GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / include / linux / jiffies.h
blob3d1e8a9212f30c6281b17860c082bff8c55b1ff0
1 /* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2 #ifndef _LINUX_JIFFIES_H
3 #define _LINUX_JIFFIES_H
5 #include <linux/math64.h>
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/time.h>
9 #include <linux/timex.h>
10 #include <asm/param.h> /* for HZ */
13 * The following defines establish the engineering parameters of the PLL
14 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
15 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
16 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
17 * nearest power of two in order to avoid hardware multiply operations.
19 #if HZ < 3
20 # define SHIFT_HZ 1
21 #elif HZ >= 3 && HZ < 6
22 # define SHIFT_HZ 2
23 #elif HZ >= 6 && HZ < 12
24 # define SHIFT_HZ 3
25 #elif HZ >= 12 && HZ < 24
26 # define SHIFT_HZ 4
27 #elif HZ >= 24 && HZ < 48
28 # define SHIFT_HZ 5
29 #elif HZ >= 48 && HZ < 96
30 # define SHIFT_HZ 6
31 #elif HZ >= 96 && HZ < 192
32 # define SHIFT_HZ 7
33 #elif HZ >= 192 && HZ < 384
34 # define SHIFT_HZ 8
35 #elif HZ >= 384 && HZ < 768
36 # define SHIFT_HZ 9
37 #elif HZ >= 768 && HZ < 1536
38 # define SHIFT_HZ 10
39 #elif HZ >= 1536 && HZ < 3072
40 # define SHIFT_HZ 11
41 #elif HZ >= 3072 && HZ < 6144
42 # define SHIFT_HZ 12
43 #elif HZ >= 6144 && HZ < 12288
44 # define SHIFT_HZ 13
45 #else
46 # error Invalid value of HZ.
47 #endif
49 /* LATCH is used in the interval timer and ftape setup. */
50 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
52 /* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, then we can
53 * improve accuracy by shifting LSH bits, hence calculating:
54 * (NOM << LSH) / DEN
55 * This however means trouble for large NOM, because (NOM << LSH) may no
56 * longer fit in 32 bits. The following way of calculating this gives us
57 * some slack, under the following conditions:
58 * - (NOM / DEN) fits in (32 - LSH) bits.
59 * - (NOM % DEN) fits in (32 - LSH) bits.
61 #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
62 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
64 /* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
65 #define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
67 /* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
68 #define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
70 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
71 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
73 /* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and */
74 /* a value TUSEC for TICK_USEC (can be set bij adjtimex) */
75 #define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
77 /* some arch's have a small-data section that can be accessed register-relative
78 * but that can only take up to, say, 4-byte variables. jiffies being part of
79 * an 8-byte variable may not be correctly accessed unless we force the issue
81 #define __jiffy_data __attribute__((section(".data")))
84 * The 64-bit value is not atomic - you MUST NOT read it
85 * without sampling the sequence number in xtime_lock.
86 * get_jiffies_64() will do this for you as appropriate.
88 extern u64 __jiffy_data jiffies_64;
89 extern unsigned long volatile __jiffy_data jiffies;
91 #if (BITS_PER_LONG < 64)
92 u64 get_jiffies_64(void);
93 #else
94 static inline u64 get_jiffies_64(void)
96 return (u64)jiffies;
98 #endif
101 * These inlines deal with timer wrapping correctly. You are
102 * strongly encouraged to use them
103 * 1. Because people otherwise forget
104 * 2. Because if the timer wrap changes in future you won't have to
105 * alter your driver code.
107 * time_after(a,b) returns true if the time a is after time b.
109 * Do this with "<0" and ">=0" to only test the sign of the result. A
110 * good compiler would generate better code (and a really good compiler
111 * wouldn't care). Gcc is currently neither.
113 #define time_after(a,b) \
114 (typecheck(unsigned long, a) && \
115 typecheck(unsigned long, b) && \
116 ((long)(b) - (long)(a) < 0))
117 #define time_before(a,b) time_after(b,a)
119 #define time_after_eq(a,b) \
120 (typecheck(unsigned long, a) && \
121 typecheck(unsigned long, b) && \
122 ((long)(a) - (long)(b) >= 0))
123 #define time_before_eq(a,b) time_after_eq(b,a)
126 * Calculate whether a is in the range of [b, c].
128 #define time_in_range(a,b,c) \
129 (time_after_eq(a,b) && \
130 time_before_eq(a,c))
133 * Calculate whether a is in the range of [b, c).
135 #define time_in_range_open(a,b,c) \
136 (time_after_eq(a,b) && \
137 time_before(a,c))
139 /* Same as above, but does so with platform independent 64bit types.
140 * These must be used when utilizing jiffies_64 (i.e. return value of
141 * get_jiffies_64() */
142 #define time_after64(a,b) \
143 (typecheck(__u64, a) && \
144 typecheck(__u64, b) && \
145 ((__s64)(b) - (__s64)(a) < 0))
146 #define time_before64(a,b) time_after64(b,a)
148 #define time_after_eq64(a,b) \
149 (typecheck(__u64, a) && \
150 typecheck(__u64, b) && \
151 ((__s64)(a) - (__s64)(b) >= 0))
152 #define time_before_eq64(a,b) time_after_eq64(b,a)
155 * These four macros compare jiffies and 'a' for convenience.
158 /* time_is_before_jiffies(a) return true if a is before jiffies */
159 #define time_is_before_jiffies(a) time_after(jiffies, a)
161 /* time_is_after_jiffies(a) return true if a is after jiffies */
162 #define time_is_after_jiffies(a) time_before(jiffies, a)
164 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
165 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
167 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
168 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
171 * Have the 32 bit jiffies value wrap 5 minutes after boot
172 * so jiffies wrap bugs show up earlier.
174 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
177 * Change timeval to jiffies, trying to avoid the
178 * most obvious overflows..
180 * And some not so obvious.
182 * Note that we don't want to return LONG_MAX, because
183 * for various timeout reasons we often end up having
184 * to wait "jiffies+1" in order to guarantee that we wait
185 * at _least_ "jiffies" - so "jiffies+1" had better still
186 * be positive.
188 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
190 extern unsigned long preset_lpj;
193 * We want to do realistic conversions of time so we need to use the same
194 * values the update wall clock code uses as the jiffies size. This value
195 * is: TICK_NSEC (which is defined in timex.h). This
196 * is a constant and is in nanoseconds. We will use scaled math
197 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
198 * NSEC_JIFFIE_SC. Note that these defines contain nothing but
199 * constants and so are computed at compile time. SHIFT_HZ (computed in
200 * timex.h) adjusts the scaling for different HZ values.
202 * Scaled math??? What is that?
204 * Scaled math is a way to do integer math on values that would,
205 * otherwise, either overflow, underflow, or cause undesired div
206 * instructions to appear in the execution path. In short, we "scale"
207 * up the operands so they take more bits (more precision, less
208 * underflow), do the desired operation and then "scale" the result back
209 * by the same amount. If we do the scaling by shifting we avoid the
210 * costly mpy and the dastardly div instructions.
212 * Suppose, for example, we want to convert from seconds to jiffies
213 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
214 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
215 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
216 * might calculate at compile time, however, the result will only have
217 * about 3-4 bits of precision (less for smaller values of HZ).
219 * So, we scale as follows:
220 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
221 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
222 * Then we make SCALE a power of two so:
223 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
224 * Now we define:
225 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
226 * jiff = (sec * SEC_CONV) >> SCALE;
228 * Often the math we use will expand beyond 32-bits so we tell C how to
229 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
230 * which should take the result back to 32-bits. We want this expansion
231 * to capture as much precision as possible. At the same time we don't
232 * want to overflow so we pick the SCALE to avoid this. In this file,
233 * that means using a different scale for each range of HZ values (as
234 * defined in timex.h).
236 * For those who want to know, gcc will give a 64-bit result from a "*"
237 * operator if the result is a long long AND at least one of the
238 * operands is cast to long long (usually just prior to the "*" so as
239 * not to confuse it into thinking it really has a 64-bit operand,
240 * which, buy the way, it can do, but it takes more code and at least 2
241 * mpys).
243 * We also need to be aware that one second in nanoseconds is only a
244 * couple of bits away from overflowing a 32-bit word, so we MUST use
245 * 64-bits to get the full range time in nanoseconds.
250 * Here are the scales we will use. One for seconds, nanoseconds and
251 * microseconds.
253 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
254 * check if the sign bit is set. If not, we bump the shift count by 1.
255 * (Gets an extra bit of precision where we can use it.)
256 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
257 * Haven't tested others.
259 * Limits of cpp (for #if expressions) only long (no long long), but
260 * then we only need the most signicant bit.
263 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
264 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
265 #undef SEC_JIFFIE_SC
266 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
267 #endif
268 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
269 #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
270 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
271 TICK_NSEC -1) / (u64)TICK_NSEC))
273 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
274 TICK_NSEC -1) / (u64)TICK_NSEC))
275 #define USEC_CONVERSION \
276 ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
277 TICK_NSEC -1) / (u64)TICK_NSEC))
279 * USEC_ROUND is used in the timeval to jiffie conversion. See there
280 * for more details. It is the scaled resolution rounding value. Note
281 * that it is a 64-bit value. Since, when it is applied, we are already
282 * in jiffies (albit scaled), it is nothing but the bits we will shift
283 * off.
285 #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
287 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
288 * into seconds. The 64-bit case will overflow if we are not careful,
289 * so use the messy SH_DIV macro to do it. Still all constants.
291 #if BITS_PER_LONG < 64
292 # define MAX_SEC_IN_JIFFIES \
293 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
294 #else /* take care of overflow on 64 bits machines */
295 # define MAX_SEC_IN_JIFFIES \
296 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
298 #endif
301 * Convert various time units to each other:
303 extern unsigned int jiffies_to_msecs(const unsigned long j);
304 extern unsigned int jiffies_to_usecs(const unsigned long j);
305 extern unsigned long msecs_to_jiffies(const unsigned int m);
306 extern unsigned long usecs_to_jiffies(const unsigned int u);
307 extern unsigned long timespec_to_jiffies(const struct timespec *value);
308 extern void jiffies_to_timespec(const unsigned long jiffies,
309 struct timespec *value);
310 extern unsigned long timeval_to_jiffies(const struct timeval *value);
311 extern void jiffies_to_timeval(const unsigned long jiffies,
312 struct timeval *value);
313 extern clock_t jiffies_to_clock_t(long x);
314 extern unsigned long clock_t_to_jiffies(unsigned long x);
315 extern u64 jiffies_64_to_clock_t(u64 x);
316 extern u64 nsec_to_clock_t(u64 x);
317 extern unsigned long nsecs_to_jiffies(u64 n);
319 #define TIMESTAMP_SIZE 30
321 #endif