size)
1968 continue;
1970 rem = slab_size % size;
1972 if (rem <= slab_size / fract_leftover)
1973 break;
1977 return order;
1980 static inline int calculate_order(int size)
1982 int order;
1983 int min_objects;
1984 int fraction;
1985 int max_objects;
1988 * Attempt to find best configuration for a slab. This
1989 * works by first attempting to generate a layout with
1990 * the best configuration and backing off gradually.
1992 * First we reduce the acceptable waste in a slab. Then
1993 * we reduce the minimum objects required in a slab.
1995 min_objects = slub_min_objects;
1996 if (!min_objects)
1997 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1998 max_objects = (PAGE_SIZE << slub_max_order)/size;
1999 min_objects = min(min_objects, max_objects);
2001 while (min_objects > 1) {
2002 fraction = 16;
2003 while (fraction >= 4) {
2004 order = slab_order(size, min_objects,
2005 slub_max_order, fraction);
2006 if (order <= slub_max_order)
2007 return order;
2008 fraction /= 2;
2010 min_objects--;
2014 * We were unable to place multiple objects in a slab. Now
2015 * lets see if we can place a single object there.
2017 order = slab_order(size, 1, slub_max_order, 1);
2018 if (order <= slub_max_order)
2019 return order;
2022 * Doh this slab cannot be placed using slub_max_order.
2024 order = slab_order(size, 1, MAX_ORDER, 1);
2025 if (order < MAX_ORDER)
2026 return order;
2027 return -ENOSYS;
2031 * Figure out what the alignment of the objects will be.
2033 static unsigned long calculate_alignment(unsigned long flags,
2034 unsigned long align, unsigned long size)
2037 * If the user wants hardware cache aligned objects then follow that
2038 * suggestion if the object is sufficiently large.
2040 * The hardware cache alignment cannot override the specified
2041 * alignment though. If that is greater then use it.
2043 if (flags & SLAB_HWCACHE_ALIGN) {
2044 unsigned long ralign = cache_line_size();
2045 while (size <= ralign / 2)
2046 ralign /= 2;
2047 align = max(align, ralign);
2050 if (align < ARCH_SLAB_MINALIGN)
2051 align = ARCH_SLAB_MINALIGN;
2053 return ALIGN(align, sizeof(void *));
2056 static void
2057 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2059 n->nr_partial = 0;
2060 spin_lock_init(&n->list_lock);
2061 INIT_LIST_HEAD(&n->partial);
2062 #ifdef CONFIG_SLUB_DEBUG
2063 atomic_long_set(&n->nr_slabs, 0);
2064 atomic_long_set(&n->total_objects, 0);
2065 INIT_LIST_HEAD(&n->full);
2066 #endif
2069 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2071 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2073 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2075 * Boot time creation of the kmalloc array. Use static per cpu data
2076 * since the per cpu allocator is not available yet.
2078 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2079 else
2080 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2082 if (!s->cpu_slab)
2083 return 0;
2085 return 1;
2088 #ifdef CONFIG_NUMA
2090 * No kmalloc_node yet so do it by hand. We know that this is the first
2091 * slab on the node for this slabcache. There are no concurrent accesses
2092 * possible.
2094 * Note that this function only works on the kmalloc_node_cache
2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2096 * memory on a fresh node that has no slab structures yet.
2098 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2100 struct page *page;
2101 struct kmem_cache_node *n;
2102 unsigned long flags;
2104 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2106 page = new_slab(kmalloc_caches, gfpflags, node);
2108 BUG_ON(!page);
2109 if (page_to_nid(page) != node) {
2110 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2111 "node %d\n", node);
2112 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2113 "in order to be able to continue\n");
2116 n = page->freelist;
2117 BUG_ON(!n);
2118 page->freelist = get_freepointer(kmalloc_caches, n);
2119 page->inuse++;
2120 kmalloc_caches->node[node] = n;
2121 #ifdef CONFIG_SLUB_DEBUG
2122 init_object(kmalloc_caches, n, 1);
2123 init_tracking(kmalloc_caches, n);
2124 #endif
2125 init_kmem_cache_node(n, kmalloc_caches);
2126 inc_slabs_node(kmalloc_caches, node, page->objects);
2129 * lockdep requires consistent irq usage for each lock
2130 * so even though there cannot be a race this early in
2131 * the boot sequence, we still disable irqs.
2133 local_irq_save(flags);
2134 add_partial(n, page, 0);
2135 local_irq_restore(flags);
2138 static void free_kmem_cache_nodes(struct kmem_cache *s)
2140 int node;
2142 for_each_node_state(node, N_NORMAL_MEMORY) {
2143 struct kmem_cache_node *n = s->node[node];
2144 if (n)
2145 kmem_cache_free(kmalloc_caches, n);
2146 s->node[node] = NULL;
2150 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2152 int node;
2154 for_each_node_state(node, N_NORMAL_MEMORY) {
2155 struct kmem_cache_node *n;
2157 if (slab_state == DOWN) {
2158 early_kmem_cache_node_alloc(gfpflags, node);
2159 continue;
2161 n = kmem_cache_alloc_node(kmalloc_caches,
2162 gfpflags, node);
2164 if (!n) {
2165 free_kmem_cache_nodes(s);
2166 return 0;
2169 s->node[node] = n;
2170 init_kmem_cache_node(n, s);
2172 return 1;
2174 #else
2175 static void free_kmem_cache_nodes(struct kmem_cache *s)
2179 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2181 init_kmem_cache_node(&s->local_node, s);
2182 return 1;
2184 #endif
2186 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2188 if (min < MIN_PARTIAL)
2189 min = MIN_PARTIAL;
2190 else if (min > MAX_PARTIAL)
2191 min = MAX_PARTIAL;
2192 s->min_partial = min;
2196 * calculate_sizes() determines the order and the distribution of data within
2197 * a slab object.
2199 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2201 unsigned long flags = s->flags;
2202 unsigned long size = s->objsize;
2203 unsigned long align = s->align;
2204 int order;
2207 * Round up object size to the next word boundary. We can only
2208 * place the free pointer at word boundaries and this determines
2209 * the possible location of the free pointer.
2211 size = ALIGN(size, sizeof(void *));
2213 #ifdef CONFIG_SLUB_DEBUG
2215 * Determine if we can poison the object itself. If the user of
2216 * the slab may touch the object after free or before allocation
2217 * then we should never poison the object itself.
2219 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2220 !s->ctor)
2221 s->flags |= __OBJECT_POISON;
2222 else
2223 s->flags &= ~__OBJECT_POISON;
2227 * If we are Redzoning then check if there is some space between the
2228 * end of the object and the free pointer. If not then add an
2229 * additional word to have some bytes to store Redzone information.
2231 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2232 size += sizeof(void *);
2233 #endif
2236 * With that we have determined the number of bytes in actual use
2237 * by the object. This is the potential offset to the free pointer.
2239 s->inuse = size;
2241 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2242 s->ctor)) {
2244 * Relocate free pointer after the object if it is not
2245 * permitted to overwrite the first word of the object on
2246 * kmem_cache_free.
2248 * This is the case if we do RCU, have a constructor or
2249 * destructor or are poisoning the objects.
2251 s->offset = size;
2252 size += sizeof(void *);
2255 #ifdef CONFIG_SLUB_DEBUG
2256 if (flags & SLAB_STORE_USER)
2258 * Need to store information about allocs and frees after
2259 * the object.
2261 size += 2 * sizeof(struct track);
2263 if (flags & SLAB_RED_ZONE)
2265 * Add some empty padding so that we can catch
2266 * overwrites from earlier objects rather than let
2267 * tracking information or the free pointer be
2268 * corrupted if a user writes before the start
2269 * of the object.
2271 size += sizeof(void *);
2272 #endif
2275 * Determine the alignment based on various parameters that the
2276 * user specified and the dynamic determination of cache line size
2277 * on bootup.
2279 align = calculate_alignment(flags, align, s->objsize);
2280 s->align = align;
2283 * SLUB stores one object immediately after another beginning from
2284 * offset 0. In order to align the objects we have to simply size
2285 * each object to conform to the alignment.
2287 size = ALIGN(size, align);
2288 s->size = size;
2289 if (forced_order >= 0)
2290 order = forced_order;
2291 else
2292 order = calculate_order(size);
2294 if (order < 0)
2295 return 0;
2297 s->allocflags = 0;
2298 if (order)
2299 s->allocflags |= __GFP_COMP;
2301 if (s->flags & SLAB_CACHE_DMA)
2302 s->allocflags |= SLUB_DMA;
2304 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2305 s->allocflags |= __GFP_RECLAIMABLE;
2308 * Determine the number of objects per slab
2310 s->oo = oo_make(order, size);
2311 s->min = oo_make(get_order(size), size);
2312 if (oo_objects(s->oo) > oo_objects(s->max))
2313 s->max = s->oo;
2315 return !!oo_objects(s->oo);
2319 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2320 const char *name, size_t size,
2321 size_t align, unsigned long flags,
2322 void (*ctor)(void *))
2324 memset(s, 0, kmem_size);
2325 s->name = name;
2326 s->ctor = ctor;
2327 s->objsize = size;
2328 s->align = align;
2329 s->flags = kmem_cache_flags(size, flags, name, ctor);
2331 if (!calculate_sizes(s, -1))
2332 goto error;
2333 if (disable_higher_order_debug) {
2335 * Disable debugging flags that store metadata if the min slab
2336 * order increased.
2338 if (get_order(s->size) > get_order(s->objsize)) {
2339 s->flags &= ~DEBUG_METADATA_FLAGS;
2340 s->offset = 0;
2341 if (!calculate_sizes(s, -1))
2342 goto error;
2347 * The larger the object size is, the more pages we want on the partial
2348 * list to avoid pounding the page allocator excessively.
2350 set_min_partial(s, ilog2(s->size));
2351 s->refcount = 1;
2352 #ifdef CONFIG_NUMA
2353 s->remote_node_defrag_ratio = 1000;
2354 #endif
2355 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2356 goto error;
2358 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2359 return 1;
2361 free_kmem_cache_nodes(s);
2362 error:
2363 if (flags & SLAB_PANIC)
2364 panic("Cannot create slab %s size=%lu realsize=%u "
2365 "order=%u offset=%u flags=%lx\n",
2366 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2367 s->offset, flags);
2368 return 0;
2372 * Check if a given pointer is valid
2374 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2376 struct page *page;
2378 if (!kern_ptr_validate(object, s->size))
2379 return 0;
2381 page = get_object_page(object);
2383 if (!page || s != page->slab)
2384 /* No slab or wrong slab */
2385 return 0;
2387 if (!check_valid_pointer(s, page, object))
2388 return 0;
2391 * We could also check if the object is on the slabs freelist.
2392 * But this would be too expensive and it seems that the main
2393 * purpose of kmem_ptr_valid() is to check if the object belongs
2394 * to a certain slab.
2396 return 1;
2398 EXPORT_SYMBOL(kmem_ptr_validate);
2401 * Determine the size of a slab object
2403 unsigned int kmem_cache_size(struct kmem_cache *s)
2405 return s->objsize;
2407 EXPORT_SYMBOL(kmem_cache_size);
2409 const char *kmem_cache_name(struct kmem_cache *s)
2411 return s->name;
2413 EXPORT_SYMBOL(kmem_cache_name);
2415 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2416 const char *text)
2418 #ifdef CONFIG_SLUB_DEBUG
2419 void *addr = page_address(page);
2420 void *p;
2421 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2422 GFP_ATOMIC);
2424 if (!map)
2425 return;
2426 slab_err(s, page, "%s", text);
2427 slab_lock(page);
2428 for_each_free_object(p, s, page->freelist)
2429 set_bit(slab_index(p, s, addr), map);
2431 for_each_object(p, s, addr, page->objects) {
2433 if (!test_bit(slab_index(p, s, addr), map)) {
2434 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2435 p, p - addr);
2436 print_tracking(s, p);
2439 slab_unlock(page);
2440 kfree(map);
2441 #endif
2445 * Attempt to free all partial slabs on a node.
2447 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2449 unsigned long flags;
2450 struct page *page, *h;
2452 spin_lock_irqsave(&n->list_lock, flags);
2453 list_for_each_entry_safe(page, h, &n->partial, lru) {
2454 if (!page->inuse) {
2455 list_del(&page->lru);
2456 discard_slab(s, page);
2457 n->nr_partial--;
2458 } else {
2459 list_slab_objects(s, page,
2460 "Objects remaining on kmem_cache_close()");
2463 spin_unlock_irqrestore(&n->list_lock, flags);
2467 * Release all resources used by a slab cache.
2469 static inline int kmem_cache_close(struct kmem_cache *s)
2471 int node;
2473 flush_all(s);
2474 free_percpu(s->cpu_slab);
2475 /* Attempt to free all objects */
2476 for_each_node_state(node, N_NORMAL_MEMORY) {
2477 struct kmem_cache_node *n = get_node(s, node);
2479 free_partial(s, n);
2480 if (n->nr_partial || slabs_node(s, node))
2481 return 1;
2483 free_kmem_cache_nodes(s);
2484 return 0;
2488 * Close a cache and release the kmem_cache structure
2489 * (must be used for caches created using kmem_cache_create)
2491 void kmem_cache_destroy(struct kmem_cache *s)
2493 down_write(&slub_lock);
2494 s->refcount--;
2495 if (!s->refcount) {
2496 list_del(&s->list);
2497 if (kmem_cache_close(s)) {
2498 printk(KERN_ERR "SLUB %s: %s called for cache that "
2499 "still has objects.\n", s->name, __func__);
2500 dump_stack();
2502 if (s->flags & SLAB_DESTROY_BY_RCU)
2503 rcu_barrier();
2504 sysfs_slab_remove(s);
2506 up_write(&slub_lock);
2508 EXPORT_SYMBOL(kmem_cache_destroy);
2510 /********************************************************************
2511 * Kmalloc subsystem
2512 *******************************************************************/
2514 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2515 EXPORT_SYMBOL(kmalloc_caches);
2517 static int __init setup_slub_min_order(char *str)
2519 get_option(&str, &slub_min_order);
2521 return 1;
2524 __setup("slub_min_order=", setup_slub_min_order);
2526 static int __init setup_slub_max_order(char *str)
2528 get_option(&str, &slub_max_order);
2529 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2531 return 1;
2534 __setup("slub_max_order=", setup_slub_max_order);
2536 static int __init setup_slub_min_objects(char *str)
2538 get_option(&str, &slub_min_objects);
2540 return 1;
2543 __setup("slub_min_objects=", setup_slub_min_objects);
2545 static int __init setup_slub_nomerge(char *str)
2547 slub_nomerge = 1;
2548 return 1;
2551 __setup("slub_nomerge", setup_slub_nomerge);
2553 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2554 const char *name, int size, gfp_t gfp_flags)
2556 unsigned int flags = 0;
2558 if (gfp_flags & SLUB_DMA)
2559 flags = SLAB_CACHE_DMA;
2562 * This function is called with IRQs disabled during early-boot on
2563 * single CPU so there's no need to take slub_lock here.
2565 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2566 flags, NULL))
2567 goto panic;
2569 list_add(&s->list, &slab_caches);
2571 if (sysfs_slab_add(s))
2572 goto panic;
2573 return s;
2575 panic:
2576 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2579 #ifdef CONFIG_ZONE_DMA
2580 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2582 static void sysfs_add_func(struct work_struct *w)
2584 struct kmem_cache *s;
2586 down_write(&slub_lock);
2587 list_for_each_entry(s, &slab_caches, list) {
2588 if (s->flags & __SYSFS_ADD_DEFERRED) {
2589 s->flags &= ~__SYSFS_ADD_DEFERRED;
2590 sysfs_slab_add(s);
2593 up_write(&slub_lock);
2596 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2598 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2600 struct kmem_cache *s;
2601 char *text;
2602 size_t realsize;
2603 unsigned long slabflags;
2604 int i;
2606 s = kmalloc_caches_dma[index];
2607 if (s)
2608 return s;
2610 /* Dynamically create dma cache */
2611 if (flags & __GFP_WAIT)
2612 down_write(&slub_lock);
2613 else {
2614 if (!down_write_trylock(&slub_lock))
2615 goto out;
2618 if (kmalloc_caches_dma[index])
2619 goto unlock_out;
2621 realsize = kmalloc_caches[index].objsize;
2622 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2623 (unsigned int)realsize);
2625 s = NULL;
2626 for (i = 0; i < KMALLOC_CACHES; i++)
2627 if (!kmalloc_caches[i].size)
2628 break;
2630 BUG_ON(i >= KMALLOC_CACHES);
2631 s = kmalloc_caches + i;
2634 * Must defer sysfs creation to a workqueue because we don't know
2635 * what context we are called from. Before sysfs comes up, we don't
2636 * need to do anything because our sysfs initcall will start by
2637 * adding all existing slabs to sysfs.
2639 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2640 if (slab_state >= SYSFS)
2641 slabflags |= __SYSFS_ADD_DEFERRED;
2643 if (!text || !kmem_cache_open(s, flags, text,
2644 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2645 s->size = 0;
2646 kfree(text);
2647 goto unlock_out;
2650 list_add(&s->list, &slab_caches);
2651 kmalloc_caches_dma[index] = s;
2653 if (slab_state >= SYSFS)
2654 schedule_work(&sysfs_add_work);
2656 unlock_out:
2657 up_write(&slub_lock);
2658 out:
2659 return kmalloc_caches_dma[index];
2661 #endif
2664 * Conversion table for small slabs sizes / 8 to the index in the
2665 * kmalloc array. This is necessary for slabs < 192 since we have non power
2666 * of two cache sizes there. The size of larger slabs can be determined using
2667 * fls.
2669 static s8 size_index[24] = {
2670 3, /* 8 */
2671 4, /* 16 */
2672 5, /* 24 */
2673 5, /* 32 */
2674 6, /* 40 */
2675 6, /* 48 */
2676 6, /* 56 */
2677 6, /* 64 */
2678 1, /* 72 */
2679 1, /* 80 */
2680 1, /* 88 */
2681 1, /* 96 */
2682 7, /* 104 */
2683 7, /* 112 */
2684 7, /* 120 */
2685 7, /* 128 */
2686 2, /* 136 */
2687 2, /* 144 */
2688 2, /* 152 */
2689 2, /* 160 */
2690 2, /* 168 */
2691 2, /* 176 */
2692 2, /* 184 */
2693 2 /* 192 */
2696 static inline int size_index_elem(size_t bytes)
2698 return (bytes - 1) / 8;
2701 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2703 int index;
2705 if (size <= 192) {
2706 if (!size)
2707 return ZERO_SIZE_PTR;
2709 index = size_index[size_index_elem(size)];
2710 } else
2711 index = fls(size - 1);
2713 #ifdef CONFIG_ZONE_DMA
2714 if (unlikely((flags & SLUB_DMA)))
2715 return dma_kmalloc_cache(index, flags);
2717 #endif
2718 return &kmalloc_caches[index];
2721 void *__kmalloc(size_t size, gfp_t flags)
2723 struct kmem_cache *s;
2724 void *ret;
2726 if (unlikely(size > SLUB_MAX_SIZE))
2727 return kmalloc_large(size, flags);
2729 s = get_slab(size, flags);
2731 if (unlikely(ZERO_OR_NULL_PTR(s)))
2732 return s;
2734 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2736 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2738 return ret;
2740 EXPORT_SYMBOL(__kmalloc);
2742 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2744 struct page *page;
2745 void *ptr = NULL;
2747 flags |= __GFP_COMP | __GFP_NOTRACK;
2748 page = alloc_pages_node(node, flags, get_order(size));
2749 if (page)
2750 ptr = page_address(page);
2752 kmemleak_alloc(ptr, size, 1, flags);
2753 return ptr;
2756 #ifdef CONFIG_NUMA
2757 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2759 struct kmem_cache *s;
2760 void *ret;
2762 if (unlikely(size > SLUB_MAX_SIZE)) {
2763 ret = kmalloc_large_node(size, flags, node);
2765 trace_kmalloc_node(_RET_IP_, ret,
2766 size, PAGE_SIZE << get_order(size),
2767 flags, node);
2769 return ret;
2772 s = get_slab(size, flags);
2774 if (unlikely(ZERO_OR_NULL_PTR(s)))
2775 return s;
2777 ret = slab_alloc(s, flags, node, _RET_IP_);
2779 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2781 return ret;
2783 EXPORT_SYMBOL(__kmalloc_node);
2784 #endif
2786 size_t ksize(const void *object)
2788 struct page *page;
2789 struct kmem_cache *s;
2791 if (unlikely(object == ZERO_SIZE_PTR))
2792 return 0;
2794 page = virt_to_head_page(object);
2796 if (unlikely(!PageSlab(page))) {
2797 WARN_ON(!PageCompound(page));
2798 return PAGE_SIZE << compound_order(page);
2800 s = page->slab;
2802 #ifdef CONFIG_SLUB_DEBUG
2804 * Debugging requires use of the padding between object
2805 * and whatever may come after it.
2807 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2808 return s->objsize;
2810 #endif
2812 * If we have the need to store the freelist pointer
2813 * back there or track user information then we can
2814 * only use the space before that information.
2816 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2817 return s->inuse;
2819 * Else we can use all the padding etc for the allocation
2821 return s->size;
2823 EXPORT_SYMBOL(ksize);
2825 void BCMFASTPATH_HOST kfree(const void *x)
2827 struct page *page;
2828 void *object = (void *)x;
2830 trace_kfree(_RET_IP_, x);
2832 if (unlikely(ZERO_OR_NULL_PTR(x)))
2833 return;
2835 page = virt_to_head_page(x);
2836 if (unlikely(!PageSlab(page))) {
2837 BUG_ON(!PageCompound(page));
2838 kmemleak_free(x);
2839 put_page(page);
2840 return;
2842 slab_free(page->slab, page, object, _RET_IP_);
2844 EXPORT_SYMBOL(kfree);
2847 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2848 * the remaining slabs by the number of items in use. The slabs with the
2849 * most items in use come first. New allocations will then fill those up
2850 * and thus they can be removed from the partial lists.
2852 * The slabs with the least items are placed last. This results in them
2853 * being allocated from last increasing the chance that the last objects
2854 * are freed in them.
2856 int kmem_cache_shrink(struct kmem_cache *s)
2858 int node;
2859 int i;
2860 struct kmem_cache_node *n;
2861 struct page *page;
2862 struct page *t;
2863 int objects = oo_objects(s->max);
2864 struct list_head *slabs_by_inuse =
2865 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2866 unsigned long flags;
2868 if (!slabs_by_inuse)
2869 return -ENOMEM;
2871 flush_all(s);
2872 for_each_node_state(node, N_NORMAL_MEMORY) {
2873 n = get_node(s, node);
2875 if (!n->nr_partial)
2876 continue;
2878 for (i = 0; i < objects; i++)
2879 INIT_LIST_HEAD(slabs_by_inuse + i);
2881 spin_lock_irqsave(&n->list_lock, flags);
2884 * Build lists indexed by the items in use in each slab.
2886 * Note that concurrent frees may occur while we hold the
2887 * list_lock. page->inuse here is the upper limit.
2889 list_for_each_entry_safe(page, t, &n->partial, lru) {
2890 if (!page->inuse && slab_trylock(page)) {
2892 * Must hold slab lock here because slab_free
2893 * may have freed the last object and be
2894 * waiting to release the slab.
2896 list_del(&page->lru);
2897 n->nr_partial--;
2898 slab_unlock(page);
2899 discard_slab(s, page);
2900 } else {
2901 list_move(&page->lru,
2902 slabs_by_inuse + page->inuse);
2907 * Rebuild the partial list with the slabs filled up most
2908 * first and the least used slabs at the end.
2910 for (i = objects - 1; i >= 0; i--)
2911 list_splice(slabs_by_inuse + i, n->partial.prev);
2913 spin_unlock_irqrestore(&n->list_lock, flags);
2916 kfree(slabs_by_inuse);
2917 return 0;
2919 EXPORT_SYMBOL(kmem_cache_shrink);
2921 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2922 static int slab_mem_going_offline_callback(void *arg)
2924 struct kmem_cache *s;
2926 down_read(&slub_lock);
2927 list_for_each_entry(s, &slab_caches, list)
2928 kmem_cache_shrink(s);
2929 up_read(&slub_lock);
2931 return 0;
2934 static void slab_mem_offline_callback(void *arg)
2936 struct kmem_cache_node *n;
2937 struct kmem_cache *s;
2938 struct memory_notify *marg = arg;
2939 int offline_node;
2941 offline_node = marg->status_change_nid;
2944 * If the node still has available memory. we need kmem_cache_node
2945 * for it yet.
2947 if (offline_node < 0)
2948 return;
2950 down_read(&slub_lock);
2951 list_for_each_entry(s, &slab_caches, list) {
2952 n = get_node(s, offline_node);
2953 if (n) {
2955 * if n->nr_slabs > 0, slabs still exist on the node
2956 * that is going down. We were unable to free them,
2957 * and offline_pages() function shouldn't call this
2958 * callback. So, we must fail.
2960 BUG_ON(slabs_node(s, offline_node));
2962 s->node[offline_node] = NULL;
2963 kmem_cache_free(kmalloc_caches, n);
2966 up_read(&slub_lock);
2969 static int slab_mem_going_online_callback(void *arg)
2971 struct kmem_cache_node *n;
2972 struct kmem_cache *s;
2973 struct memory_notify *marg = arg;
2974 int nid = marg->status_change_nid;
2975 int ret = 0;
2978 * If the node's memory is already available, then kmem_cache_node is
2979 * already created. Nothing to do.
2981 if (nid < 0)
2982 return 0;
2985 * We are bringing a node online. No memory is available yet. We must
2986 * allocate a kmem_cache_node structure in order to bring the node
2987 * online.
2989 down_read(&slub_lock);
2990 list_for_each_entry(s, &slab_caches, list) {
2991 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2992 if (!n) {
2993 ret = -ENOMEM;
2994 goto out;
2996 init_kmem_cache_node(n, s);
2997 s->node[nid] = n;
2999 out:
3000 up_read(&slub_lock);
3001 return ret;
3004 static int slab_memory_callback(struct notifier_block *self,
3005 unsigned long action, void *arg)
3007 int ret = 0;
3009 switch (action) {
3010 case MEM_GOING_ONLINE:
3011 ret = slab_mem_going_online_callback(arg);
3012 break;
3013 case MEM_GOING_OFFLINE:
3014 ret = slab_mem_going_offline_callback(arg);
3015 break;
3016 case MEM_OFFLINE:
3017 case MEM_CANCEL_ONLINE:
3018 slab_mem_offline_callback(arg);
3019 break;
3020 case MEM_ONLINE:
3021 case MEM_CANCEL_OFFLINE:
3022 break;
3024 if (ret)
3025 ret = notifier_from_errno(ret);
3026 else
3027 ret = NOTIFY_OK;
3028 return ret;
3031 #endif /* CONFIG_MEMORY_HOTPLUG */
3033 /********************************************************************
3034 * Basic setup of slabs
3035 *******************************************************************/
3037 void __init kmem_cache_init(void)
3039 int i;
3040 int caches = 0;
3042 #ifdef CONFIG_NUMA
3044 * Must first have the slab cache available for the allocations of the
3045 * struct kmem_cache_node's. There is special bootstrap code in
3046 * kmem_cache_open for slab_state == DOWN.
3048 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3049 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3050 kmalloc_caches[0].refcount = -1;
3051 caches++;
3053 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3054 #endif
3056 /* Able to allocate the per node structures */
3057 slab_state = PARTIAL;
3059 /* Caches that are not of the two-to-the-power-of size */
3060 if (KMALLOC_MIN_SIZE <= 32) {
3061 create_kmalloc_cache(&kmalloc_caches[1],
3062 "kmalloc-96", 96, GFP_NOWAIT);
3063 caches++;
3065 if (KMALLOC_MIN_SIZE <= 64) {
3066 create_kmalloc_cache(&kmalloc_caches[2],
3067 "kmalloc-192", 192, GFP_NOWAIT);
3068 caches++;
3071 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3072 create_kmalloc_cache(&kmalloc_caches[i],
3073 "kmalloc", 1 << i, GFP_NOWAIT);
3074 caches++;
3079 * Patch up the size_index table if we have strange large alignment
3080 * requirements for the kmalloc array. This is only the case for
3081 * MIPS it seems. The standard arches will not generate any code here.
3083 * Largest permitted alignment is 256 bytes due to the way we
3084 * handle the index determination for the smaller caches.
3086 * Make sure that nothing crazy happens if someone starts tinkering
3087 * around with ARCH_KMALLOC_MINALIGN
3089 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3090 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3092 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3093 int elem = size_index_elem(i);
3094 if (elem >= ARRAY_SIZE(size_index))
3095 break;
3096 size_index[elem] = KMALLOC_SHIFT_LOW;
3099 if (KMALLOC_MIN_SIZE == 64) {
3101 * The 96 byte size cache is not used if the alignment
3102 * is 64 byte.
3104 for (i = 64 + 8; i <= 96; i += 8)
3105 size_index[size_index_elem(i)] = 7;
3106 } else if (KMALLOC_MIN_SIZE == 128) {
3108 * The 192 byte sized cache is not used if the alignment
3109 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3110 * instead.
3112 for (i = 128 + 8; i <= 192; i += 8)
3113 size_index[size_index_elem(i)] = 8;
3116 slab_state = UP;
3118 /* Provide the correct kmalloc names now that the caches are up */
3119 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3120 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3122 BUG_ON(!s);
3123 kmalloc_caches[i].name = s;
3126 #ifdef CONFIG_SMP
3127 register_cpu_notifier(&slab_notifier);
3128 #endif
3129 #ifdef CONFIG_NUMA
3130 kmem_size = offsetof(struct kmem_cache, node) +
3131 nr_node_ids * sizeof(struct kmem_cache_node *);
3132 #else
3133 kmem_size = sizeof(struct kmem_cache);
3134 #endif
3136 printk(KERN_INFO
3137 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3138 " CPUs=%d, Nodes=%d\n",
3139 caches, cache_line_size(),
3140 slub_min_order, slub_max_order, slub_min_objects,
3141 nr_cpu_ids, nr_node_ids);
3144 void __init kmem_cache_init_late(void)
3149 * Find a mergeable slab cache
3151 static int slab_unmergeable(struct kmem_cache *s)
3153 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3154 return 1;
3156 if (s->ctor)
3157 return 1;
3160 * We may have set a slab to be unmergeable during bootstrap.
3162 if (s->refcount < 0)
3163 return 1;
3165 return 0;
3168 static struct kmem_cache *find_mergeable(size_t size,
3169 size_t align, unsigned long flags, const char *name,
3170 void (*ctor)(void *))
3172 struct kmem_cache *s;
3174 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3175 return NULL;
3177 if (ctor)
3178 return NULL;
3180 size = ALIGN(size, sizeof(void *));
3181 align = calculate_alignment(flags, align, size);
3182 size = ALIGN(size, align);
3183 flags = kmem_cache_flags(size, flags, name, NULL);
3185 list_for_each_entry(s, &slab_caches, list) {
3186 if (slab_unmergeable(s))
3187 continue;
3189 if (size > s->size)
3190 continue;
3192 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3193 continue;
3195 * Check if alignment is compatible.
3196 * Courtesy of Adrian Drzewiecki
3198 if ((s->size & ~(align - 1)) != s->size)
3199 continue;
3201 if (s->size - size >= sizeof(void *))
3202 continue;
3204 return s;
3206 return NULL;
3209 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3210 size_t align, unsigned long flags, void (*ctor)(void *))
3212 struct kmem_cache *s;
3214 if (WARN_ON(!name))
3215 return NULL;
3217 down_write(&slub_lock);
3218 s = find_mergeable(size, align, flags, name, ctor);
3219 if (s) {
3220 s->refcount++;
3222 * Adjust the object sizes so that we clear
3223 * the complete object on kzalloc.
3225 s->objsize = max(s->objsize, (int)size);
3226 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3228 if (sysfs_slab_alias(s, name)) {
3229 s->refcount--;
3230 goto err;
3232 up_write(&slub_lock);
3233 return s;
3236 s = kmalloc(kmem_size, GFP_KERNEL);
3237 if (s) {
3238 if (kmem_cache_open(s, GFP_KERNEL, name,
3239 size, align, flags, ctor)) {
3240 list_add(&s->list, &slab_caches);
3241 if (sysfs_slab_add(s)) {
3242 list_del(&s->list);
3243 kfree(s);
3244 goto err;
3246 up_write(&slub_lock);
3247 return s;
3249 kfree(s);
3251 up_write(&slub_lock);
3253 err:
3254 if (flags & SLAB_PANIC)
3255 panic("Cannot create slabcache %s\n", name);
3256 else
3257 s = NULL;
3258 return s;
3260 EXPORT_SYMBOL(kmem_cache_create);
3262 #ifdef CONFIG_SMP
3264 * Use the cpu notifier to insure that the cpu slabs are flushed when
3265 * necessary.
3267 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3268 unsigned long action, void *hcpu)
3270 long cpu = (long)hcpu;
3271 struct kmem_cache *s;
3272 unsigned long flags;
3274 switch (action) {
3275 case CPU_UP_CANCELED:
3276 case CPU_UP_CANCELED_FROZEN:
3277 case CPU_DEAD:
3278 case CPU_DEAD_FROZEN:
3279 down_read(&slub_lock);
3280 list_for_each_entry(s, &slab_caches, list) {
3281 local_irq_save(flags);
3282 __flush_cpu_slab(s, cpu);
3283 local_irq_restore(flags);
3285 up_read(&slub_lock);
3286 break;
3287 default:
3288 break;
3290 return NOTIFY_OK;
3293 static struct notifier_block __cpuinitdata slab_notifier = {
3294 .notifier_call = slab_cpuup_callback
3297 #endif
3299 void * BCMFASTPATH_HOST __kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3301 struct kmem_cache *s;
3302 void *ret;
3304 if (unlikely(size > SLUB_MAX_SIZE))
3305 return kmalloc_large(size, gfpflags);
3307 s = get_slab(size, gfpflags);
3309 if (unlikely(ZERO_OR_NULL_PTR(s)))
3310 return s;
3312 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3314 /* Honor the call site pointer we recieved. */
3315 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3317 return ret;
3320 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3321 int node, unsigned long caller)
3323 struct kmem_cache *s;
3324 void *ret;
3326 if (unlikely(size > SLUB_MAX_SIZE)) {
3327 ret = kmalloc_large_node(size, gfpflags, node);
3329 trace_kmalloc_node(caller, ret,
3330 size, PAGE_SIZE << get_order(size),
3331 gfpflags, node);
3333 return ret;
3336 s = get_slab(size, gfpflags);
3338 if (unlikely(ZERO_OR_NULL_PTR(s)))
3339 return s;
3341 ret = slab_alloc(s, gfpflags, node, caller);
3343 /* Honor the call site pointer we recieved. */
3344 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3346 return ret;
3349 #ifdef CONFIG_SLUB_DEBUG
3350 static int count_inuse(struct page *page)
3352 return page->inuse;
3355 static int count_total(struct page *page)
3357 return page->objects;
3360 static int validate_slab(struct kmem_cache *s, struct page *page,
3361 unsigned long *map)
3363 void *p;
3364 void *addr = page_address(page);
3366 if (!check_slab(s, page) ||
3367 !on_freelist(s, page, NULL))
3368 return 0;
3370 /* Now we know that a valid freelist exists */
3371 bitmap_zero(map, page->objects);
3373 for_each_free_object(p, s, page->freelist) {
3374 set_bit(slab_index(p, s, addr), map);
3375 if (!check_object(s, page, p, 0))
3376 return 0;
3379 for_each_object(p, s, addr, page->objects)
3380 if (!test_bit(slab_index(p, s, addr), map))
3381 if (!check_object(s, page, p, 1))
3382 return 0;
3383 return 1;
3386 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3387 unsigned long *map)
3389 if (slab_trylock(page)) {
3390 validate_slab(s, page, map);
3391 slab_unlock(page);
3392 } else
3393 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3394 s->name, page);
3397 static int validate_slab_node(struct kmem_cache *s,
3398 struct kmem_cache_node *n, unsigned long *map)
3400 unsigned long count = 0;
3401 struct page *page;
3402 unsigned long flags;
3404 spin_lock_irqsave(&n->list_lock, flags);
3406 list_for_each_entry(page, &n->partial, lru) {
3407 validate_slab_slab(s, page, map);
3408 count++;
3410 if (count != n->nr_partial)
3411 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3412 "counter=%ld\n", s->name, count, n->nr_partial);
3414 if (!(s->flags & SLAB_STORE_USER))
3415 goto out;
3417 list_for_each_entry(page, &n->full, lru) {
3418 validate_slab_slab(s, page, map);
3419 count++;
3421 if (count != atomic_long_read(&n->nr_slabs))
3422 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3423 "counter=%ld\n", s->name, count,
3424 atomic_long_read(&n->nr_slabs));
3426 out:
3427 spin_unlock_irqrestore(&n->list_lock, flags);
3428 return count;
3431 static long validate_slab_cache(struct kmem_cache *s)
3433 int node;
3434 unsigned long count = 0;
3435 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3436 sizeof(unsigned long), GFP_KERNEL);
3438 if (!map)
3439 return -ENOMEM;
3441 flush_all(s);
3442 for_each_node_state(node, N_NORMAL_MEMORY) {
3443 struct kmem_cache_node *n = get_node(s, node);
3445 count += validate_slab_node(s, n, map);
3447 kfree(map);
3448 return count;
3451 #ifdef SLUB_RESILIENCY_TEST
3452 static void resiliency_test(void)
3454 u8 *p;
3456 printk(KERN_ERR "SLUB resiliency testing\n");
3457 printk(KERN_ERR "-----------------------\n");
3458 printk(KERN_ERR "A. Corruption after allocation\n");
3460 p = kzalloc(16, GFP_KERNEL);
3461 p[16] = 0x12;
3462 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3463 " 0x12->0x%p\n\n", p + 16);
3465 validate_slab_cache(kmalloc_caches + 4);
3467 /* Hmmm... The next two are dangerous */
3468 p = kzalloc(32, GFP_KERNEL);
3469 p[32 + sizeof(void *)] = 0x34;
3470 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3471 " 0x34 -> -0x%p\n", p);
3472 printk(KERN_ERR
3473 "If allocated object is overwritten then not detectable\n\n");
3475 validate_slab_cache(kmalloc_caches + 5);
3476 p = kzalloc(64, GFP_KERNEL);
3477 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3478 *p = 0x56;
3479 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3481 printk(KERN_ERR
3482 "If allocated object is overwritten then not detectable\n\n");
3483 validate_slab_cache(kmalloc_caches + 6);
3485 printk(KERN_ERR "\nB. Corruption after free\n");
3486 p = kzalloc(128, GFP_KERNEL);
3487 kfree(p);
3488 *p = 0x78;
3489 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3490 validate_slab_cache(kmalloc_caches + 7);
3492 p = kzalloc(256, GFP_KERNEL);
3493 kfree(p);
3494 p[50] = 0x9a;
3495 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3497 validate_slab_cache(kmalloc_caches + 8);
3499 p = kzalloc(512, GFP_KERNEL);
3500 kfree(p);
3501 p[512] = 0xab;
3502 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3503 validate_slab_cache(kmalloc_caches + 9);
3505 #else
3506 static void resiliency_test(void) {};
3507 #endif
3510 * Generate lists of code addresses where slabcache objects are allocated
3511 * and freed.
3514 struct location {
3515 unsigned long count;
3516 unsigned long addr;
3517 long long sum_time;
3518 long min_time;
3519 long max_time;
3520 long min_pid;
3521 long max_pid;
3522 DECLARE_BITMAP(cpus, NR_CPUS);
3523 nodemask_t nodes;
3526 struct loc_track {
3527 unsigned long max;
3528 unsigned long count;
3529 struct location *loc;
3532 static void free_loc_track(struct loc_track *t)
3534 if (t->max)
3535 free_pages((unsigned long)t->loc,
3536 get_order(sizeof(struct location) * t->max));
3539 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3541 struct location *l;
3542 int order;
3544 order = get_order(sizeof(struct location) * max);
3546 l = (void *)__get_free_pages(flags, order);
3547 if (!l)
3548 return 0;
3550 if (t->count) {
3551 memcpy(l, t->loc, sizeof(struct location) * t->count);
3552 free_loc_track(t);
3554 t->max = max;
3555 t->loc = l;
3556 return 1;
3559 static int add_location(struct loc_track *t, struct kmem_cache *s,
3560 const struct track *track)
3562 long start, end, pos;
3563 struct location *l;
3564 unsigned long caddr;
3565 unsigned long age = jiffies - track->when;
3567 start = -1;
3568 end = t->count;
3570 for ( ; ; ) {
3571 pos = start + (end - start + 1) / 2;
3574 * There is nothing at "end". If we end up there
3575 * we need to add something to before end.
3577 if (pos == end)
3578 break;
3580 caddr = t->loc[pos].addr;
3581 if (track->addr == caddr) {
3583 l = &t->loc[pos];
3584 l->count++;
3585 if (track->when) {
3586 l->sum_time += age;
3587 if (age < l->min_time)
3588 l->min_time = age;
3589 if (age > l->max_time)
3590 l->max_time = age;
3592 if (track->pid < l->min_pid)
3593 l->min_pid = track->pid;
3594 if (track->pid > l->max_pid)
3595 l->max_pid = track->pid;
3597 cpumask_set_cpu(track->cpu,
3598 to_cpumask(l->cpus));
3600 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3601 return 1;
3604 if (track->addr < caddr)
3605 end = pos;
3606 else
3607 start = pos;
3611 * Not found. Insert new tracking element.
3613 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3614 return 0;
3616 l = t->loc + pos;
3617 if (pos < t->count)
3618 memmove(l + 1, l,
3619 (t->count - pos) * sizeof(struct location));
3620 t->count++;
3621 l->count = 1;
3622 l->addr = track->addr;
3623 l->sum_time = age;
3624 l->min_time = age;
3625 l->max_time = age;
3626 l->min_pid = track->pid;
3627 l->max_pid = track->pid;
3628 cpumask_clear(to_cpumask(l->cpus));
3629 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3630 nodes_clear(l->nodes);
3631 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3632 return 1;
3635 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3636 struct page *page, enum track_item alloc,
3637 long *map)
3639 void *addr = page_address(page);
3640 void *p;
3642 bitmap_zero(map, page->objects);
3643 for_each_free_object(p, s, page->freelist)
3644 set_bit(slab_index(p, s, addr), map);
3646 for_each_object(p, s, addr, page->objects)
3647 if (!test_bit(slab_index(p, s, addr), map))
3648 add_location(t, s, get_track(s, p, alloc));
3651 static int list_locations(struct kmem_cache *s, char *buf,
3652 enum track_item alloc)
3654 int len = 0;
3655 unsigned long i;
3656 struct loc_track t = { 0, 0, NULL };
3657 int node;
3658 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3659 sizeof(unsigned long), GFP_KERNEL);
3661 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3662 GFP_TEMPORARY)) {
3663 kfree(map);
3664 return sprintf(buf, "Out of memory\n");
3666 /* Push back cpu slabs */
3667 flush_all(s);
3669 for_each_node_state(node, N_NORMAL_MEMORY) {
3670 struct kmem_cache_node *n = get_node(s, node);
3671 unsigned long flags;
3672 struct page *page;
3674 if (!atomic_long_read(&n->nr_slabs))
3675 continue;
3677 spin_lock_irqsave(&n->list_lock, flags);
3678 list_for_each_entry(page, &n->partial, lru)
3679 process_slab(&t, s, page, alloc, map);
3680 list_for_each_entry(page, &n->full, lru)
3681 process_slab(&t, s, page, alloc, map);
3682 spin_unlock_irqrestore(&n->list_lock, flags);
3685 for (i = 0; i < t.count; i++) {
3686 struct location *l = &t.loc[i];
3688 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3689 break;
3690 len += sprintf(buf + len, "%7ld ", l->count);
3692 if (l->addr)
3693 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3694 else
3695 len += sprintf(buf + len, "<not-available>");
3697 if (l->sum_time != l->min_time) {
3698 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3699 l->min_time,
3700 (long)div_u64(l->sum_time, l->count),
3701 l->max_time);
3702 } else
3703 len += sprintf(buf + len, " age=%ld",
3704 l->min_time);
3706 if (l->min_pid != l->max_pid)
3707 len += sprintf(buf + len, " pid=%ld-%ld",
3708 l->min_pid, l->max_pid);
3709 else
3710 len += sprintf(buf + len, " pid=%ld",
3711 l->min_pid);
3713 if (num_online_cpus() > 1 &&
3714 !cpumask_empty(to_cpumask(l->cpus)) &&
3715 len < PAGE_SIZE - 60) {
3716 len += sprintf(buf + len, " cpus=");
3717 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3718 to_cpumask(l->cpus));
3721 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3722 len < PAGE_SIZE - 60) {
3723 len += sprintf(buf + len, " nodes=");
3724 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3725 l->nodes);
3728 len += sprintf(buf + len, "\n");
3731 free_loc_track(&t);
3732 kfree(map);
3733 if (!t.count)
3734 len += sprintf(buf, "No data\n");
3735 return len;
3738 enum slab_stat_type {
3739 SL_ALL, /* All slabs */
3740 SL_PARTIAL, /* Only partially allocated slabs */
3741 SL_CPU, /* Only slabs used for cpu caches */
3742 SL_OBJECTS, /* Determine allocated objects not slabs */
3743 SL_TOTAL /* Determine object capacity not slabs */
3746 #define SO_ALL (1 << SL_ALL)
3747 #define SO_PARTIAL (1 << SL_PARTIAL)
3748 #define SO_CPU (1 << SL_CPU)
3749 #define SO_OBJECTS (1 << SL_OBJECTS)
3750 #define SO_TOTAL (1 << SL_TOTAL)
3752 static ssize_t show_slab_objects(struct kmem_cache *s,
3753 char *buf, unsigned long flags)
3755 unsigned long total = 0;
3756 int node;
3757 int x;
3758 unsigned long *nodes;
3759 unsigned long *per_cpu;
3761 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3762 if (!nodes)
3763 return -ENOMEM;
3764 per_cpu = nodes + nr_node_ids;
3766 if (flags & SO_CPU) {
3767 int cpu;
3769 for_each_possible_cpu(cpu) {
3770 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3772 if (!c || c->node < 0)
3773 continue;
3775 if (c->page) {
3776 if (flags & SO_TOTAL)
3777 x = c->page->objects;
3778 else if (flags & SO_OBJECTS)
3779 x = c->page->inuse;
3780 else
3781 x = 1;
3783 total += x;
3784 nodes[c->node] += x;
3786 per_cpu[c->node]++;
3790 if (flags & SO_ALL) {
3791 for_each_node_state(node, N_NORMAL_MEMORY) {
3792 struct kmem_cache_node *n = get_node(s, node);
3794 if (flags & SO_TOTAL)
3795 x = atomic_long_read(&n->total_objects);
3796 else if (flags & SO_OBJECTS)
3797 x = atomic_long_read(&n->total_objects) -
3798 count_partial(n, count_free);
3800 else
3801 x = atomic_long_read(&n->nr_slabs);
3802 total += x;
3803 nodes[node] += x;
3806 } else if (flags & SO_PARTIAL) {
3807 for_each_node_state(node, N_NORMAL_MEMORY) {
3808 struct kmem_cache_node *n = get_node(s, node);
3810 if (flags & SO_TOTAL)
3811 x = count_partial(n, count_total);
3812 else if (flags & SO_OBJECTS)
3813 x = count_partial(n, count_inuse);
3814 else
3815 x = n->nr_partial;
3816 total += x;
3817 nodes[node] += x;
3820 x = sprintf(buf, "%lu", total);
3821 #ifdef CONFIG_NUMA
3822 for_each_node_state(node, N_NORMAL_MEMORY)
3823 if (nodes[node])
3824 x += sprintf(buf + x, " N%d=%lu",
3825 node, nodes[node]);
3826 #endif
3827 kfree(nodes);
3828 return x + sprintf(buf + x, "\n");
3831 static int any_slab_objects(struct kmem_cache *s)
3833 int node;
3835 for_each_online_node(node) {
3836 struct kmem_cache_node *n = get_node(s, node);
3838 if (!n)
3839 continue;
3841 if (atomic_long_read(&n->total_objects))
3842 return 1;
3844 return 0;
3847 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3848 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3850 struct slab_attribute {
3851 struct attribute attr;
3852 ssize_t (*show)(struct kmem_cache *s, char *buf);
3853 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3856 #define SLAB_ATTR_RO(_name) \
3857 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3859 #define SLAB_ATTR(_name) \
3860 static struct slab_attribute _name##_attr = \
3861 __ATTR(_name, 0644, _name##_show, _name##_store)
3863 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3865 return sprintf(buf, "%d\n", s->size);
3867 SLAB_ATTR_RO(slab_size);
3869 static ssize_t align_show(struct kmem_cache *s, char *buf)
3871 return sprintf(buf, "%d\n", s->align);
3873 SLAB_ATTR_RO(align);
3875 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3877 return sprintf(buf, "%d\n", s->objsize);
3879 SLAB_ATTR_RO(object_size);
3881 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3883 return sprintf(buf, "%d\n", oo_objects(s->oo));
3885 SLAB_ATTR_RO(objs_per_slab);
3887 static ssize_t order_store(struct kmem_cache *s,
3888 const char *buf, size_t length)
3890 unsigned long order;
3891 int err;
3893 err = strict_strtoul(buf, 10, &order);
3894 if (err)
3895 return err;
3897 if (order > slub_max_order || order < slub_min_order)
3898 return -EINVAL;
3900 calculate_sizes(s, order);
3901 return length;
3904 static ssize_t order_show(struct kmem_cache *s, char *buf)
3906 return sprintf(buf, "%d\n", oo_order(s->oo));
3908 SLAB_ATTR(order);
3910 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3912 return sprintf(buf, "%lu\n", s->min_partial);
3915 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3916 size_t length)
3918 unsigned long min;
3919 int err;
3921 err = strict_strtoul(buf, 10, &min);
3922 if (err)
3923 return err;
3925 set_min_partial(s, min);
3926 return length;
3928 SLAB_ATTR(min_partial);
3930 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3932 if (s->ctor) {
3933 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3935 return n + sprintf(buf + n, "\n");
3937 return 0;
3939 SLAB_ATTR_RO(ctor);
3941 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3943 return sprintf(buf, "%d\n", s->refcount - 1);
3945 SLAB_ATTR_RO(aliases);
3947 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3949 return show_slab_objects(s, buf, SO_ALL);
3951 SLAB_ATTR_RO(slabs);
3953 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3955 return show_slab_objects(s, buf, SO_PARTIAL);
3957 SLAB_ATTR_RO(partial);
3959 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3961 return show_slab_objects(s, buf, SO_CPU);
3963 SLAB_ATTR_RO(cpu_slabs);
3965 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3967 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3969 SLAB_ATTR_RO(objects);
3971 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3973 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3975 SLAB_ATTR_RO(objects_partial);
3977 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3979 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3981 SLAB_ATTR_RO(total_objects);
3983 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3985 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3988 static ssize_t sanity_checks_store(struct kmem_cache *s,
3989 const char *buf, size_t length)
3991 s->flags &= ~SLAB_DEBUG_FREE;
3992 if (buf[0] == '1')
3993 s->flags |= SLAB_DEBUG_FREE;
3994 return length;
3996 SLAB_ATTR(sanity_checks);
3998 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4000 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4003 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4004 size_t length)
4006 s->flags &= ~SLAB_TRACE;
4007 if (buf[0] == '1')
4008 s->flags |= SLAB_TRACE;
4009 return length;
4011 SLAB_ATTR(trace);
4013 #ifdef CONFIG_FAILSLAB
4014 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4016 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4019 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4020 size_t length)
4022 s->flags &= ~SLAB_FAILSLAB;
4023 if (buf[0] == '1')
4024 s->flags |= SLAB_FAILSLAB;
4025 return length;
4027 SLAB_ATTR(failslab);
4028 #endif
4030 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4032 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4035 static ssize_t reclaim_account_store(struct kmem_cache *s,
4036 const char *buf, size_t length)
4038 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4039 if (buf[0] == '1')
4040 s->flags |= SLAB_RECLAIM_ACCOUNT;
4041 return length;
4043 SLAB_ATTR(reclaim_account);
4045 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4047 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4049 SLAB_ATTR_RO(hwcache_align);
4051 #ifdef CONFIG_ZONE_DMA
4052 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4054 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4056 SLAB_ATTR_RO(cache_dma);
4057 #endif
4059 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4063 SLAB_ATTR_RO(destroy_by_rcu);
4065 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4067 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4070 static ssize_t red_zone_store(struct kmem_cache *s,
4071 const char *buf, size_t length)
4073 if (any_slab_objects(s))
4074 return -EBUSY;
4076 s->flags &= ~SLAB_RED_ZONE;
4077 if (buf[0] == '1')
4078 s->flags |= SLAB_RED_ZONE;
4079 calculate_sizes(s, -1);
4080 return length;
4082 SLAB_ATTR(red_zone);
4084 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4089 static ssize_t poison_store(struct kmem_cache *s,
4090 const char *buf, size_t length)
4092 if (any_slab_objects(s))
4093 return -EBUSY;
4095 s->flags &= ~SLAB_POISON;
4096 if (buf[0] == '1')
4097 s->flags |= SLAB_POISON;
4098 calculate_sizes(s, -1);
4099 return length;
4101 SLAB_ATTR(poison);
4103 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4105 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4108 static ssize_t store_user_store(struct kmem_cache *s,
4109 const char *buf, size_t length)
4111 if (any_slab_objects(s))
4112 return -EBUSY;
4114 s->flags &= ~SLAB_STORE_USER;
4115 if (buf[0] == '1')
4116 s->flags |= SLAB_STORE_USER;
4117 calculate_sizes(s, -1);
4118 return length;
4120 SLAB_ATTR(store_user);
4122 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4124 return 0;
4127 static ssize_t validate_store(struct kmem_cache *s,
4128 const char *buf, size_t length)
4130 int ret = -EINVAL;
4132 if (buf[0] == '1') {
4133 ret = validate_slab_cache(s);
4134 if (ret >= 0)
4135 ret = length;
4137 return ret;
4139 SLAB_ATTR(validate);
4141 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4143 return 0;
4146 static ssize_t shrink_store(struct kmem_cache *s,
4147 const char *buf, size_t length)
4149 if (buf[0] == '1') {
4150 int rc = kmem_cache_shrink(s);
4152 if (rc)
4153 return rc;
4154 } else
4155 return -EINVAL;
4156 return length;
4158 SLAB_ATTR(shrink);
4160 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4162 if (!(s->flags & SLAB_STORE_USER))
4163 return -ENOSYS;
4164 return list_locations(s, buf, TRACK_ALLOC);
4166 SLAB_ATTR_RO(alloc_calls);
4168 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4170 if (!(s->flags & SLAB_STORE_USER))
4171 return -ENOSYS;
4172 return list_locations(s, buf, TRACK_FREE);
4174 SLAB_ATTR_RO(free_calls);
4176 #ifdef CONFIG_NUMA
4177 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4179 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4182 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4183 const char *buf, size_t length)
4185 unsigned long ratio;
4186 int err;
4188 err = strict_strtoul(buf, 10, &ratio);
4189 if (err)
4190 return err;
4192 if (ratio <= 100)
4193 s->remote_node_defrag_ratio = ratio * 10;
4195 return length;
4197 SLAB_ATTR(remote_node_defrag_ratio);
4198 #endif
4200 #ifdef CONFIG_SLUB_STATS
4201 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4203 unsigned long sum = 0;
4204 int cpu;
4205 int len;
4206 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4208 if (!data)
4209 return -ENOMEM;
4211 for_each_online_cpu(cpu) {
4212 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4214 data[cpu] = x;
4215 sum += x;
4218 len = sprintf(buf, "%lu", sum);
4220 #ifdef CONFIG_SMP
4221 for_each_online_cpu(cpu) {
4222 if (data[cpu] && len < PAGE_SIZE - 20)
4223 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4225 #endif
4226 kfree(data);
4227 return len + sprintf(buf + len, "\n");
4230 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4232 int cpu;
4234 for_each_online_cpu(cpu)
4235 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4238 #define STAT_ATTR(si, text) \
4239 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4241 return show_stat(s, buf, si); \
4243 static ssize_t text##_store(struct kmem_cache *s, \
4244 const char *buf, size_t length) \
4246 if (buf[0] != '0') \
4247 return -EINVAL; \
4248 clear_stat(s, si); \
4249 return length; \
4251 SLAB_ATTR(text); \
4253 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4254 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4255 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4256 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4257 STAT_ATTR(FREE_FROZEN, free_frozen);
4258 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4259 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4260 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4261 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4262 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4263 STAT_ATTR(FREE_SLAB, free_slab);
4264 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4265 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4266 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4267 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4268 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4269 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4270 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4271 #endif
4273 static struct attribute *slab_attrs[] = {
4274 &slab_size_attr.attr,
4275 &object_size_attr.attr,
4276 &objs_per_slab_attr.attr,
4277 &order_attr.attr,
4278 &min_partial_attr.attr,
4279 &objects_attr.attr,
4280 &objects_partial_attr.attr,
4281 &total_objects_attr.attr,
4282 &slabs_attr.attr,
4283 &partial_attr.attr,
4284 &cpu_slabs_attr.attr,
4285 &ctor_attr.attr,
4286 &aliases_attr.attr,
4287 &align_attr.attr,
4288 &sanity_checks_attr.attr,
4289 &trace_attr.attr,
4290 &hwcache_align_attr.attr,
4291 &reclaim_account_attr.attr,
4292 &destroy_by_rcu_attr.attr,
4293 &red_zone_attr.attr,
4294 &poison_attr.attr,
4295 &store_user_attr.attr,
4296 &validate_attr.attr,
4297 &shrink_attr.attr,
4298 &alloc_calls_attr.attr,
4299 &free_calls_attr.attr,
4300 #ifdef CONFIG_ZONE_DMA
4301 &cache_dma_attr.attr,
4302 #endif
4303 #ifdef CONFIG_NUMA
4304 &remote_node_defrag_ratio_attr.attr,
4305 #endif
4306 #ifdef CONFIG_SLUB_STATS
4307 &alloc_fastpath_attr.attr,
4308 &alloc_slowpath_attr.attr,
4309 &free_fastpath_attr.attr,
4310 &free_slowpath_attr.attr,
4311 &free_frozen_attr.attr,
4312 &free_add_partial_attr.attr,
4313 &free_remove_partial_attr.attr,
4314 &alloc_from_partial_attr.attr,
4315 &alloc_slab_attr.attr,
4316 &alloc_refill_attr.attr,
4317 &free_slab_attr.attr,
4318 &cpuslab_flush_attr.attr,
4319 &deactivate_full_attr.attr,
4320 &deactivate_empty_attr.attr,
4321 &deactivate_to_head_attr.attr,
4322 &deactivate_to_tail_attr.attr,
4323 &deactivate_remote_frees_attr.attr,
4324 &order_fallback_attr.attr,
4325 #endif
4326 #ifdef CONFIG_FAILSLAB
4327 &failslab_attr.attr,
4328 #endif
4330 NULL
4333 static struct attribute_group slab_attr_group = {
4334 .attrs = slab_attrs,
4337 static ssize_t slab_attr_show(struct kobject *kobj,
4338 struct attribute *attr,
4339 char *buf)
4341 struct slab_attribute *attribute;
4342 struct kmem_cache *s;
4343 int err;
4345 attribute = to_slab_attr(attr);
4346 s = to_slab(kobj);
4348 if (!attribute->show)
4349 return -EIO;
4351 err = attribute->show(s, buf);
4353 return err;
4356 static ssize_t slab_attr_store(struct kobject *kobj,
4357 struct attribute *attr,
4358 const char *buf, size_t len)
4360 struct slab_attribute *attribute;
4361 struct kmem_cache *s;
4362 int err;
4364 attribute = to_slab_attr(attr);
4365 s = to_slab(kobj);
4367 if (!attribute->store)
4368 return -EIO;
4370 err = attribute->store(s, buf, len);
4372 return err;
4375 static void kmem_cache_release(struct kobject *kobj)
4377 struct kmem_cache *s = to_slab(kobj);
4379 kfree(s);
4382 static const struct sysfs_ops slab_sysfs_ops = {
4383 .show = slab_attr_show,
4384 .store = slab_attr_store,
4387 static struct kobj_type slab_ktype = {
4388 .sysfs_ops = &slab_sysfs_ops,
4389 .release = kmem_cache_release
4392 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4394 struct kobj_type *ktype = get_ktype(kobj);
4396 if (ktype == &slab_ktype)
4397 return 1;
4398 return 0;
4401 static const struct kset_uevent_ops slab_uevent_ops = {
4402 .filter = uevent_filter,
4405 static struct kset *slab_kset;
4407 #define ID_STR_LENGTH 64
4409 /* Create a unique string id for a slab cache:
4411 * Format :[flags-]size
4413 static char *create_unique_id(struct kmem_cache *s)
4415 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4416 char *p = name;
4418 BUG_ON(!name);
4420 *p++ = ':';
4422 * First flags affecting slabcache operations. We will only
4423 * get here for aliasable slabs so we do not need to support
4424 * too many flags. The flags here must cover all flags that
4425 * are matched during merging to guarantee that the id is
4426 * unique.
4428 if (s->flags & SLAB_CACHE_DMA)
4429 *p++ = 'd';
4430 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4431 *p++ = 'a';
4432 if (s->flags & SLAB_DEBUG_FREE)
4433 *p++ = 'F';
4434 if (!(s->flags & SLAB_NOTRACK))
4435 *p++ = 't';
4436 if (p != name + 1)
4437 *p++ = '-';
4438 p += sprintf(p, "%07d", s->size);
4439 BUG_ON(p > name + ID_STR_LENGTH - 1);
4440 return name;
4443 static int sysfs_slab_add(struct kmem_cache *s)
4445 int err;
4446 const char *name;
4447 int unmergeable;
4449 if (slab_state < SYSFS)
4450 /* Defer until later */
4451 return 0;
4453 unmergeable = slab_unmergeable(s);
4454 if (unmergeable) {
4456 * Slabcache can never be merged so we can use the name proper.
4457 * This is typically the case for debug situations. In that
4458 * case we can catch duplicate names easily.
4460 sysfs_remove_link(&slab_kset->kobj, s->name);
4461 name = s->name;
4462 } else {
4464 * Create a unique name for the slab as a target
4465 * for the symlinks.
4467 name = create_unique_id(s);
4470 s->kobj.kset = slab_kset;
4471 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4472 if (err) {
4473 kobject_put(&s->kobj);
4474 return err;
4477 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4478 if (err) {
4479 kobject_del(&s->kobj);
4480 kobject_put(&s->kobj);
4481 return err;
4483 kobject_uevent(&s->kobj, KOBJ_ADD);
4484 if (!unmergeable) {
4485 /* Setup first alias */
4486 sysfs_slab_alias(s, s->name);
4487 kfree(name);
4489 return 0;
4492 static void sysfs_slab_remove(struct kmem_cache *s)
4494 if (slab_state < SYSFS)
4496 * Sysfs has not been setup yet so no need to remove the
4497 * cache from sysfs.
4499 return;
4501 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4502 kobject_del(&s->kobj);
4503 kobject_put(&s->kobj);
4507 * Need to buffer aliases during bootup until sysfs becomes
4508 * available lest we lose that information.
4510 struct saved_alias {
4511 struct kmem_cache *s;
4512 const char *name;
4513 struct saved_alias *next;
4516 static struct saved_alias *alias_list;
4518 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4520 struct saved_alias *al;
4522 if (slab_state == SYSFS) {
4524 * If we have a leftover link then remove it.
4526 sysfs_remove_link(&slab_kset->kobj, name);
4527 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4530 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4531 if (!al)
4532 return -ENOMEM;
4534 al->s = s;
4535 al->name = name;
4536 al->next = alias_list;
4537 alias_list = al;
4538 return 0;
4541 static int __init slab_sysfs_init(void)
4543 struct kmem_cache *s;
4544 int err;
4546 down_write(&slub_lock);
4548 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4549 if (!slab_kset) {
4550 up_write(&slub_lock);
4551 printk(KERN_ERR "Cannot register slab subsystem.\n");
4552 return -ENOSYS;
4555 slab_state = SYSFS;
4557 list_for_each_entry(s, &slab_caches, list) {
4558 err = sysfs_slab_add(s);
4559 if (err)
4560 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4561 " to sysfs\n", s->name);
4564 while (alias_list) {
4565 struct saved_alias *al = alias_list;
4567 alias_list = alias_list->next;
4568 err = sysfs_slab_alias(al->s, al->name);
4569 if (err)
4570 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4571 " %s to sysfs\n", s->name);
4572 kfree(al);
4575 up_write(&slub_lock);
4576 resiliency_test();
4577 return 0;
4580 __initcall(slab_sysfs_init);
4581 #endif
4584 * The /proc/slabinfo ABI
4586 #ifdef CONFIG_SLABINFO
4587 static void print_slabinfo_header(struct seq_file *m)
4589 seq_puts(m, "slabinfo - version: 2.1\n");
4590 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4591 "<objperslab> <pagesperslab>");
4592 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4593 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4594 seq_putc(m, '\n');
4597 static void *s_start(struct seq_file *m, loff_t *pos)
4599 loff_t n = *pos;
4601 down_read(&slub_lock);
4602 if (!n)
4603 print_slabinfo_header(m);
4605 return seq_list_start(&slab_caches, *pos);
4608 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4610 return seq_list_next(p, &slab_caches, pos);
4613 static void s_stop(struct seq_file *m, void *p)
4615 up_read(&slub_lock);
4618 static int s_show(struct seq_file *m, void *p)
4620 unsigned long nr_partials = 0;
4621 unsigned long nr_slabs = 0;
4622 unsigned long nr_inuse = 0;
4623 unsigned long nr_objs = 0;
4624 unsigned long nr_free = 0;
4625 struct kmem_cache *s;
4626 int node;
4628 s = list_entry(p, struct kmem_cache, list);
4630 for_each_online_node(node) {
4631 struct kmem_cache_node *n = get_node(s, node);
4633 if (!n)
4634 continue;
4636 nr_partials += n->nr_partial;
4637 nr_slabs += atomic_long_read(&n->nr_slabs);
4638 nr_objs += atomic_long_read(&n->total_objects);
4639 nr_free += count_partial(n, count_free);
4642 nr_inuse = nr_objs - nr_free;
4644 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4645 nr_objs, s->size, oo_objects(s->oo),
4646 (1 << oo_order(s->oo)));
4647 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4648 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4649 0UL);
4650 seq_putc(m, '\n');
4651 return 0;
4654 static const struct seq_operations slabinfo_op = {
4655 .start = s_start,
4656 .next = s_next,
4657 .stop = s_stop,
4658 .show = s_show,
4661 static int slabinfo_open(struct inode *inode, struct file *file)
4663 return seq_open(file, &slabinfo_op);
4666 static const struct file_operations proc_slabinfo_operations = {
4667 .open = slabinfo_open,
4668 .read = seq_read,
4669 .llseek = seq_lseek,
4670 .release = seq_release,
4673 static int __init slab_proc_init(void)
4675 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4676 return 0;
4678 module_init(slab_proc_init);
4679 #endif /* CONFIG_SLABINFO */