GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / kernel / kprobes.c
blob9d75f08e235ae6f13cbffb44dedbdf325f7cad2d
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
51 #include <asm-generic/sections.h>
52 #include <asm/cacheflush.h>
53 #include <asm/errno.h>
54 #include <asm/uaccess.h>
56 #define KPROBE_HASH_BITS 6
57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
61 * Some oddball architectures like 64bit powerpc have function descriptors
62 * so this must be overridable.
64 #ifndef kprobe_lookup_name
65 #define kprobe_lookup_name(name, addr) \
66 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
67 #endif
69 static int kprobes_initialized;
70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 /* NOTE: change this value only with kprobe_mutex held */
74 static bool kprobes_all_disarmed;
76 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
78 static struct {
79 spinlock_t lock ____cacheline_aligned_in_smp;
80 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
84 return &(kretprobe_table_locks[hash].lock);
88 * Normally, functions that we'd want to prohibit kprobes in, are marked
89 * __kprobes. But, there are cases where such functions already belong to
90 * a different section (__sched for preempt_schedule)
92 * For such cases, we now have a blacklist
94 static struct kprobe_blackpoint kprobe_blacklist[] = {
95 {"preempt_schedule",},
96 {"native_get_debugreg",},
97 {"irq_entries_start",},
98 {"common_interrupt",},
99 {"mcount",}, /* mcount can be called from everywhere */
100 {NULL} /* Terminator */
103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
105 * kprobe->ainsn.insn points to the copy of the instruction to be
106 * single-stepped. x86_64, POWER4 and above have no-exec support and
107 * stepping on the instruction on a vmalloced/kmalloced/data page
108 * is a recipe for disaster
110 struct kprobe_insn_page {
111 struct list_head list;
112 kprobe_opcode_t *insns; /* Page of instruction slots */
113 int nused;
114 int ngarbage;
115 char slot_used[];
118 #define KPROBE_INSN_PAGE_SIZE(slots) \
119 (offsetof(struct kprobe_insn_page, slot_used) + \
120 (sizeof(char) * (slots)))
122 struct kprobe_insn_cache {
123 struct list_head pages; /* list of kprobe_insn_page */
124 size_t insn_size; /* size of instruction slot */
125 int nr_garbage;
128 static int slots_per_page(struct kprobe_insn_cache *c)
130 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 enum kprobe_slot_state {
134 SLOT_CLEAN = 0,
135 SLOT_DIRTY = 1,
136 SLOT_USED = 2,
139 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
140 static struct kprobe_insn_cache kprobe_insn_slots = {
141 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
142 .insn_size = MAX_INSN_SIZE,
143 .nr_garbage = 0,
145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148 * __get_insn_slot() - Find a slot on an executable page for an instruction.
149 * We allocate an executable page if there's no room on existing ones.
151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
153 struct kprobe_insn_page *kip;
155 retry:
156 list_for_each_entry(kip, &c->pages, list) {
157 if (kip->nused < slots_per_page(c)) {
158 int i;
159 for (i = 0; i < slots_per_page(c); i++) {
160 if (kip->slot_used[i] == SLOT_CLEAN) {
161 kip->slot_used[i] = SLOT_USED;
162 kip->nused++;
163 return kip->insns + (i * c->insn_size);
166 /* kip->nused is broken. Fix it. */
167 kip->nused = slots_per_page(c);
168 WARN_ON(1);
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 return NULL;
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
186 kip->insns = module_alloc(PAGE_SIZE);
187 if (!kip->insns) {
188 kfree(kip);
189 return NULL;
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 list_add(&kip->list, &c->pages);
197 return kip->insns;
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
203 kprobe_opcode_t *ret = NULL;
205 mutex_lock(&kprobe_insn_mutex);
206 ret = __get_insn_slot(&kprobe_insn_slots);
207 mutex_unlock(&kprobe_insn_mutex);
209 return ret;
212 /* Return 1 if all garbages are collected, otherwise 0. */
213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
215 kip->slot_used[idx] = SLOT_CLEAN;
216 kip->nused--;
217 if (kip->nused == 0) {
219 * Page is no longer in use. Free it unless
220 * it's the last one. We keep the last one
221 * so as not to have to set it up again the
222 * next time somebody inserts a probe.
224 if (!list_is_singular(&kip->list)) {
225 list_del(&kip->list);
226 module_free(NULL, kip->insns);
227 kfree(kip);
229 return 1;
231 return 0;
234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
236 struct kprobe_insn_page *kip, *next;
238 /* Ensure no-one is interrupted on the garbages */
239 synchronize_sched();
241 list_for_each_entry_safe(kip, next, &c->pages, list) {
242 int i;
243 if (kip->ngarbage == 0)
244 continue;
245 kip->ngarbage = 0; /* we will collect all garbages */
246 for (i = 0; i < slots_per_page(c); i++) {
247 if (kip->slot_used[i] == SLOT_DIRTY &&
248 collect_one_slot(kip, i))
249 break;
252 c->nr_garbage = 0;
253 return 0;
256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
257 kprobe_opcode_t *slot, int dirty)
259 struct kprobe_insn_page *kip;
261 list_for_each_entry(kip, &c->pages, list) {
262 long idx = ((long)slot - (long)kip->insns) /
263 (c->insn_size * sizeof(kprobe_opcode_t));
264 if (idx >= 0 && idx < slots_per_page(c)) {
265 WARN_ON(kip->slot_used[idx] != SLOT_USED);
266 if (dirty) {
267 kip->slot_used[idx] = SLOT_DIRTY;
268 kip->ngarbage++;
269 if (++c->nr_garbage > slots_per_page(c))
270 collect_garbage_slots(c);
271 } else
272 collect_one_slot(kip, idx);
273 return;
276 /* Could not free this slot. */
277 WARN_ON(1);
280 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
282 mutex_lock(&kprobe_insn_mutex);
283 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
284 mutex_unlock(&kprobe_insn_mutex);
286 #ifdef CONFIG_OPTPROBES
287 /* For optimized_kprobe buffer */
288 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
289 static struct kprobe_insn_cache kprobe_optinsn_slots = {
290 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
291 /* .insn_size is initialized later */
292 .nr_garbage = 0,
294 /* Get a slot for optimized_kprobe buffer */
295 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
297 kprobe_opcode_t *ret = NULL;
299 mutex_lock(&kprobe_optinsn_mutex);
300 ret = __get_insn_slot(&kprobe_optinsn_slots);
301 mutex_unlock(&kprobe_optinsn_mutex);
303 return ret;
306 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
308 mutex_lock(&kprobe_optinsn_mutex);
309 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
310 mutex_unlock(&kprobe_optinsn_mutex);
312 #endif
313 #endif
315 /* We have preemption disabled.. so it is safe to use __ versions */
316 static inline void set_kprobe_instance(struct kprobe *kp)
318 __get_cpu_var(kprobe_instance) = kp;
321 static inline void reset_kprobe_instance(void)
323 __get_cpu_var(kprobe_instance) = NULL;
326 struct kprobe __kprobes *get_kprobe(void *addr)
328 struct hlist_head *head;
329 struct hlist_node *node;
330 struct kprobe *p;
332 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
333 hlist_for_each_entry_rcu(p, node, head, hlist) {
334 if (p->addr == addr)
335 return p;
338 return NULL;
341 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
343 /* Return true if the kprobe is an aggregator */
344 static inline int kprobe_aggrprobe(struct kprobe *p)
346 return p->pre_handler == aggr_pre_handler;
350 * Keep all fields in the kprobe consistent
352 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
354 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
355 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
358 #ifdef CONFIG_OPTPROBES
359 /* NOTE: change this value only with kprobe_mutex held */
360 static bool kprobes_allow_optimization;
363 * Call all pre_handler on the list, but ignores its return value.
364 * This must be called from arch-dep optimized caller.
366 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
368 struct kprobe *kp;
370 list_for_each_entry_rcu(kp, &p->list, list) {
371 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
372 set_kprobe_instance(kp);
373 kp->pre_handler(kp, regs);
375 reset_kprobe_instance();
379 /* Return true(!0) if the kprobe is ready for optimization. */
380 static inline int kprobe_optready(struct kprobe *p)
382 struct optimized_kprobe *op;
384 if (kprobe_aggrprobe(p)) {
385 op = container_of(p, struct optimized_kprobe, kp);
386 return arch_prepared_optinsn(&op->optinsn);
389 return 0;
393 * Return an optimized kprobe whose optimizing code replaces
394 * instructions including addr (exclude breakpoint).
396 struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
398 int i;
399 struct kprobe *p = NULL;
400 struct optimized_kprobe *op;
402 /* Don't check i == 0, since that is a breakpoint case. */
403 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
404 p = get_kprobe((void *)(addr - i));
406 if (p && kprobe_optready(p)) {
407 op = container_of(p, struct optimized_kprobe, kp);
408 if (arch_within_optimized_kprobe(op, addr))
409 return p;
412 return NULL;
415 /* Optimization staging list, protected by kprobe_mutex */
416 static LIST_HEAD(optimizing_list);
418 static void kprobe_optimizer(struct work_struct *work);
419 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
420 #define OPTIMIZE_DELAY 5
422 /* Kprobe jump optimizer */
423 static __kprobes void kprobe_optimizer(struct work_struct *work)
425 struct optimized_kprobe *op, *tmp;
427 /* Lock modules while optimizing kprobes */
428 mutex_lock(&module_mutex);
429 mutex_lock(&kprobe_mutex);
430 if (kprobes_all_disarmed || !kprobes_allow_optimization)
431 goto end;
434 * Wait for quiesence period to ensure all running interrupts
435 * are done. Because optprobe may modify multiple instructions
436 * there is a chance that Nth instruction is interrupted. In that
437 * case, running interrupt can return to 2nd-Nth byte of jump
438 * instruction. This wait is for avoiding it.
440 synchronize_sched();
443 * The optimization/unoptimization refers online_cpus via
444 * stop_machine() and cpu-hotplug modifies online_cpus.
445 * And same time, text_mutex will be held in cpu-hotplug and here.
446 * This combination can cause a deadlock (cpu-hotplug try to lock
447 * text_mutex but stop_machine can not be done because online_cpus
448 * has been changed)
449 * To avoid this deadlock, we need to call get_online_cpus()
450 * for preventing cpu-hotplug outside of text_mutex locking.
452 get_online_cpus();
453 mutex_lock(&text_mutex);
454 list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
455 WARN_ON(kprobe_disabled(&op->kp));
456 if (arch_optimize_kprobe(op) < 0)
457 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
458 list_del_init(&op->list);
460 mutex_unlock(&text_mutex);
461 put_online_cpus();
462 end:
463 mutex_unlock(&kprobe_mutex);
464 mutex_unlock(&module_mutex);
467 /* Optimize kprobe if p is ready to be optimized */
468 static __kprobes void optimize_kprobe(struct kprobe *p)
470 struct optimized_kprobe *op;
472 /* Check if the kprobe is disabled or not ready for optimization. */
473 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
474 (kprobe_disabled(p) || kprobes_all_disarmed))
475 return;
477 /* Both of break_handler and post_handler are not supported. */
478 if (p->break_handler || p->post_handler)
479 return;
481 op = container_of(p, struct optimized_kprobe, kp);
483 /* Check there is no other kprobes at the optimized instructions */
484 if (arch_check_optimized_kprobe(op) < 0)
485 return;
487 /* Check if it is already optimized. */
488 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
489 return;
491 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
492 list_add(&op->list, &optimizing_list);
493 if (!delayed_work_pending(&optimizing_work))
494 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
497 /* Unoptimize a kprobe if p is optimized */
498 static __kprobes void unoptimize_kprobe(struct kprobe *p)
500 struct optimized_kprobe *op;
502 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
503 op = container_of(p, struct optimized_kprobe, kp);
504 if (!list_empty(&op->list))
505 /* Dequeue from the optimization queue */
506 list_del_init(&op->list);
507 else
508 /* Replace jump with break */
509 arch_unoptimize_kprobe(op);
510 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
514 /* Remove optimized instructions */
515 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
517 struct optimized_kprobe *op;
519 op = container_of(p, struct optimized_kprobe, kp);
520 if (!list_empty(&op->list)) {
521 /* Dequeue from the optimization queue */
522 list_del_init(&op->list);
523 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
525 /* Don't unoptimize, because the target code will be freed. */
526 arch_remove_optimized_kprobe(op);
529 /* Try to prepare optimized instructions */
530 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
532 struct optimized_kprobe *op;
534 op = container_of(p, struct optimized_kprobe, kp);
535 arch_prepare_optimized_kprobe(op);
538 /* Free optimized instructions and optimized_kprobe */
539 static __kprobes void free_aggr_kprobe(struct kprobe *p)
541 struct optimized_kprobe *op;
543 op = container_of(p, struct optimized_kprobe, kp);
544 arch_remove_optimized_kprobe(op);
545 kfree(op);
548 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
549 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
551 struct optimized_kprobe *op;
553 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
554 if (!op)
555 return NULL;
557 INIT_LIST_HEAD(&op->list);
558 op->kp.addr = p->addr;
559 arch_prepare_optimized_kprobe(op);
561 return &op->kp;
564 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
567 * Prepare an optimized_kprobe and optimize it
568 * NOTE: p must be a normal registered kprobe
570 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
572 struct kprobe *ap;
573 struct optimized_kprobe *op;
575 ap = alloc_aggr_kprobe(p);
576 if (!ap)
577 return;
579 op = container_of(ap, struct optimized_kprobe, kp);
580 if (!arch_prepared_optinsn(&op->optinsn)) {
581 /* If failed to setup optimizing, fallback to kprobe */
582 free_aggr_kprobe(ap);
583 return;
586 init_aggr_kprobe(ap, p);
587 optimize_kprobe(ap);
590 #ifdef CONFIG_SYSCTL
591 static void __kprobes optimize_all_kprobes(void)
593 struct hlist_head *head;
594 struct hlist_node *node;
595 struct kprobe *p;
596 unsigned int i;
598 /* If optimization is already allowed, just return */
599 if (kprobes_allow_optimization)
600 return;
602 kprobes_allow_optimization = true;
603 mutex_lock(&text_mutex);
604 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
605 head = &kprobe_table[i];
606 hlist_for_each_entry_rcu(p, node, head, hlist)
607 if (!kprobe_disabled(p))
608 optimize_kprobe(p);
610 mutex_unlock(&text_mutex);
611 printk(KERN_INFO "Kprobes globally optimized\n");
614 static void __kprobes unoptimize_all_kprobes(void)
616 struct hlist_head *head;
617 struct hlist_node *node;
618 struct kprobe *p;
619 unsigned int i;
621 /* If optimization is already prohibited, just return */
622 if (!kprobes_allow_optimization)
623 return;
625 kprobes_allow_optimization = false;
626 printk(KERN_INFO "Kprobes globally unoptimized\n");
627 get_online_cpus(); /* For avoiding text_mutex deadlock */
628 mutex_lock(&text_mutex);
629 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
630 head = &kprobe_table[i];
631 hlist_for_each_entry_rcu(p, node, head, hlist) {
632 if (!kprobe_disabled(p))
633 unoptimize_kprobe(p);
637 mutex_unlock(&text_mutex);
638 put_online_cpus();
639 /* Allow all currently running kprobes to complete */
640 synchronize_sched();
643 int sysctl_kprobes_optimization;
644 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
645 void __user *buffer, size_t *length,
646 loff_t *ppos)
648 int ret;
650 mutex_lock(&kprobe_mutex);
651 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
652 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
654 if (sysctl_kprobes_optimization)
655 optimize_all_kprobes();
656 else
657 unoptimize_all_kprobes();
658 mutex_unlock(&kprobe_mutex);
660 return ret;
662 #endif /* CONFIG_SYSCTL */
664 static void __kprobes __arm_kprobe(struct kprobe *p)
666 struct kprobe *old_p;
668 /* Check collision with other optimized kprobes */
669 old_p = get_optimized_kprobe((unsigned long)p->addr);
670 if (unlikely(old_p))
671 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
673 arch_arm_kprobe(p);
674 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
677 static void __kprobes __disarm_kprobe(struct kprobe *p)
679 struct kprobe *old_p;
681 unoptimize_kprobe(p); /* Try to unoptimize */
682 arch_disarm_kprobe(p);
684 /* If another kprobe was blocked, optimize it. */
685 old_p = get_optimized_kprobe((unsigned long)p->addr);
686 if (unlikely(old_p))
687 optimize_kprobe(old_p);
690 #else /* !CONFIG_OPTPROBES */
692 #define optimize_kprobe(p) do {} while (0)
693 #define unoptimize_kprobe(p) do {} while (0)
694 #define kill_optimized_kprobe(p) do {} while (0)
695 #define prepare_optimized_kprobe(p) do {} while (0)
696 #define try_to_optimize_kprobe(p) do {} while (0)
697 #define __arm_kprobe(p) arch_arm_kprobe(p)
698 #define __disarm_kprobe(p) arch_disarm_kprobe(p)
700 static __kprobes void free_aggr_kprobe(struct kprobe *p)
702 kfree(p);
705 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
707 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
709 #endif /* CONFIG_OPTPROBES */
711 /* Arm a kprobe with text_mutex */
712 static void __kprobes arm_kprobe(struct kprobe *kp)
715 * Here, since __arm_kprobe() doesn't use stop_machine(),
716 * this doesn't cause deadlock on text_mutex. So, we don't
717 * need get_online_cpus().
719 mutex_lock(&text_mutex);
720 __arm_kprobe(kp);
721 mutex_unlock(&text_mutex);
724 /* Disarm a kprobe with text_mutex */
725 static void __kprobes disarm_kprobe(struct kprobe *kp)
727 get_online_cpus(); /* For avoiding text_mutex deadlock */
728 mutex_lock(&text_mutex);
729 __disarm_kprobe(kp);
730 mutex_unlock(&text_mutex);
731 put_online_cpus();
735 * Aggregate handlers for multiple kprobes support - these handlers
736 * take care of invoking the individual kprobe handlers on p->list
738 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
740 struct kprobe *kp;
742 list_for_each_entry_rcu(kp, &p->list, list) {
743 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
744 set_kprobe_instance(kp);
745 if (kp->pre_handler(kp, regs))
746 return 1;
748 reset_kprobe_instance();
750 return 0;
753 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
754 unsigned long flags)
756 struct kprobe *kp;
758 list_for_each_entry_rcu(kp, &p->list, list) {
759 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
760 set_kprobe_instance(kp);
761 kp->post_handler(kp, regs, flags);
762 reset_kprobe_instance();
767 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
768 int trapnr)
770 struct kprobe *cur = __get_cpu_var(kprobe_instance);
773 * if we faulted "during" the execution of a user specified
774 * probe handler, invoke just that probe's fault handler
776 if (cur && cur->fault_handler) {
777 if (cur->fault_handler(cur, regs, trapnr))
778 return 1;
780 return 0;
783 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
785 struct kprobe *cur = __get_cpu_var(kprobe_instance);
786 int ret = 0;
788 if (cur && cur->break_handler) {
789 if (cur->break_handler(cur, regs))
790 ret = 1;
792 reset_kprobe_instance();
793 return ret;
796 /* Walks the list and increments nmissed count for multiprobe case */
797 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
799 struct kprobe *kp;
800 if (!kprobe_aggrprobe(p)) {
801 p->nmissed++;
802 } else {
803 list_for_each_entry_rcu(kp, &p->list, list)
804 kp->nmissed++;
806 return;
809 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
810 struct hlist_head *head)
812 struct kretprobe *rp = ri->rp;
814 /* remove rp inst off the rprobe_inst_table */
815 hlist_del(&ri->hlist);
816 INIT_HLIST_NODE(&ri->hlist);
817 if (likely(rp)) {
818 spin_lock(&rp->lock);
819 hlist_add_head(&ri->hlist, &rp->free_instances);
820 spin_unlock(&rp->lock);
821 } else
822 /* Unregistering */
823 hlist_add_head(&ri->hlist, head);
826 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
827 struct hlist_head **head, unsigned long *flags)
829 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
830 spinlock_t *hlist_lock;
832 *head = &kretprobe_inst_table[hash];
833 hlist_lock = kretprobe_table_lock_ptr(hash);
834 spin_lock_irqsave(hlist_lock, *flags);
837 static void __kprobes kretprobe_table_lock(unsigned long hash,
838 unsigned long *flags)
840 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
841 spin_lock_irqsave(hlist_lock, *flags);
844 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
845 unsigned long *flags)
847 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
848 spinlock_t *hlist_lock;
850 hlist_lock = kretprobe_table_lock_ptr(hash);
851 spin_unlock_irqrestore(hlist_lock, *flags);
854 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
856 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
857 spin_unlock_irqrestore(hlist_lock, *flags);
861 * This function is called from finish_task_switch when task tk becomes dead,
862 * so that we can recycle any function-return probe instances associated
863 * with this task. These left over instances represent probed functions
864 * that have been called but will never return.
866 void __kprobes kprobe_flush_task(struct task_struct *tk)
868 struct kretprobe_instance *ri;
869 struct hlist_head *head, empty_rp;
870 struct hlist_node *node, *tmp;
871 unsigned long hash, flags = 0;
873 if (unlikely(!kprobes_initialized))
874 /* Early boot. kretprobe_table_locks not yet initialized. */
875 return;
877 hash = hash_ptr(tk, KPROBE_HASH_BITS);
878 head = &kretprobe_inst_table[hash];
879 kretprobe_table_lock(hash, &flags);
880 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
881 if (ri->task == tk)
882 recycle_rp_inst(ri, &empty_rp);
884 kretprobe_table_unlock(hash, &flags);
885 INIT_HLIST_HEAD(&empty_rp);
886 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
887 hlist_del(&ri->hlist);
888 kfree(ri);
892 static inline void free_rp_inst(struct kretprobe *rp)
894 struct kretprobe_instance *ri;
895 struct hlist_node *pos, *next;
897 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
898 hlist_del(&ri->hlist);
899 kfree(ri);
903 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
905 unsigned long flags, hash;
906 struct kretprobe_instance *ri;
907 struct hlist_node *pos, *next;
908 struct hlist_head *head;
910 /* No race here */
911 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
912 kretprobe_table_lock(hash, &flags);
913 head = &kretprobe_inst_table[hash];
914 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
915 if (ri->rp == rp)
916 ri->rp = NULL;
918 kretprobe_table_unlock(hash, &flags);
920 free_rp_inst(rp);
924 * Add the new probe to ap->list. Fail if this is the
925 * second jprobe at the address - two jprobes can't coexist
927 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
929 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
931 if (p->break_handler || p->post_handler)
932 unoptimize_kprobe(ap); /* Fall back to normal kprobe */
934 if (p->break_handler) {
935 if (ap->break_handler)
936 return -EEXIST;
937 list_add_tail_rcu(&p->list, &ap->list);
938 ap->break_handler = aggr_break_handler;
939 } else
940 list_add_rcu(&p->list, &ap->list);
941 if (p->post_handler && !ap->post_handler)
942 ap->post_handler = aggr_post_handler;
944 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
945 ap->flags &= ~KPROBE_FLAG_DISABLED;
946 if (!kprobes_all_disarmed)
947 /* Arm the breakpoint again. */
948 __arm_kprobe(ap);
950 return 0;
954 * Fill in the required fields of the "manager kprobe". Replace the
955 * earlier kprobe in the hlist with the manager kprobe
957 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
959 /* Copy p's insn slot to ap */
960 copy_kprobe(p, ap);
961 flush_insn_slot(ap);
962 ap->addr = p->addr;
963 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
964 ap->pre_handler = aggr_pre_handler;
965 ap->fault_handler = aggr_fault_handler;
966 /* We don't care the kprobe which has gone. */
967 if (p->post_handler && !kprobe_gone(p))
968 ap->post_handler = aggr_post_handler;
969 if (p->break_handler && !kprobe_gone(p))
970 ap->break_handler = aggr_break_handler;
972 INIT_LIST_HEAD(&ap->list);
973 INIT_HLIST_NODE(&ap->hlist);
975 list_add_rcu(&p->list, &ap->list);
976 hlist_replace_rcu(&p->hlist, &ap->hlist);
980 * This is the second or subsequent kprobe at the address - handle
981 * the intricacies
983 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
984 struct kprobe *p)
986 int ret = 0;
987 struct kprobe *ap = old_p;
989 if (!kprobe_aggrprobe(old_p)) {
990 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
991 ap = alloc_aggr_kprobe(old_p);
992 if (!ap)
993 return -ENOMEM;
994 init_aggr_kprobe(ap, old_p);
997 if (kprobe_gone(ap)) {
999 * Attempting to insert new probe at the same location that
1000 * had a probe in the module vaddr area which already
1001 * freed. So, the instruction slot has already been
1002 * released. We need a new slot for the new probe.
1004 ret = arch_prepare_kprobe(ap);
1005 if (ret)
1007 * Even if fail to allocate new slot, don't need to
1008 * free aggr_probe. It will be used next time, or
1009 * freed by unregister_kprobe.
1011 return ret;
1013 /* Prepare optimized instructions if possible. */
1014 prepare_optimized_kprobe(ap);
1017 * Clear gone flag to prevent allocating new slot again, and
1018 * set disabled flag because it is not armed yet.
1020 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1021 | KPROBE_FLAG_DISABLED;
1024 /* Copy ap's insn slot to p */
1025 copy_kprobe(ap, p);
1026 return add_new_kprobe(ap, p);
1029 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1030 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1032 struct kprobe *kp;
1034 list_for_each_entry_rcu(kp, &p->list, list) {
1035 if (!kprobe_disabled(kp))
1037 * There is an active probe on the list.
1038 * We can't disable aggr_kprobe.
1040 return 0;
1042 p->flags |= KPROBE_FLAG_DISABLED;
1043 return 1;
1046 static int __kprobes in_kprobes_functions(unsigned long addr)
1048 struct kprobe_blackpoint *kb;
1050 if (addr >= (unsigned long)__kprobes_text_start &&
1051 addr < (unsigned long)__kprobes_text_end)
1052 return -EINVAL;
1054 * If there exists a kprobe_blacklist, verify and
1055 * fail any probe registration in the prohibited area
1057 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1058 if (kb->start_addr) {
1059 if (addr >= kb->start_addr &&
1060 addr < (kb->start_addr + kb->range))
1061 return -EINVAL;
1064 return 0;
1068 * If we have a symbol_name argument, look it up and add the offset field
1069 * to it. This way, we can specify a relative address to a symbol.
1071 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1073 kprobe_opcode_t *addr = p->addr;
1074 if (p->symbol_name) {
1075 if (addr)
1076 return NULL;
1077 kprobe_lookup_name(p->symbol_name, addr);
1080 if (!addr)
1081 return NULL;
1082 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1085 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1086 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1088 struct kprobe *old_p, *list_p;
1090 old_p = get_kprobe(p->addr);
1091 if (unlikely(!old_p))
1092 return NULL;
1094 if (p != old_p) {
1095 list_for_each_entry_rcu(list_p, &old_p->list, list)
1096 if (list_p == p)
1097 /* kprobe p is a valid probe */
1098 goto valid;
1099 return NULL;
1101 valid:
1102 return old_p;
1105 /* Return error if the kprobe is being re-registered */
1106 static inline int check_kprobe_rereg(struct kprobe *p)
1108 int ret = 0;
1109 struct kprobe *old_p;
1111 mutex_lock(&kprobe_mutex);
1112 old_p = __get_valid_kprobe(p);
1113 if (old_p)
1114 ret = -EINVAL;
1115 mutex_unlock(&kprobe_mutex);
1116 return ret;
1119 int __kprobes register_kprobe(struct kprobe *p)
1121 int ret = 0;
1122 struct kprobe *old_p;
1123 struct module *probed_mod;
1124 kprobe_opcode_t *addr;
1126 addr = kprobe_addr(p);
1127 if (!addr)
1128 return -EINVAL;
1129 p->addr = addr;
1131 ret = check_kprobe_rereg(p);
1132 if (ret)
1133 return ret;
1135 preempt_disable();
1136 if (!kernel_text_address((unsigned long) p->addr) ||
1137 in_kprobes_functions((unsigned long) p->addr) ||
1138 ftrace_text_reserved(p->addr, p->addr)) {
1139 preempt_enable();
1140 return -EINVAL;
1143 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1144 p->flags &= KPROBE_FLAG_DISABLED;
1147 * Check if are we probing a module.
1149 probed_mod = __module_text_address((unsigned long) p->addr);
1150 if (probed_mod) {
1152 * We must hold a refcount of the probed module while updating
1153 * its code to prohibit unexpected unloading.
1155 if (unlikely(!try_module_get(probed_mod))) {
1156 preempt_enable();
1157 return -EINVAL;
1160 * If the module freed .init.text, we couldn't insert
1161 * kprobes in there.
1163 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1164 probed_mod->state != MODULE_STATE_COMING) {
1165 module_put(probed_mod);
1166 preempt_enable();
1167 return -EINVAL;
1170 preempt_enable();
1172 p->nmissed = 0;
1173 INIT_LIST_HEAD(&p->list);
1174 mutex_lock(&kprobe_mutex);
1176 get_online_cpus(); /* For avoiding text_mutex deadlock. */
1177 mutex_lock(&text_mutex);
1179 old_p = get_kprobe(p->addr);
1180 if (old_p) {
1181 /* Since this may unoptimize old_p, locking text_mutex. */
1182 ret = register_aggr_kprobe(old_p, p);
1183 goto out;
1186 ret = arch_prepare_kprobe(p);
1187 if (ret)
1188 goto out;
1190 INIT_HLIST_NODE(&p->hlist);
1191 hlist_add_head_rcu(&p->hlist,
1192 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1194 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1195 __arm_kprobe(p);
1197 /* Try to optimize kprobe */
1198 try_to_optimize_kprobe(p);
1200 out:
1201 mutex_unlock(&text_mutex);
1202 put_online_cpus();
1203 mutex_unlock(&kprobe_mutex);
1205 if (probed_mod)
1206 module_put(probed_mod);
1208 return ret;
1210 EXPORT_SYMBOL_GPL(register_kprobe);
1213 * Unregister a kprobe without a scheduler synchronization.
1215 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1217 struct kprobe *old_p, *list_p;
1219 old_p = __get_valid_kprobe(p);
1220 if (old_p == NULL)
1221 return -EINVAL;
1223 if (old_p == p ||
1224 (kprobe_aggrprobe(old_p) &&
1225 list_is_singular(&old_p->list))) {
1227 * Only probe on the hash list. Disarm only if kprobes are
1228 * enabled and not gone - otherwise, the breakpoint would
1229 * already have been removed. We save on flushing icache.
1231 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1232 disarm_kprobe(old_p);
1233 hlist_del_rcu(&old_p->hlist);
1234 } else {
1235 if (p->break_handler && !kprobe_gone(p))
1236 old_p->break_handler = NULL;
1237 if (p->post_handler && !kprobe_gone(p)) {
1238 list_for_each_entry_rcu(list_p, &old_p->list, list) {
1239 if ((list_p != p) && (list_p->post_handler))
1240 goto noclean;
1242 old_p->post_handler = NULL;
1244 noclean:
1245 list_del_rcu(&p->list);
1246 if (!kprobe_disabled(old_p)) {
1247 try_to_disable_aggr_kprobe(old_p);
1248 if (!kprobes_all_disarmed) {
1249 if (kprobe_disabled(old_p))
1250 disarm_kprobe(old_p);
1251 else
1252 /* Try to optimize this probe again */
1253 optimize_kprobe(old_p);
1257 return 0;
1260 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1262 struct kprobe *old_p;
1264 if (list_empty(&p->list))
1265 arch_remove_kprobe(p);
1266 else if (list_is_singular(&p->list)) {
1267 /* "p" is the last child of an aggr_kprobe */
1268 old_p = list_entry(p->list.next, struct kprobe, list);
1269 list_del(&p->list);
1270 arch_remove_kprobe(old_p);
1271 free_aggr_kprobe(old_p);
1275 int __kprobes register_kprobes(struct kprobe **kps, int num)
1277 int i, ret = 0;
1279 if (num <= 0)
1280 return -EINVAL;
1281 for (i = 0; i < num; i++) {
1282 ret = register_kprobe(kps[i]);
1283 if (ret < 0) {
1284 if (i > 0)
1285 unregister_kprobes(kps, i);
1286 break;
1289 return ret;
1291 EXPORT_SYMBOL_GPL(register_kprobes);
1293 void __kprobes unregister_kprobe(struct kprobe *p)
1295 unregister_kprobes(&p, 1);
1297 EXPORT_SYMBOL_GPL(unregister_kprobe);
1299 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1301 int i;
1303 if (num <= 0)
1304 return;
1305 mutex_lock(&kprobe_mutex);
1306 for (i = 0; i < num; i++)
1307 if (__unregister_kprobe_top(kps[i]) < 0)
1308 kps[i]->addr = NULL;
1309 mutex_unlock(&kprobe_mutex);
1311 synchronize_sched();
1312 for (i = 0; i < num; i++)
1313 if (kps[i]->addr)
1314 __unregister_kprobe_bottom(kps[i]);
1316 EXPORT_SYMBOL_GPL(unregister_kprobes);
1318 static struct notifier_block kprobe_exceptions_nb = {
1319 .notifier_call = kprobe_exceptions_notify,
1320 .priority = 0x7fffffff /* we need to be notified first */
1323 unsigned long __weak arch_deref_entry_point(void *entry)
1325 return (unsigned long)entry;
1328 int __kprobes register_jprobes(struct jprobe **jps, int num)
1330 struct jprobe *jp;
1331 int ret = 0, i;
1333 if (num <= 0)
1334 return -EINVAL;
1335 for (i = 0; i < num; i++) {
1336 unsigned long addr;
1337 jp = jps[i];
1338 addr = arch_deref_entry_point(jp->entry);
1340 if (!kernel_text_address(addr))
1341 ret = -EINVAL;
1342 else {
1343 /* Todo: Verify probepoint is a function entry point */
1344 jp->kp.pre_handler = setjmp_pre_handler;
1345 jp->kp.break_handler = longjmp_break_handler;
1346 ret = register_kprobe(&jp->kp);
1348 if (ret < 0) {
1349 if (i > 0)
1350 unregister_jprobes(jps, i);
1351 break;
1354 return ret;
1356 EXPORT_SYMBOL_GPL(register_jprobes);
1358 int __kprobes register_jprobe(struct jprobe *jp)
1360 return register_jprobes(&jp, 1);
1362 EXPORT_SYMBOL_GPL(register_jprobe);
1364 void __kprobes unregister_jprobe(struct jprobe *jp)
1366 unregister_jprobes(&jp, 1);
1368 EXPORT_SYMBOL_GPL(unregister_jprobe);
1370 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1372 int i;
1374 if (num <= 0)
1375 return;
1376 mutex_lock(&kprobe_mutex);
1377 for (i = 0; i < num; i++)
1378 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1379 jps[i]->kp.addr = NULL;
1380 mutex_unlock(&kprobe_mutex);
1382 synchronize_sched();
1383 for (i = 0; i < num; i++) {
1384 if (jps[i]->kp.addr)
1385 __unregister_kprobe_bottom(&jps[i]->kp);
1388 EXPORT_SYMBOL_GPL(unregister_jprobes);
1390 #ifdef CONFIG_KRETPROBES
1392 * This kprobe pre_handler is registered with every kretprobe. When probe
1393 * hits it will set up the return probe.
1395 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1396 struct pt_regs *regs)
1398 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1399 unsigned long hash, flags = 0;
1400 struct kretprobe_instance *ri;
1402 /*TODO: consider to only swap the RA after the last pre_handler fired */
1403 hash = hash_ptr(current, KPROBE_HASH_BITS);
1404 spin_lock_irqsave(&rp->lock, flags);
1405 if (!hlist_empty(&rp->free_instances)) {
1406 ri = hlist_entry(rp->free_instances.first,
1407 struct kretprobe_instance, hlist);
1408 hlist_del(&ri->hlist);
1409 spin_unlock_irqrestore(&rp->lock, flags);
1411 ri->rp = rp;
1412 ri->task = current;
1414 if (rp->entry_handler && rp->entry_handler(ri, regs))
1415 return 0;
1417 arch_prepare_kretprobe(ri, regs);
1419 INIT_HLIST_NODE(&ri->hlist);
1420 kretprobe_table_lock(hash, &flags);
1421 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1422 kretprobe_table_unlock(hash, &flags);
1423 } else {
1424 rp->nmissed++;
1425 spin_unlock_irqrestore(&rp->lock, flags);
1427 return 0;
1430 int __kprobes register_kretprobe(struct kretprobe *rp)
1432 int ret = 0;
1433 struct kretprobe_instance *inst;
1434 int i;
1435 void *addr;
1437 if (kretprobe_blacklist_size) {
1438 addr = kprobe_addr(&rp->kp);
1439 if (!addr)
1440 return -EINVAL;
1442 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1443 if (kretprobe_blacklist[i].addr == addr)
1444 return -EINVAL;
1448 rp->kp.pre_handler = pre_handler_kretprobe;
1449 rp->kp.post_handler = NULL;
1450 rp->kp.fault_handler = NULL;
1451 rp->kp.break_handler = NULL;
1453 /* Pre-allocate memory for max kretprobe instances */
1454 if (rp->maxactive <= 0) {
1455 #ifdef CONFIG_PREEMPT
1456 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1457 #else
1458 rp->maxactive = num_possible_cpus();
1459 #endif
1461 spin_lock_init(&rp->lock);
1462 INIT_HLIST_HEAD(&rp->free_instances);
1463 for (i = 0; i < rp->maxactive; i++) {
1464 inst = kmalloc(sizeof(struct kretprobe_instance) +
1465 rp->data_size, GFP_KERNEL);
1466 if (inst == NULL) {
1467 free_rp_inst(rp);
1468 return -ENOMEM;
1470 INIT_HLIST_NODE(&inst->hlist);
1471 hlist_add_head(&inst->hlist, &rp->free_instances);
1474 rp->nmissed = 0;
1475 /* Establish function entry probe point */
1476 ret = register_kprobe(&rp->kp);
1477 if (ret != 0)
1478 free_rp_inst(rp);
1479 return ret;
1481 EXPORT_SYMBOL_GPL(register_kretprobe);
1483 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1485 int ret = 0, i;
1487 if (num <= 0)
1488 return -EINVAL;
1489 for (i = 0; i < num; i++) {
1490 ret = register_kretprobe(rps[i]);
1491 if (ret < 0) {
1492 if (i > 0)
1493 unregister_kretprobes(rps, i);
1494 break;
1497 return ret;
1499 EXPORT_SYMBOL_GPL(register_kretprobes);
1501 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1503 unregister_kretprobes(&rp, 1);
1505 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1507 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1509 int i;
1511 if (num <= 0)
1512 return;
1513 mutex_lock(&kprobe_mutex);
1514 for (i = 0; i < num; i++)
1515 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1516 rps[i]->kp.addr = NULL;
1517 mutex_unlock(&kprobe_mutex);
1519 synchronize_sched();
1520 for (i = 0; i < num; i++) {
1521 if (rps[i]->kp.addr) {
1522 __unregister_kprobe_bottom(&rps[i]->kp);
1523 cleanup_rp_inst(rps[i]);
1527 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1529 #else /* CONFIG_KRETPROBES */
1530 int __kprobes register_kretprobe(struct kretprobe *rp)
1532 return -ENOSYS;
1534 EXPORT_SYMBOL_GPL(register_kretprobe);
1536 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1538 return -ENOSYS;
1540 EXPORT_SYMBOL_GPL(register_kretprobes);
1542 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1545 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1547 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1550 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1552 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1553 struct pt_regs *regs)
1555 return 0;
1558 #endif /* CONFIG_KRETPROBES */
1560 /* Set the kprobe gone and remove its instruction buffer. */
1561 static void __kprobes kill_kprobe(struct kprobe *p)
1563 struct kprobe *kp;
1565 p->flags |= KPROBE_FLAG_GONE;
1566 if (kprobe_aggrprobe(p)) {
1568 * If this is an aggr_kprobe, we have to list all the
1569 * chained probes and mark them GONE.
1571 list_for_each_entry_rcu(kp, &p->list, list)
1572 kp->flags |= KPROBE_FLAG_GONE;
1573 p->post_handler = NULL;
1574 p->break_handler = NULL;
1575 kill_optimized_kprobe(p);
1578 * Here, we can remove insn_slot safely, because no thread calls
1579 * the original probed function (which will be freed soon) any more.
1581 arch_remove_kprobe(p);
1584 /* Disable one kprobe */
1585 int __kprobes disable_kprobe(struct kprobe *kp)
1587 int ret = 0;
1588 struct kprobe *p;
1590 mutex_lock(&kprobe_mutex);
1592 /* Check whether specified probe is valid. */
1593 p = __get_valid_kprobe(kp);
1594 if (unlikely(p == NULL)) {
1595 ret = -EINVAL;
1596 goto out;
1599 /* If the probe is already disabled (or gone), just return */
1600 if (kprobe_disabled(kp))
1601 goto out;
1603 kp->flags |= KPROBE_FLAG_DISABLED;
1604 if (p != kp)
1605 /* When kp != p, p is always enabled. */
1606 try_to_disable_aggr_kprobe(p);
1608 if (!kprobes_all_disarmed && kprobe_disabled(p))
1609 disarm_kprobe(p);
1610 out:
1611 mutex_unlock(&kprobe_mutex);
1612 return ret;
1614 EXPORT_SYMBOL_GPL(disable_kprobe);
1616 /* Enable one kprobe */
1617 int __kprobes enable_kprobe(struct kprobe *kp)
1619 int ret = 0;
1620 struct kprobe *p;
1622 mutex_lock(&kprobe_mutex);
1624 /* Check whether specified probe is valid. */
1625 p = __get_valid_kprobe(kp);
1626 if (unlikely(p == NULL)) {
1627 ret = -EINVAL;
1628 goto out;
1631 if (kprobe_gone(kp)) {
1632 /* This kprobe has gone, we couldn't enable it. */
1633 ret = -EINVAL;
1634 goto out;
1637 if (p != kp)
1638 kp->flags &= ~KPROBE_FLAG_DISABLED;
1640 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1641 p->flags &= ~KPROBE_FLAG_DISABLED;
1642 arm_kprobe(p);
1644 out:
1645 mutex_unlock(&kprobe_mutex);
1646 return ret;
1648 EXPORT_SYMBOL_GPL(enable_kprobe);
1650 void __kprobes dump_kprobe(struct kprobe *kp)
1652 printk(KERN_WARNING "Dumping kprobe:\n");
1653 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1654 kp->symbol_name, kp->addr, kp->offset);
1657 /* Module notifier call back, checking kprobes on the module */
1658 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1659 unsigned long val, void *data)
1661 struct module *mod = data;
1662 struct hlist_head *head;
1663 struct hlist_node *node;
1664 struct kprobe *p;
1665 unsigned int i;
1666 int checkcore = (val == MODULE_STATE_GOING);
1668 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1669 return NOTIFY_DONE;
1672 * When MODULE_STATE_GOING was notified, both of module .text and
1673 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1674 * notified, only .init.text section would be freed. We need to
1675 * disable kprobes which have been inserted in the sections.
1677 mutex_lock(&kprobe_mutex);
1678 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1679 head = &kprobe_table[i];
1680 hlist_for_each_entry_rcu(p, node, head, hlist)
1681 if (within_module_init((unsigned long)p->addr, mod) ||
1682 (checkcore &&
1683 within_module_core((unsigned long)p->addr, mod))) {
1685 * The vaddr this probe is installed will soon
1686 * be vfreed buy not synced to disk. Hence,
1687 * disarming the breakpoint isn't needed.
1689 kill_kprobe(p);
1692 mutex_unlock(&kprobe_mutex);
1693 return NOTIFY_DONE;
1696 static struct notifier_block kprobe_module_nb = {
1697 .notifier_call = kprobes_module_callback,
1698 .priority = 0
1701 static int __init init_kprobes(void)
1703 int i, err = 0;
1704 unsigned long offset = 0, size = 0;
1705 char *modname, namebuf[128];
1706 const char *symbol_name;
1707 void *addr;
1708 struct kprobe_blackpoint *kb;
1710 /* initialize all list heads */
1711 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1712 INIT_HLIST_HEAD(&kprobe_table[i]);
1713 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1714 spin_lock_init(&(kretprobe_table_locks[i].lock));
1718 * Lookup and populate the kprobe_blacklist.
1720 * Unlike the kretprobe blacklist, we'll need to determine
1721 * the range of addresses that belong to the said functions,
1722 * since a kprobe need not necessarily be at the beginning
1723 * of a function.
1725 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1726 kprobe_lookup_name(kb->name, addr);
1727 if (!addr)
1728 continue;
1730 kb->start_addr = (unsigned long)addr;
1731 symbol_name = kallsyms_lookup(kb->start_addr,
1732 &size, &offset, &modname, namebuf);
1733 if (!symbol_name)
1734 kb->range = 0;
1735 else
1736 kb->range = size;
1739 if (kretprobe_blacklist_size) {
1740 /* lookup the function address from its name */
1741 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1742 kprobe_lookup_name(kretprobe_blacklist[i].name,
1743 kretprobe_blacklist[i].addr);
1744 if (!kretprobe_blacklist[i].addr)
1745 printk("kretprobe: lookup failed: %s\n",
1746 kretprobe_blacklist[i].name);
1750 #if defined(CONFIG_OPTPROBES)
1751 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1752 /* Init kprobe_optinsn_slots */
1753 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1754 #endif
1755 /* By default, kprobes can be optimized */
1756 kprobes_allow_optimization = true;
1757 #endif
1759 /* By default, kprobes are armed */
1760 kprobes_all_disarmed = false;
1762 err = arch_init_kprobes();
1763 if (!err)
1764 err = register_die_notifier(&kprobe_exceptions_nb);
1765 if (!err)
1766 err = register_module_notifier(&kprobe_module_nb);
1768 kprobes_initialized = (err == 0);
1770 if (!err)
1771 init_test_probes();
1772 return err;
1775 #ifdef CONFIG_DEBUG_FS
1776 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1777 const char *sym, int offset, char *modname, struct kprobe *pp)
1779 char *kprobe_type;
1781 if (p->pre_handler == pre_handler_kretprobe)
1782 kprobe_type = "r";
1783 else if (p->pre_handler == setjmp_pre_handler)
1784 kprobe_type = "j";
1785 else
1786 kprobe_type = "k";
1788 if (sym)
1789 seq_printf(pi, "%p %s %s+0x%x %s ",
1790 p->addr, kprobe_type, sym, offset,
1791 (modname ? modname : " "));
1792 else
1793 seq_printf(pi, "%p %s %p ",
1794 p->addr, kprobe_type, p->addr);
1796 if (!pp)
1797 pp = p;
1798 seq_printf(pi, "%s%s%s\n",
1799 (kprobe_gone(p) ? "[GONE]" : ""),
1800 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
1801 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1804 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1806 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1809 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1811 (*pos)++;
1812 if (*pos >= KPROBE_TABLE_SIZE)
1813 return NULL;
1814 return pos;
1817 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1819 /* Nothing to do */
1822 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1824 struct hlist_head *head;
1825 struct hlist_node *node;
1826 struct kprobe *p, *kp;
1827 const char *sym = NULL;
1828 unsigned int i = *(loff_t *) v;
1829 unsigned long offset = 0;
1830 char *modname, namebuf[128];
1832 head = &kprobe_table[i];
1833 preempt_disable();
1834 hlist_for_each_entry_rcu(p, node, head, hlist) {
1835 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1836 &offset, &modname, namebuf);
1837 if (kprobe_aggrprobe(p)) {
1838 list_for_each_entry_rcu(kp, &p->list, list)
1839 report_probe(pi, kp, sym, offset, modname, p);
1840 } else
1841 report_probe(pi, p, sym, offset, modname, NULL);
1843 preempt_enable();
1844 return 0;
1847 static const struct seq_operations kprobes_seq_ops = {
1848 .start = kprobe_seq_start,
1849 .next = kprobe_seq_next,
1850 .stop = kprobe_seq_stop,
1851 .show = show_kprobe_addr
1854 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1856 return seq_open(filp, &kprobes_seq_ops);
1859 static const struct file_operations debugfs_kprobes_operations = {
1860 .open = kprobes_open,
1861 .read = seq_read,
1862 .llseek = seq_lseek,
1863 .release = seq_release,
1866 static void __kprobes arm_all_kprobes(void)
1868 struct hlist_head *head;
1869 struct hlist_node *node;
1870 struct kprobe *p;
1871 unsigned int i;
1873 mutex_lock(&kprobe_mutex);
1875 /* If kprobes are armed, just return */
1876 if (!kprobes_all_disarmed)
1877 goto already_enabled;
1879 /* Arming kprobes doesn't optimize kprobe itself */
1880 mutex_lock(&text_mutex);
1881 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1882 head = &kprobe_table[i];
1883 hlist_for_each_entry_rcu(p, node, head, hlist)
1884 if (!kprobe_disabled(p))
1885 __arm_kprobe(p);
1887 mutex_unlock(&text_mutex);
1889 kprobes_all_disarmed = false;
1890 printk(KERN_INFO "Kprobes globally enabled\n");
1892 already_enabled:
1893 mutex_unlock(&kprobe_mutex);
1894 return;
1897 static void __kprobes disarm_all_kprobes(void)
1899 struct hlist_head *head;
1900 struct hlist_node *node;
1901 struct kprobe *p;
1902 unsigned int i;
1904 mutex_lock(&kprobe_mutex);
1906 /* If kprobes are already disarmed, just return */
1907 if (kprobes_all_disarmed)
1908 goto already_disabled;
1910 kprobes_all_disarmed = true;
1911 printk(KERN_INFO "Kprobes globally disabled\n");
1914 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1915 * because disarming may also unoptimize kprobes.
1917 get_online_cpus();
1918 mutex_lock(&text_mutex);
1919 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1920 head = &kprobe_table[i];
1921 hlist_for_each_entry_rcu(p, node, head, hlist) {
1922 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1923 __disarm_kprobe(p);
1927 mutex_unlock(&text_mutex);
1928 put_online_cpus();
1929 mutex_unlock(&kprobe_mutex);
1930 /* Allow all currently running kprobes to complete */
1931 synchronize_sched();
1932 return;
1934 already_disabled:
1935 mutex_unlock(&kprobe_mutex);
1936 return;
1939 static ssize_t read_enabled_file_bool(struct file *file,
1940 char __user *user_buf, size_t count, loff_t *ppos)
1942 char buf[3];
1944 if (!kprobes_all_disarmed)
1945 buf[0] = '1';
1946 else
1947 buf[0] = '0';
1948 buf[1] = '\n';
1949 buf[2] = 0x00;
1950 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1953 static ssize_t write_enabled_file_bool(struct file *file,
1954 const char __user *user_buf, size_t count, loff_t *ppos)
1956 char buf[32];
1957 int buf_size;
1959 buf_size = min(count, (sizeof(buf)-1));
1960 if (copy_from_user(buf, user_buf, buf_size))
1961 return -EFAULT;
1963 switch (buf[0]) {
1964 case 'y':
1965 case 'Y':
1966 case '1':
1967 arm_all_kprobes();
1968 break;
1969 case 'n':
1970 case 'N':
1971 case '0':
1972 disarm_all_kprobes();
1973 break;
1976 return count;
1979 static const struct file_operations fops_kp = {
1980 .read = read_enabled_file_bool,
1981 .write = write_enabled_file_bool,
1984 static int __kprobes debugfs_kprobe_init(void)
1986 struct dentry *dir, *file;
1987 unsigned int value = 1;
1989 dir = debugfs_create_dir("kprobes", NULL);
1990 if (!dir)
1991 return -ENOMEM;
1993 file = debugfs_create_file("list", 0444, dir, NULL,
1994 &debugfs_kprobes_operations);
1995 if (!file) {
1996 debugfs_remove(dir);
1997 return -ENOMEM;
2000 file = debugfs_create_file("enabled", 0600, dir,
2001 &value, &fops_kp);
2002 if (!file) {
2003 debugfs_remove(dir);
2004 return -ENOMEM;
2007 return 0;
2010 late_initcall(debugfs_kprobe_init);
2011 #endif /* CONFIG_DEBUG_FS */
2013 module_init(init_kprobes);
2015 /* defined in arch/.../kernel/kprobes.c */
2016 EXPORT_SYMBOL_GPL(jprobe_return);