GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / ocfs2 / journal.c
blobd9067904d7a1d2693cb63a13332f203e30803dcd
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * journal.c
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
37 #include "ocfs2.h"
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
54 #include "buffer_head_io.h"
56 DEFINE_SPINLOCK(trans_inc_lock);
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
81 return __ocfs2_wait_on_mount(osb, 0);
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
86 return __ocfs2_wait_on_mount(osb, 1);
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
94 enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
100 struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
108 if (!osb->replay_map)
109 return;
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
115 osb->replay_map->rm_state = state;
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
135 spin_lock(&osb->osb_lock);
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
156 if (!replay_map)
157 return;
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
173 if (!osb->replay_map)
174 return;
176 kfree(replay_map);
177 osb->replay_map = NULL;
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
182 struct ocfs2_recovery_map *rm;
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
201 return 0;
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
209 mb();
210 return osb->recovery_thread_task != NULL;
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
215 struct ocfs2_recovery_map *rm;
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
233 rm = osb->recovery_map;
235 kfree(rm);
238 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
239 unsigned int node_num)
241 int i;
242 struct ocfs2_recovery_map *rm = osb->recovery_map;
244 assert_spin_locked(&osb->osb_lock);
246 for (i = 0; i < rm->rm_used; i++) {
247 if (rm->rm_entries[i] == node_num)
248 return 1;
251 return 0;
254 /* Behaves like test-and-set. Returns the previous value */
255 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
256 unsigned int node_num)
258 struct ocfs2_recovery_map *rm = osb->recovery_map;
260 spin_lock(&osb->osb_lock);
261 if (__ocfs2_recovery_map_test(osb, node_num)) {
262 spin_unlock(&osb->osb_lock);
263 return 1;
266 BUG_ON(rm->rm_used >= osb->max_slots);
268 rm->rm_entries[rm->rm_used] = node_num;
269 rm->rm_used++;
270 spin_unlock(&osb->osb_lock);
272 return 0;
275 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
276 unsigned int node_num)
278 int i;
279 struct ocfs2_recovery_map *rm = osb->recovery_map;
281 spin_lock(&osb->osb_lock);
283 for (i = 0; i < rm->rm_used; i++) {
284 if (rm->rm_entries[i] == node_num)
285 break;
288 if (i < rm->rm_used) {
289 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
290 (rm->rm_used - i - 1) * sizeof(unsigned int));
291 rm->rm_used--;
294 spin_unlock(&osb->osb_lock);
297 static int ocfs2_commit_cache(struct ocfs2_super *osb)
299 int status = 0;
300 unsigned int flushed;
301 unsigned long old_id;
302 struct ocfs2_journal *journal = NULL;
304 mlog_entry_void();
306 journal = osb->journal;
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal->j_trans_barrier);
311 if (atomic_read(&journal->j_num_trans) == 0) {
312 up_write(&journal->j_trans_barrier);
313 mlog(0, "No transactions for me to flush!\n");
314 goto finally;
317 jbd2_journal_lock_updates(journal->j_journal);
318 status = jbd2_journal_flush(journal->j_journal);
319 jbd2_journal_unlock_updates(journal->j_journal);
320 if (status < 0) {
321 up_write(&journal->j_trans_barrier);
322 mlog_errno(status);
323 goto finally;
326 old_id = ocfs2_inc_trans_id(journal);
328 flushed = atomic_read(&journal->j_num_trans);
329 atomic_set(&journal->j_num_trans, 0);
330 up_write(&journal->j_trans_barrier);
332 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
333 journal->j_trans_id, flushed);
335 ocfs2_wake_downconvert_thread(osb);
336 wake_up(&journal->j_checkpointed);
337 finally:
338 mlog_exit(status);
339 return status;
342 /* pass it NULL and it will allocate a new handle object for you. If
343 * you pass it a handle however, it may still return error, in which
344 * case it has free'd the passed handle for you. */
345 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
347 journal_t *journal = osb->journal->j_journal;
348 handle_t *handle;
350 BUG_ON(!osb || !osb->journal->j_journal);
352 if (ocfs2_is_hard_readonly(osb))
353 return ERR_PTR(-EROFS);
355 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
356 BUG_ON(max_buffs <= 0);
358 /* Nested transaction? Just return the handle... */
359 if (journal_current_handle())
360 return jbd2_journal_start(journal, max_buffs);
362 down_read(&osb->journal->j_trans_barrier);
364 handle = jbd2_journal_start(journal, max_buffs);
365 if (IS_ERR(handle)) {
366 up_read(&osb->journal->j_trans_barrier);
368 mlog_errno(PTR_ERR(handle));
370 if (is_journal_aborted(journal)) {
371 ocfs2_abort(osb->sb, "Detected aborted journal");
372 handle = ERR_PTR(-EROFS);
374 } else {
375 if (!ocfs2_mount_local(osb))
376 atomic_inc(&(osb->journal->j_num_trans));
379 return handle;
382 int ocfs2_commit_trans(struct ocfs2_super *osb,
383 handle_t *handle)
385 int ret, nested;
386 struct ocfs2_journal *journal = osb->journal;
388 BUG_ON(!handle);
390 nested = handle->h_ref > 1;
391 ret = jbd2_journal_stop(handle);
392 if (ret < 0)
393 mlog_errno(ret);
395 if (!nested)
396 up_read(&journal->j_trans_barrier);
398 return ret;
402 * 'nblocks' is what you want to add to the current transaction.
404 * This might call jbd2_journal_restart() which will commit dirty buffers
405 * and then restart the transaction. Before calling
406 * ocfs2_extend_trans(), any changed blocks should have been
407 * dirtied. After calling it, all blocks which need to be changed must
408 * go through another set of journal_access/journal_dirty calls.
410 * WARNING: This will not release any semaphores or disk locks taken
411 * during the transaction, so make sure they were taken *before*
412 * start_trans or we'll have ordering deadlocks.
414 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
415 * good because transaction ids haven't yet been recorded on the
416 * cluster locks associated with this handle.
418 int ocfs2_extend_trans(handle_t *handle, int nblocks)
420 int status, old_nblocks;
422 BUG_ON(!handle);
423 BUG_ON(nblocks < 0);
425 if (!nblocks)
426 return 0;
428 old_nblocks = handle->h_buffer_credits;
429 mlog_entry_void();
431 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
433 #ifdef CONFIG_OCFS2_DEBUG_FS
434 status = 1;
435 #else
436 status = jbd2_journal_extend(handle, nblocks);
437 if (status < 0) {
438 mlog_errno(status);
439 goto bail;
441 #endif
443 if (status > 0) {
444 mlog(0,
445 "jbd2_journal_extend failed, trying "
446 "jbd2_journal_restart\n");
447 status = jbd2_journal_restart(handle,
448 old_nblocks + nblocks);
449 if (status < 0) {
450 mlog_errno(status);
451 goto bail;
455 status = 0;
456 bail:
458 mlog_exit(status);
459 return status;
462 struct ocfs2_triggers {
463 struct jbd2_buffer_trigger_type ot_triggers;
464 int ot_offset;
467 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
469 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
472 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
473 struct buffer_head *bh,
474 void *data, size_t size)
476 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
479 * We aren't guaranteed to have the superblock here, so we
480 * must unconditionally compute the ecc data.
481 * __ocfs2_journal_access() will only set the triggers if
482 * metaecc is enabled.
484 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
488 * Quota blocks have their own trigger because the struct ocfs2_block_check
489 * offset depends on the blocksize.
491 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
492 struct buffer_head *bh,
493 void *data, size_t size)
495 struct ocfs2_disk_dqtrailer *dqt =
496 ocfs2_block_dqtrailer(size, data);
499 * We aren't guaranteed to have the superblock here, so we
500 * must unconditionally compute the ecc data.
501 * __ocfs2_journal_access() will only set the triggers if
502 * metaecc is enabled.
504 ocfs2_block_check_compute(data, size, &dqt->dq_check);
508 * Directory blocks also have their own trigger because the
509 * struct ocfs2_block_check offset depends on the blocksize.
511 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
512 struct buffer_head *bh,
513 void *data, size_t size)
515 struct ocfs2_dir_block_trailer *trailer =
516 ocfs2_dir_trailer_from_size(size, data);
519 * We aren't guaranteed to have the superblock here, so we
520 * must unconditionally compute the ecc data.
521 * __ocfs2_journal_access() will only set the triggers if
522 * metaecc is enabled.
524 ocfs2_block_check_compute(data, size, &trailer->db_check);
527 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
528 struct buffer_head *bh)
530 mlog(ML_ERROR,
531 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
532 "bh->b_blocknr = %llu\n",
533 (unsigned long)bh,
534 (unsigned long long)bh->b_blocknr);
536 /* We aren't guaranteed to have the superblock here - but if we
537 * don't, it'll just crash. */
538 ocfs2_error(bh->b_assoc_map->host->i_sb,
539 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
542 static struct ocfs2_triggers di_triggers = {
543 .ot_triggers = {
544 .t_frozen = ocfs2_frozen_trigger,
545 .t_abort = ocfs2_abort_trigger,
547 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
550 static struct ocfs2_triggers eb_triggers = {
551 .ot_triggers = {
552 .t_frozen = ocfs2_frozen_trigger,
553 .t_abort = ocfs2_abort_trigger,
555 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
558 static struct ocfs2_triggers rb_triggers = {
559 .ot_triggers = {
560 .t_frozen = ocfs2_frozen_trigger,
561 .t_abort = ocfs2_abort_trigger,
563 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
566 static struct ocfs2_triggers gd_triggers = {
567 .ot_triggers = {
568 .t_frozen = ocfs2_frozen_trigger,
569 .t_abort = ocfs2_abort_trigger,
571 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
574 static struct ocfs2_triggers db_triggers = {
575 .ot_triggers = {
576 .t_frozen = ocfs2_db_frozen_trigger,
577 .t_abort = ocfs2_abort_trigger,
581 static struct ocfs2_triggers xb_triggers = {
582 .ot_triggers = {
583 .t_frozen = ocfs2_frozen_trigger,
584 .t_abort = ocfs2_abort_trigger,
586 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
589 static struct ocfs2_triggers dq_triggers = {
590 .ot_triggers = {
591 .t_frozen = ocfs2_dq_frozen_trigger,
592 .t_abort = ocfs2_abort_trigger,
596 static struct ocfs2_triggers dr_triggers = {
597 .ot_triggers = {
598 .t_frozen = ocfs2_frozen_trigger,
599 .t_abort = ocfs2_abort_trigger,
601 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
604 static struct ocfs2_triggers dl_triggers = {
605 .ot_triggers = {
606 .t_frozen = ocfs2_frozen_trigger,
607 .t_abort = ocfs2_abort_trigger,
609 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
612 static int __ocfs2_journal_access(handle_t *handle,
613 struct ocfs2_caching_info *ci,
614 struct buffer_head *bh,
615 struct ocfs2_triggers *triggers,
616 int type)
618 int status;
619 struct ocfs2_super *osb =
620 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
622 BUG_ON(!ci || !ci->ci_ops);
623 BUG_ON(!handle);
624 BUG_ON(!bh);
626 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
627 (unsigned long long)bh->b_blocknr, type,
628 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
629 "OCFS2_JOURNAL_ACCESS_CREATE" :
630 "OCFS2_JOURNAL_ACCESS_WRITE",
631 bh->b_size);
633 /* we can safely remove this assertion after testing. */
634 if (!buffer_uptodate(bh)) {
635 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
636 mlog(ML_ERROR, "b_blocknr=%llu\n",
637 (unsigned long long)bh->b_blocknr);
638 BUG();
641 /* Set the current transaction information on the ci so
642 * that the locking code knows whether it can drop it's locks
643 * on this ci or not. We're protected from the commit
644 * thread updating the current transaction id until
645 * ocfs2_commit_trans() because ocfs2_start_trans() took
646 * j_trans_barrier for us. */
647 ocfs2_set_ci_lock_trans(osb->journal, ci);
649 ocfs2_metadata_cache_io_lock(ci);
650 switch (type) {
651 case OCFS2_JOURNAL_ACCESS_CREATE:
652 case OCFS2_JOURNAL_ACCESS_WRITE:
653 status = jbd2_journal_get_write_access(handle, bh);
654 break;
656 case OCFS2_JOURNAL_ACCESS_UNDO:
657 status = jbd2_journal_get_undo_access(handle, bh);
658 break;
660 default:
661 status = -EINVAL;
662 mlog(ML_ERROR, "Unknown access type!\n");
664 if (!status && ocfs2_meta_ecc(osb) && triggers)
665 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
666 ocfs2_metadata_cache_io_unlock(ci);
668 if (status < 0)
669 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
670 status, type);
672 mlog_exit(status);
673 return status;
676 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
677 struct buffer_head *bh, int type)
679 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
682 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
683 struct buffer_head *bh, int type)
685 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
688 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
689 struct buffer_head *bh, int type)
691 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
692 type);
695 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
696 struct buffer_head *bh, int type)
698 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
701 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
702 struct buffer_head *bh, int type)
704 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
707 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
708 struct buffer_head *bh, int type)
710 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
713 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
714 struct buffer_head *bh, int type)
716 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
719 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
720 struct buffer_head *bh, int type)
722 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
725 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
726 struct buffer_head *bh, int type)
728 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
731 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
732 struct buffer_head *bh, int type)
734 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
737 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
739 int status;
741 mlog_entry("(bh->b_blocknr=%llu)\n",
742 (unsigned long long)bh->b_blocknr);
744 status = jbd2_journal_dirty_metadata(handle, bh);
745 BUG_ON(status);
747 mlog_exit_void();
750 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
752 void ocfs2_set_journal_params(struct ocfs2_super *osb)
754 journal_t *journal = osb->journal->j_journal;
755 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
757 if (osb->osb_commit_interval)
758 commit_interval = osb->osb_commit_interval;
760 write_lock(&journal->j_state_lock);
761 journal->j_commit_interval = commit_interval;
762 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
763 journal->j_flags |= JBD2_BARRIER;
764 else
765 journal->j_flags &= ~JBD2_BARRIER;
766 write_unlock(&journal->j_state_lock);
769 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
771 int status = -1;
772 struct inode *inode = NULL; /* the journal inode */
773 journal_t *j_journal = NULL;
774 struct ocfs2_dinode *di = NULL;
775 struct buffer_head *bh = NULL;
776 struct ocfs2_super *osb;
777 int inode_lock = 0;
779 mlog_entry_void();
781 BUG_ON(!journal);
783 osb = journal->j_osb;
785 /* already have the inode for our journal */
786 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
787 osb->slot_num);
788 if (inode == NULL) {
789 status = -EACCES;
790 mlog_errno(status);
791 goto done;
793 if (is_bad_inode(inode)) {
794 mlog(ML_ERROR, "access error (bad inode)\n");
795 iput(inode);
796 inode = NULL;
797 status = -EACCES;
798 goto done;
801 SET_INODE_JOURNAL(inode);
802 OCFS2_I(inode)->ip_open_count++;
804 /* Skip recovery waits here - journal inode metadata never
805 * changes in a live cluster so it can be considered an
806 * exception to the rule. */
807 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
808 if (status < 0) {
809 if (status != -ERESTARTSYS)
810 mlog(ML_ERROR, "Could not get lock on journal!\n");
811 goto done;
814 inode_lock = 1;
815 di = (struct ocfs2_dinode *)bh->b_data;
817 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
818 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
819 inode->i_size);
820 status = -EINVAL;
821 goto done;
824 mlog(0, "inode->i_size = %lld\n", inode->i_size);
825 mlog(0, "inode->i_blocks = %llu\n",
826 (unsigned long long)inode->i_blocks);
827 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
829 /* call the kernels journal init function now */
830 j_journal = jbd2_journal_init_inode(inode);
831 if (j_journal == NULL) {
832 mlog(ML_ERROR, "Linux journal layer error\n");
833 status = -EINVAL;
834 goto done;
837 mlog(0, "Returned from jbd2_journal_init_inode\n");
838 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
840 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
841 OCFS2_JOURNAL_DIRTY_FL);
843 journal->j_journal = j_journal;
844 journal->j_inode = inode;
845 journal->j_bh = bh;
847 ocfs2_set_journal_params(osb);
849 journal->j_state = OCFS2_JOURNAL_LOADED;
851 status = 0;
852 done:
853 if (status < 0) {
854 if (inode_lock)
855 ocfs2_inode_unlock(inode, 1);
856 brelse(bh);
857 if (inode) {
858 OCFS2_I(inode)->ip_open_count--;
859 iput(inode);
863 mlog_exit(status);
864 return status;
867 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
869 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
872 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
874 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
877 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
878 int dirty, int replayed)
880 int status;
881 unsigned int flags;
882 struct ocfs2_journal *journal = osb->journal;
883 struct buffer_head *bh = journal->j_bh;
884 struct ocfs2_dinode *fe;
886 mlog_entry_void();
888 fe = (struct ocfs2_dinode *)bh->b_data;
890 /* The journal bh on the osb always comes from ocfs2_journal_init()
891 * and was validated there inside ocfs2_inode_lock_full(). It's a
892 * code bug if we mess it up. */
893 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
895 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
896 if (dirty)
897 flags |= OCFS2_JOURNAL_DIRTY_FL;
898 else
899 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
900 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
902 if (replayed)
903 ocfs2_bump_recovery_generation(fe);
905 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
906 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
907 if (status < 0)
908 mlog_errno(status);
910 mlog_exit(status);
911 return status;
915 * If the journal has been kmalloc'd it needs to be freed after this
916 * call.
918 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
920 struct ocfs2_journal *journal = NULL;
921 int status = 0;
922 struct inode *inode = NULL;
923 int num_running_trans = 0;
925 mlog_entry_void();
927 BUG_ON(!osb);
929 journal = osb->journal;
930 if (!journal)
931 goto done;
933 inode = journal->j_inode;
935 if (journal->j_state != OCFS2_JOURNAL_LOADED)
936 goto done;
938 /* need to inc inode use count - jbd2_journal_destroy will iput. */
939 if (!igrab(inode))
940 BUG();
942 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
943 if (num_running_trans > 0)
944 mlog(0, "Shutting down journal: must wait on %d "
945 "running transactions!\n",
946 num_running_trans);
948 /* Do a commit_cache here. It will flush our journal, *and*
949 * release any locks that are still held.
950 * set the SHUTDOWN flag and release the trans lock.
951 * the commit thread will take the trans lock for us below. */
952 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
954 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
955 * drop the trans_lock (which we want to hold until we
956 * completely destroy the journal. */
957 if (osb->commit_task) {
958 /* Wait for the commit thread */
959 mlog(0, "Waiting for ocfs2commit to exit....\n");
960 kthread_stop(osb->commit_task);
961 osb->commit_task = NULL;
964 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
966 if (ocfs2_mount_local(osb)) {
967 jbd2_journal_lock_updates(journal->j_journal);
968 status = jbd2_journal_flush(journal->j_journal);
969 jbd2_journal_unlock_updates(journal->j_journal);
970 if (status < 0)
971 mlog_errno(status);
974 if (status == 0) {
976 * Do not toggle if flush was unsuccessful otherwise
977 * will leave dirty metadata in a "clean" journal
979 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
980 if (status < 0)
981 mlog_errno(status);
984 /* Shutdown the kernel journal system */
985 jbd2_journal_destroy(journal->j_journal);
986 journal->j_journal = NULL;
988 OCFS2_I(inode)->ip_open_count--;
990 /* unlock our journal */
991 ocfs2_inode_unlock(inode, 1);
993 brelse(journal->j_bh);
994 journal->j_bh = NULL;
996 journal->j_state = OCFS2_JOURNAL_FREE;
998 // up_write(&journal->j_trans_barrier);
999 done:
1000 if (inode)
1001 iput(inode);
1002 mlog_exit_void();
1005 static void ocfs2_clear_journal_error(struct super_block *sb,
1006 journal_t *journal,
1007 int slot)
1009 int olderr;
1011 olderr = jbd2_journal_errno(journal);
1012 if (olderr) {
1013 mlog(ML_ERROR, "File system error %d recorded in "
1014 "journal %u.\n", olderr, slot);
1015 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1016 sb->s_id);
1018 jbd2_journal_ack_err(journal);
1019 jbd2_journal_clear_err(journal);
1023 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1025 int status = 0;
1026 struct ocfs2_super *osb;
1028 mlog_entry_void();
1030 BUG_ON(!journal);
1032 osb = journal->j_osb;
1034 status = jbd2_journal_load(journal->j_journal);
1035 if (status < 0) {
1036 mlog(ML_ERROR, "Failed to load journal!\n");
1037 goto done;
1040 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1042 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1043 if (status < 0) {
1044 mlog_errno(status);
1045 goto done;
1048 /* Launch the commit thread */
1049 if (!local) {
1050 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1051 "ocfs2cmt");
1052 if (IS_ERR(osb->commit_task)) {
1053 status = PTR_ERR(osb->commit_task);
1054 osb->commit_task = NULL;
1055 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1056 "error=%d", status);
1057 goto done;
1059 } else
1060 osb->commit_task = NULL;
1062 done:
1063 mlog_exit(status);
1064 return status;
1068 /* 'full' flag tells us whether we clear out all blocks or if we just
1069 * mark the journal clean */
1070 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1072 int status;
1074 mlog_entry_void();
1076 BUG_ON(!journal);
1078 status = jbd2_journal_wipe(journal->j_journal, full);
1079 if (status < 0) {
1080 mlog_errno(status);
1081 goto bail;
1084 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1085 if (status < 0)
1086 mlog_errno(status);
1088 bail:
1089 mlog_exit(status);
1090 return status;
1093 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1095 int empty;
1096 struct ocfs2_recovery_map *rm = osb->recovery_map;
1098 spin_lock(&osb->osb_lock);
1099 empty = (rm->rm_used == 0);
1100 spin_unlock(&osb->osb_lock);
1102 return empty;
1105 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1107 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1111 * JBD Might read a cached version of another nodes journal file. We
1112 * don't want this as this file changes often and we get no
1113 * notification on those changes. The only way to be sure that we've
1114 * got the most up to date version of those blocks then is to force
1115 * read them off disk. Just searching through the buffer cache won't
1116 * work as there may be pages backing this file which are still marked
1117 * up to date. We know things can't change on this file underneath us
1118 * as we have the lock by now :)
1120 static int ocfs2_force_read_journal(struct inode *inode)
1122 int status = 0;
1123 int i;
1124 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1125 #define CONCURRENT_JOURNAL_FILL 32ULL
1126 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1128 mlog_entry_void();
1130 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1132 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1133 v_blkno = 0;
1134 while (v_blkno < num_blocks) {
1135 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1136 &p_blkno, &p_blocks, NULL);
1137 if (status < 0) {
1138 mlog_errno(status);
1139 goto bail;
1142 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1143 p_blocks = CONCURRENT_JOURNAL_FILL;
1145 /* We are reading journal data which should not
1146 * be put in the uptodate cache */
1147 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1148 p_blkno, p_blocks, bhs);
1149 if (status < 0) {
1150 mlog_errno(status);
1151 goto bail;
1154 for(i = 0; i < p_blocks; i++) {
1155 brelse(bhs[i]);
1156 bhs[i] = NULL;
1159 v_blkno += p_blocks;
1162 bail:
1163 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1164 brelse(bhs[i]);
1165 mlog_exit(status);
1166 return status;
1169 struct ocfs2_la_recovery_item {
1170 struct list_head lri_list;
1171 int lri_slot;
1172 struct ocfs2_dinode *lri_la_dinode;
1173 struct ocfs2_dinode *lri_tl_dinode;
1174 struct ocfs2_quota_recovery *lri_qrec;
1177 /* Does the second half of the recovery process. By this point, the
1178 * node is marked clean and can actually be considered recovered,
1179 * hence it's no longer in the recovery map, but there's still some
1180 * cleanup we can do which shouldn't happen within the recovery thread
1181 * as locking in that context becomes very difficult if we are to take
1182 * recovering nodes into account.
1184 * NOTE: This function can and will sleep on recovery of other nodes
1185 * during cluster locking, just like any other ocfs2 process.
1187 void ocfs2_complete_recovery(struct work_struct *work)
1189 int ret;
1190 struct ocfs2_journal *journal =
1191 container_of(work, struct ocfs2_journal, j_recovery_work);
1192 struct ocfs2_super *osb = journal->j_osb;
1193 struct ocfs2_dinode *la_dinode, *tl_dinode;
1194 struct ocfs2_la_recovery_item *item, *n;
1195 struct ocfs2_quota_recovery *qrec;
1196 LIST_HEAD(tmp_la_list);
1198 mlog_entry_void();
1200 mlog(0, "completing recovery from keventd\n");
1202 spin_lock(&journal->j_lock);
1203 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1204 spin_unlock(&journal->j_lock);
1206 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1207 list_del_init(&item->lri_list);
1209 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1211 ocfs2_wait_on_quotas(osb);
1213 la_dinode = item->lri_la_dinode;
1214 if (la_dinode) {
1215 mlog(0, "Clean up local alloc %llu\n",
1216 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1218 ret = ocfs2_complete_local_alloc_recovery(osb,
1219 la_dinode);
1220 if (ret < 0)
1221 mlog_errno(ret);
1223 kfree(la_dinode);
1226 tl_dinode = item->lri_tl_dinode;
1227 if (tl_dinode) {
1228 mlog(0, "Clean up truncate log %llu\n",
1229 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1231 ret = ocfs2_complete_truncate_log_recovery(osb,
1232 tl_dinode);
1233 if (ret < 0)
1234 mlog_errno(ret);
1236 kfree(tl_dinode);
1239 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1240 if (ret < 0)
1241 mlog_errno(ret);
1243 qrec = item->lri_qrec;
1244 if (qrec) {
1245 mlog(0, "Recovering quota files");
1246 ret = ocfs2_finish_quota_recovery(osb, qrec,
1247 item->lri_slot);
1248 if (ret < 0)
1249 mlog_errno(ret);
1250 /* Recovery info is already freed now */
1253 kfree(item);
1256 mlog(0, "Recovery completion\n");
1257 mlog_exit_void();
1260 /* NOTE: This function always eats your references to la_dinode and
1261 * tl_dinode, either manually on error, or by passing them to
1262 * ocfs2_complete_recovery */
1263 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1264 int slot_num,
1265 struct ocfs2_dinode *la_dinode,
1266 struct ocfs2_dinode *tl_dinode,
1267 struct ocfs2_quota_recovery *qrec)
1269 struct ocfs2_la_recovery_item *item;
1271 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1272 if (!item) {
1273 /* Though we wish to avoid it, we are in fact safe in
1274 * skipping local alloc cleanup as fsck.ocfs2 is more
1275 * than capable of reclaiming unused space. */
1276 if (la_dinode)
1277 kfree(la_dinode);
1279 if (tl_dinode)
1280 kfree(tl_dinode);
1282 if (qrec)
1283 ocfs2_free_quota_recovery(qrec);
1285 mlog_errno(-ENOMEM);
1286 return;
1289 INIT_LIST_HEAD(&item->lri_list);
1290 item->lri_la_dinode = la_dinode;
1291 item->lri_slot = slot_num;
1292 item->lri_tl_dinode = tl_dinode;
1293 item->lri_qrec = qrec;
1295 spin_lock(&journal->j_lock);
1296 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1297 queue_work(ocfs2_wq, &journal->j_recovery_work);
1298 spin_unlock(&journal->j_lock);
1301 /* Called by the mount code to queue recovery the last part of
1302 * recovery for it's own and offline slot(s). */
1303 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1305 struct ocfs2_journal *journal = osb->journal;
1307 /* No need to queue up our truncate_log as regular cleanup will catch
1308 * that */
1309 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1310 osb->local_alloc_copy, NULL, NULL);
1311 ocfs2_schedule_truncate_log_flush(osb, 0);
1313 osb->local_alloc_copy = NULL;
1314 osb->dirty = 0;
1316 /* queue to recover orphan slots for all offline slots */
1317 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1318 ocfs2_queue_replay_slots(osb);
1319 ocfs2_free_replay_slots(osb);
1322 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1324 if (osb->quota_rec) {
1325 ocfs2_queue_recovery_completion(osb->journal,
1326 osb->slot_num,
1327 NULL,
1328 NULL,
1329 osb->quota_rec);
1330 osb->quota_rec = NULL;
1334 static int __ocfs2_recovery_thread(void *arg)
1336 int status, node_num, slot_num;
1337 struct ocfs2_super *osb = arg;
1338 struct ocfs2_recovery_map *rm = osb->recovery_map;
1339 int *rm_quota = NULL;
1340 int rm_quota_used = 0, i;
1341 struct ocfs2_quota_recovery *qrec;
1343 mlog_entry_void();
1345 status = ocfs2_wait_on_mount(osb);
1346 if (status < 0) {
1347 goto bail;
1350 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1351 if (!rm_quota) {
1352 status = -ENOMEM;
1353 goto bail;
1355 restart:
1356 status = ocfs2_super_lock(osb, 1);
1357 if (status < 0) {
1358 mlog_errno(status);
1359 goto bail;
1362 status = ocfs2_compute_replay_slots(osb);
1363 if (status < 0)
1364 mlog_errno(status);
1366 /* queue recovery for our own slot */
1367 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1368 NULL, NULL);
1370 spin_lock(&osb->osb_lock);
1371 while (rm->rm_used) {
1372 /* It's always safe to remove entry zero, as we won't
1373 * clear it until ocfs2_recover_node() has succeeded. */
1374 node_num = rm->rm_entries[0];
1375 spin_unlock(&osb->osb_lock);
1376 mlog(0, "checking node %d\n", node_num);
1377 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1378 if (slot_num == -ENOENT) {
1379 status = 0;
1380 mlog(0, "no slot for this node, so no recovery"
1381 "required.\n");
1382 goto skip_recovery;
1384 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1386 /* It is a bit subtle with quota recovery. We cannot do it
1387 * immediately because we have to obtain cluster locks from
1388 * quota files and we also don't want to just skip it because
1389 * then quota usage would be out of sync until some node takes
1390 * the slot. So we remember which nodes need quota recovery
1391 * and when everything else is done, we recover quotas. */
1392 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1393 if (i == rm_quota_used)
1394 rm_quota[rm_quota_used++] = slot_num;
1396 status = ocfs2_recover_node(osb, node_num, slot_num);
1397 skip_recovery:
1398 if (!status) {
1399 ocfs2_recovery_map_clear(osb, node_num);
1400 } else {
1401 mlog(ML_ERROR,
1402 "Error %d recovering node %d on device (%u,%u)!\n",
1403 status, node_num,
1404 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1405 mlog(ML_ERROR, "Volume requires unmount.\n");
1408 spin_lock(&osb->osb_lock);
1410 spin_unlock(&osb->osb_lock);
1411 mlog(0, "All nodes recovered\n");
1413 /* Refresh all journal recovery generations from disk */
1414 status = ocfs2_check_journals_nolocks(osb);
1415 status = (status == -EROFS) ? 0 : status;
1416 if (status < 0)
1417 mlog_errno(status);
1419 /* Now it is right time to recover quotas... We have to do this under
1420 * superblock lock so that noone can start using the slot (and crash)
1421 * before we recover it */
1422 for (i = 0; i < rm_quota_used; i++) {
1423 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1424 if (IS_ERR(qrec)) {
1425 status = PTR_ERR(qrec);
1426 mlog_errno(status);
1427 continue;
1429 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1430 NULL, NULL, qrec);
1433 ocfs2_super_unlock(osb, 1);
1435 /* queue recovery for offline slots */
1436 ocfs2_queue_replay_slots(osb);
1438 bail:
1439 mutex_lock(&osb->recovery_lock);
1440 if (!status && !ocfs2_recovery_completed(osb)) {
1441 mutex_unlock(&osb->recovery_lock);
1442 goto restart;
1445 ocfs2_free_replay_slots(osb);
1446 osb->recovery_thread_task = NULL;
1447 mb(); /* sync with ocfs2_recovery_thread_running */
1448 wake_up(&osb->recovery_event);
1450 mutex_unlock(&osb->recovery_lock);
1452 if (rm_quota)
1453 kfree(rm_quota);
1455 mlog_exit(status);
1456 /* no one is callint kthread_stop() for us so the kthread() api
1457 * requires that we call do_exit(). And it isn't exported, but
1458 * complete_and_exit() seems to be a minimal wrapper around it. */
1459 complete_and_exit(NULL, status);
1460 return status;
1463 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1465 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1466 node_num, osb->node_num);
1468 mutex_lock(&osb->recovery_lock);
1469 if (osb->disable_recovery)
1470 goto out;
1472 /* People waiting on recovery will wait on
1473 * the recovery map to empty. */
1474 if (ocfs2_recovery_map_set(osb, node_num))
1475 mlog(0, "node %d already in recovery map.\n", node_num);
1477 mlog(0, "starting recovery thread...\n");
1479 if (osb->recovery_thread_task)
1480 goto out;
1482 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1483 "ocfs2rec");
1484 if (IS_ERR(osb->recovery_thread_task)) {
1485 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1486 osb->recovery_thread_task = NULL;
1489 out:
1490 mutex_unlock(&osb->recovery_lock);
1491 wake_up(&osb->recovery_event);
1493 mlog_exit_void();
1496 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1497 int slot_num,
1498 struct buffer_head **bh,
1499 struct inode **ret_inode)
1501 int status = -EACCES;
1502 struct inode *inode = NULL;
1504 BUG_ON(slot_num >= osb->max_slots);
1506 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1507 slot_num);
1508 if (!inode || is_bad_inode(inode)) {
1509 mlog_errno(status);
1510 goto bail;
1512 SET_INODE_JOURNAL(inode);
1514 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1515 if (status < 0) {
1516 mlog_errno(status);
1517 goto bail;
1520 status = 0;
1522 bail:
1523 if (inode) {
1524 if (status || !ret_inode)
1525 iput(inode);
1526 else
1527 *ret_inode = inode;
1529 return status;
1532 /* Does the actual journal replay and marks the journal inode as
1533 * clean. Will only replay if the journal inode is marked dirty. */
1534 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1535 int node_num,
1536 int slot_num)
1538 int status;
1539 int got_lock = 0;
1540 unsigned int flags;
1541 struct inode *inode = NULL;
1542 struct ocfs2_dinode *fe;
1543 journal_t *journal = NULL;
1544 struct buffer_head *bh = NULL;
1545 u32 slot_reco_gen;
1547 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1548 if (status) {
1549 mlog_errno(status);
1550 goto done;
1553 fe = (struct ocfs2_dinode *)bh->b_data;
1554 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1555 brelse(bh);
1556 bh = NULL;
1559 * As the fs recovery is asynchronous, there is a small chance that
1560 * another node mounted (and recovered) the slot before the recovery
1561 * thread could get the lock. To handle that, we dirty read the journal
1562 * inode for that slot to get the recovery generation. If it is
1563 * different than what we expected, the slot has been recovered.
1564 * If not, it needs recovery.
1566 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1567 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1568 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1569 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1570 status = -EBUSY;
1571 goto done;
1574 /* Continue with recovery as the journal has not yet been recovered */
1576 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1577 if (status < 0) {
1578 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1579 if (status != -ERESTARTSYS)
1580 mlog(ML_ERROR, "Could not lock journal!\n");
1581 goto done;
1583 got_lock = 1;
1585 fe = (struct ocfs2_dinode *) bh->b_data;
1587 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1588 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1590 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1591 mlog(0, "No recovery required for node %d\n", node_num);
1592 /* Refresh recovery generation for the slot */
1593 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1594 goto done;
1597 /* we need to run complete recovery for offline orphan slots */
1598 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1600 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1601 node_num, slot_num,
1602 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1604 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1606 status = ocfs2_force_read_journal(inode);
1607 if (status < 0) {
1608 mlog_errno(status);
1609 goto done;
1612 mlog(0, "calling journal_init_inode\n");
1613 journal = jbd2_journal_init_inode(inode);
1614 if (journal == NULL) {
1615 mlog(ML_ERROR, "Linux journal layer error\n");
1616 status = -EIO;
1617 goto done;
1620 status = jbd2_journal_load(journal);
1621 if (status < 0) {
1622 mlog_errno(status);
1623 if (!igrab(inode))
1624 BUG();
1625 jbd2_journal_destroy(journal);
1626 goto done;
1629 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1631 /* wipe the journal */
1632 mlog(0, "flushing the journal.\n");
1633 jbd2_journal_lock_updates(journal);
1634 status = jbd2_journal_flush(journal);
1635 jbd2_journal_unlock_updates(journal);
1636 if (status < 0)
1637 mlog_errno(status);
1639 /* This will mark the node clean */
1640 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1641 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1642 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1644 /* Increment recovery generation to indicate successful recovery */
1645 ocfs2_bump_recovery_generation(fe);
1646 osb->slot_recovery_generations[slot_num] =
1647 ocfs2_get_recovery_generation(fe);
1649 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1650 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1651 if (status < 0)
1652 mlog_errno(status);
1654 if (!igrab(inode))
1655 BUG();
1657 jbd2_journal_destroy(journal);
1659 done:
1660 /* drop the lock on this nodes journal */
1661 if (got_lock)
1662 ocfs2_inode_unlock(inode, 1);
1664 if (inode)
1665 iput(inode);
1667 brelse(bh);
1669 mlog_exit(status);
1670 return status;
1674 * Do the most important parts of node recovery:
1675 * - Replay it's journal
1676 * - Stamp a clean local allocator file
1677 * - Stamp a clean truncate log
1678 * - Mark the node clean
1680 * If this function completes without error, a node in OCFS2 can be
1681 * said to have been safely recovered. As a result, failure during the
1682 * second part of a nodes recovery process (local alloc recovery) is
1683 * far less concerning.
1685 static int ocfs2_recover_node(struct ocfs2_super *osb,
1686 int node_num, int slot_num)
1688 int status = 0;
1689 struct ocfs2_dinode *la_copy = NULL;
1690 struct ocfs2_dinode *tl_copy = NULL;
1692 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1693 node_num, slot_num, osb->node_num);
1695 /* Should not ever be called to recover ourselves -- in that
1696 * case we should've called ocfs2_journal_load instead. */
1697 BUG_ON(osb->node_num == node_num);
1699 status = ocfs2_replay_journal(osb, node_num, slot_num);
1700 if (status < 0) {
1701 if (status == -EBUSY) {
1702 mlog(0, "Skipping recovery for slot %u (node %u) "
1703 "as another node has recovered it\n", slot_num,
1704 node_num);
1705 status = 0;
1706 goto done;
1708 mlog_errno(status);
1709 goto done;
1712 /* Stamp a clean local alloc file AFTER recovering the journal... */
1713 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1714 if (status < 0) {
1715 mlog_errno(status);
1716 goto done;
1719 /* An error from begin_truncate_log_recovery is not
1720 * serious enough to warrant halting the rest of
1721 * recovery. */
1722 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1723 if (status < 0)
1724 mlog_errno(status);
1726 /* Likewise, this would be a strange but ultimately not so
1727 * harmful place to get an error... */
1728 status = ocfs2_clear_slot(osb, slot_num);
1729 if (status < 0)
1730 mlog_errno(status);
1732 /* This will kfree the memory pointed to by la_copy and tl_copy */
1733 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1734 tl_copy, NULL);
1736 status = 0;
1737 done:
1739 mlog_exit(status);
1740 return status;
1743 /* Test node liveness by trylocking his journal. If we get the lock,
1744 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1745 * still alive (we couldn't get the lock) and < 0 on error. */
1746 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1747 int slot_num)
1749 int status, flags;
1750 struct inode *inode = NULL;
1752 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1753 slot_num);
1754 if (inode == NULL) {
1755 mlog(ML_ERROR, "access error\n");
1756 status = -EACCES;
1757 goto bail;
1759 if (is_bad_inode(inode)) {
1760 mlog(ML_ERROR, "access error (bad inode)\n");
1761 iput(inode);
1762 inode = NULL;
1763 status = -EACCES;
1764 goto bail;
1766 SET_INODE_JOURNAL(inode);
1768 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1769 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1770 if (status < 0) {
1771 if (status != -EAGAIN)
1772 mlog_errno(status);
1773 goto bail;
1776 ocfs2_inode_unlock(inode, 1);
1777 bail:
1778 if (inode)
1779 iput(inode);
1781 return status;
1784 /* Call this underneath ocfs2_super_lock. It also assumes that the
1785 * slot info struct has been updated from disk. */
1786 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1788 unsigned int node_num;
1789 int status, i;
1790 u32 gen;
1791 struct buffer_head *bh = NULL;
1792 struct ocfs2_dinode *di;
1794 /* This is called with the super block cluster lock, so we
1795 * know that the slot map can't change underneath us. */
1797 for (i = 0; i < osb->max_slots; i++) {
1798 /* Read journal inode to get the recovery generation */
1799 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1800 if (status) {
1801 mlog_errno(status);
1802 goto bail;
1804 di = (struct ocfs2_dinode *)bh->b_data;
1805 gen = ocfs2_get_recovery_generation(di);
1806 brelse(bh);
1807 bh = NULL;
1809 spin_lock(&osb->osb_lock);
1810 osb->slot_recovery_generations[i] = gen;
1812 mlog(0, "Slot %u recovery generation is %u\n", i,
1813 osb->slot_recovery_generations[i]);
1815 if (i == osb->slot_num) {
1816 spin_unlock(&osb->osb_lock);
1817 continue;
1820 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1821 if (status == -ENOENT) {
1822 spin_unlock(&osb->osb_lock);
1823 continue;
1826 if (__ocfs2_recovery_map_test(osb, node_num)) {
1827 spin_unlock(&osb->osb_lock);
1828 continue;
1830 spin_unlock(&osb->osb_lock);
1832 /* Ok, we have a slot occupied by another node which
1833 * is not in the recovery map. We trylock his journal
1834 * file here to test if he's alive. */
1835 status = ocfs2_trylock_journal(osb, i);
1836 if (!status) {
1837 /* Since we're called from mount, we know that
1838 * the recovery thread can't race us on
1839 * setting / checking the recovery bits. */
1840 ocfs2_recovery_thread(osb, node_num);
1841 } else if ((status < 0) && (status != -EAGAIN)) {
1842 mlog_errno(status);
1843 goto bail;
1847 status = 0;
1848 bail:
1849 mlog_exit(status);
1850 return status;
1854 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1855 * randomness to the timeout to minimize multple nodes firing the timer at the
1856 * same time.
1858 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1860 unsigned long time;
1862 get_random_bytes(&time, sizeof(time));
1863 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1864 return msecs_to_jiffies(time);
1868 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1869 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1870 * is done to catch any orphans that are left over in orphan directories.
1872 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1873 * seconds. It gets an EX lock on os_lockres and checks sequence number
1874 * stored in LVB. If the sequence number has changed, it means some other
1875 * node has done the scan. This node skips the scan and tracks the
1876 * sequence number. If the sequence number didn't change, it means a scan
1877 * hasn't happened. The node queues a scan and increments the
1878 * sequence number in the LVB.
1880 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1882 struct ocfs2_orphan_scan *os;
1883 int status, i;
1884 u32 seqno = 0;
1886 os = &osb->osb_orphan_scan;
1888 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1889 goto out;
1891 status = ocfs2_orphan_scan_lock(osb, &seqno);
1892 if (status < 0) {
1893 if (status != -EAGAIN)
1894 mlog_errno(status);
1895 goto out;
1898 /* Do no queue the tasks if the volume is being umounted */
1899 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1900 goto unlock;
1902 if (os->os_seqno != seqno) {
1903 os->os_seqno = seqno;
1904 goto unlock;
1907 for (i = 0; i < osb->max_slots; i++)
1908 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1909 NULL);
1911 * We queued a recovery on orphan slots, increment the sequence
1912 * number and update LVB so other node will skip the scan for a while
1914 seqno++;
1915 os->os_count++;
1916 os->os_scantime = CURRENT_TIME;
1917 unlock:
1918 ocfs2_orphan_scan_unlock(osb, seqno);
1919 out:
1920 return;
1923 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1924 void ocfs2_orphan_scan_work(struct work_struct *work)
1926 struct ocfs2_orphan_scan *os;
1927 struct ocfs2_super *osb;
1929 os = container_of(work, struct ocfs2_orphan_scan,
1930 os_orphan_scan_work.work);
1931 osb = os->os_osb;
1933 mutex_lock(&os->os_lock);
1934 ocfs2_queue_orphan_scan(osb);
1935 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1936 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1937 ocfs2_orphan_scan_timeout());
1938 mutex_unlock(&os->os_lock);
1941 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1943 struct ocfs2_orphan_scan *os;
1945 os = &osb->osb_orphan_scan;
1946 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1947 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1948 mutex_lock(&os->os_lock);
1949 cancel_delayed_work(&os->os_orphan_scan_work);
1950 mutex_unlock(&os->os_lock);
1954 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1956 struct ocfs2_orphan_scan *os;
1958 os = &osb->osb_orphan_scan;
1959 os->os_osb = osb;
1960 os->os_count = 0;
1961 os->os_seqno = 0;
1962 mutex_init(&os->os_lock);
1963 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1966 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1968 struct ocfs2_orphan_scan *os;
1970 os = &osb->osb_orphan_scan;
1971 os->os_scantime = CURRENT_TIME;
1972 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1973 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1974 else {
1975 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1976 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1977 ocfs2_orphan_scan_timeout());
1981 struct ocfs2_orphan_filldir_priv {
1982 struct inode *head;
1983 struct ocfs2_super *osb;
1986 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1987 loff_t pos, u64 ino, unsigned type)
1989 struct ocfs2_orphan_filldir_priv *p = priv;
1990 struct inode *iter;
1992 if (name_len == 1 && !strncmp(".", name, 1))
1993 return 0;
1994 if (name_len == 2 && !strncmp("..", name, 2))
1995 return 0;
1997 /* Skip bad inodes so that recovery can continue */
1998 iter = ocfs2_iget(p->osb, ino,
1999 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2000 if (IS_ERR(iter))
2001 return 0;
2003 mlog(0, "queue orphan %llu\n",
2004 (unsigned long long)OCFS2_I(iter)->ip_blkno);
2005 /* No locking is required for the next_orphan queue as there
2006 * is only ever a single process doing orphan recovery. */
2007 OCFS2_I(iter)->ip_next_orphan = p->head;
2008 p->head = iter;
2010 return 0;
2013 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2014 int slot,
2015 struct inode **head)
2017 int status;
2018 struct inode *orphan_dir_inode = NULL;
2019 struct ocfs2_orphan_filldir_priv priv;
2020 loff_t pos = 0;
2022 priv.osb = osb;
2023 priv.head = *head;
2025 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2026 ORPHAN_DIR_SYSTEM_INODE,
2027 slot);
2028 if (!orphan_dir_inode) {
2029 status = -ENOENT;
2030 mlog_errno(status);
2031 return status;
2034 mutex_lock(&orphan_dir_inode->i_mutex);
2035 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2036 if (status < 0) {
2037 mlog_errno(status);
2038 goto out;
2041 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2042 ocfs2_orphan_filldir);
2043 if (status) {
2044 mlog_errno(status);
2045 goto out_cluster;
2048 *head = priv.head;
2050 out_cluster:
2051 ocfs2_inode_unlock(orphan_dir_inode, 0);
2052 out:
2053 mutex_unlock(&orphan_dir_inode->i_mutex);
2054 iput(orphan_dir_inode);
2055 return status;
2058 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2059 int slot)
2061 int ret;
2063 spin_lock(&osb->osb_lock);
2064 ret = !osb->osb_orphan_wipes[slot];
2065 spin_unlock(&osb->osb_lock);
2066 return ret;
2069 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2070 int slot)
2072 spin_lock(&osb->osb_lock);
2073 /* Mark ourselves such that new processes in delete_inode()
2074 * know to quit early. */
2075 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2076 while (osb->osb_orphan_wipes[slot]) {
2077 /* If any processes are already in the middle of an
2078 * orphan wipe on this dir, then we need to wait for
2079 * them. */
2080 spin_unlock(&osb->osb_lock);
2081 wait_event_interruptible(osb->osb_wipe_event,
2082 ocfs2_orphan_recovery_can_continue(osb, slot));
2083 spin_lock(&osb->osb_lock);
2085 spin_unlock(&osb->osb_lock);
2088 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2089 int slot)
2091 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2095 * Orphan recovery. Each mounted node has it's own orphan dir which we
2096 * must run during recovery. Our strategy here is to build a list of
2097 * the inodes in the orphan dir and iget/iput them. The VFS does
2098 * (most) of the rest of the work.
2100 * Orphan recovery can happen at any time, not just mount so we have a
2101 * couple of extra considerations.
2103 * - We grab as many inodes as we can under the orphan dir lock -
2104 * doing iget() outside the orphan dir risks getting a reference on
2105 * an invalid inode.
2106 * - We must be sure not to deadlock with other processes on the
2107 * system wanting to run delete_inode(). This can happen when they go
2108 * to lock the orphan dir and the orphan recovery process attempts to
2109 * iget() inside the orphan dir lock. This can be avoided by
2110 * advertising our state to ocfs2_delete_inode().
2112 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2113 int slot)
2115 int ret = 0;
2116 struct inode *inode = NULL;
2117 struct inode *iter;
2118 struct ocfs2_inode_info *oi;
2120 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2122 ocfs2_mark_recovering_orphan_dir(osb, slot);
2123 ret = ocfs2_queue_orphans(osb, slot, &inode);
2124 ocfs2_clear_recovering_orphan_dir(osb, slot);
2126 /* Error here should be noted, but we want to continue with as
2127 * many queued inodes as we've got. */
2128 if (ret)
2129 mlog_errno(ret);
2131 while (inode) {
2132 oi = OCFS2_I(inode);
2133 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2135 iter = oi->ip_next_orphan;
2137 spin_lock(&oi->ip_lock);
2138 /* The remote delete code may have set these on the
2139 * assumption that the other node would wipe them
2140 * successfully. If they are still in the node's
2141 * orphan dir, we need to reset that state. */
2142 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2144 /* Set the proper information to get us going into
2145 * ocfs2_delete_inode. */
2146 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2147 spin_unlock(&oi->ip_lock);
2149 iput(inode);
2151 inode = iter;
2154 return ret;
2157 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2159 /* This check is good because ocfs2 will wait on our recovery
2160 * thread before changing it to something other than MOUNTED
2161 * or DISABLED. */
2162 wait_event(osb->osb_mount_event,
2163 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2164 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2165 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2167 /* If there's an error on mount, then we may never get to the
2168 * MOUNTED flag, but this is set right before
2169 * dismount_volume() so we can trust it. */
2170 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2171 mlog(0, "mount error, exiting!\n");
2172 return -EBUSY;
2175 return 0;
2178 static int ocfs2_commit_thread(void *arg)
2180 int status;
2181 struct ocfs2_super *osb = arg;
2182 struct ocfs2_journal *journal = osb->journal;
2184 /* we can trust j_num_trans here because _should_stop() is only set in
2185 * shutdown and nobody other than ourselves should be able to start
2186 * transactions. committing on shutdown might take a few iterations
2187 * as final transactions put deleted inodes on the list */
2188 while (!(kthread_should_stop() &&
2189 atomic_read(&journal->j_num_trans) == 0)) {
2191 wait_event_interruptible(osb->checkpoint_event,
2192 atomic_read(&journal->j_num_trans)
2193 || kthread_should_stop());
2195 status = ocfs2_commit_cache(osb);
2196 if (status < 0)
2197 mlog_errno(status);
2199 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2200 mlog(ML_KTHREAD,
2201 "commit_thread: %u transactions pending on "
2202 "shutdown\n",
2203 atomic_read(&journal->j_num_trans));
2207 return 0;
2210 /* Reads all the journal inodes without taking any cluster locks. Used
2211 * for hard readonly access to determine whether any journal requires
2212 * recovery. Also used to refresh the recovery generation numbers after
2213 * a journal has been recovered by another node.
2215 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2217 int ret = 0;
2218 unsigned int slot;
2219 struct buffer_head *di_bh = NULL;
2220 struct ocfs2_dinode *di;
2221 int journal_dirty = 0;
2223 for(slot = 0; slot < osb->max_slots; slot++) {
2224 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2225 if (ret) {
2226 mlog_errno(ret);
2227 goto out;
2230 di = (struct ocfs2_dinode *) di_bh->b_data;
2232 osb->slot_recovery_generations[slot] =
2233 ocfs2_get_recovery_generation(di);
2235 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2236 OCFS2_JOURNAL_DIRTY_FL)
2237 journal_dirty = 1;
2239 brelse(di_bh);
2240 di_bh = NULL;
2243 out:
2244 if (journal_dirty)
2245 ret = -EROFS;
2246 return ret;