GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / ocfs2 / cluster / heartbeat.c
blobd72c5fb9357d0439095a44f200c543c2599c5911
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
36 #include <linux/debugfs.h>
37 #include <linux/slab.h>
39 #include "heartbeat.h"
40 #include "tcp.h"
41 #include "nodemanager.h"
42 #include "quorum.h"
44 #include "masklog.h"
48 * The first heartbeat pass had one global thread that would serialize all hb
49 * callback calls. This global serializing sem should only be removed once
50 * we've made sure that all callees can deal with being called concurrently
51 * from multiple hb region threads.
53 static DECLARE_RWSEM(o2hb_callback_sem);
56 * multiple hb threads are watching multiple regions. A node is live
57 * whenever any of the threads sees activity from the node in its region.
59 static DEFINE_SPINLOCK(o2hb_live_lock);
60 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
61 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
62 static LIST_HEAD(o2hb_node_events);
63 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
65 #define O2HB_DEBUG_DIR "o2hb"
66 #define O2HB_DEBUG_LIVENODES "livenodes"
67 static struct dentry *o2hb_debug_dir;
68 static struct dentry *o2hb_debug_livenodes;
70 static LIST_HEAD(o2hb_all_regions);
72 static struct o2hb_callback {
73 struct list_head list;
74 } o2hb_callbacks[O2HB_NUM_CB];
76 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
78 #define O2HB_DEFAULT_BLOCK_BITS 9
80 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
82 /* Only sets a new threshold if there are no active regions.
84 * No locking or otherwise interesting code is required for reading
85 * o2hb_dead_threshold as it can't change once regions are active and
86 * it's not interesting to anyone until then anyway. */
87 static void o2hb_dead_threshold_set(unsigned int threshold)
89 if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
90 spin_lock(&o2hb_live_lock);
91 if (list_empty(&o2hb_all_regions))
92 o2hb_dead_threshold = threshold;
93 spin_unlock(&o2hb_live_lock);
97 struct o2hb_node_event {
98 struct list_head hn_item;
99 enum o2hb_callback_type hn_event_type;
100 struct o2nm_node *hn_node;
101 int hn_node_num;
104 struct o2hb_disk_slot {
105 struct o2hb_disk_heartbeat_block *ds_raw_block;
106 u8 ds_node_num;
107 u64 ds_last_time;
108 u64 ds_last_generation;
109 u16 ds_equal_samples;
110 u16 ds_changed_samples;
111 struct list_head ds_live_item;
114 /* each thread owns a region.. when we're asked to tear down the region
115 * we ask the thread to stop, who cleans up the region */
116 struct o2hb_region {
117 struct config_item hr_item;
119 struct list_head hr_all_item;
120 unsigned hr_unclean_stop:1;
122 /* protected by the hr_callback_sem */
123 struct task_struct *hr_task;
125 unsigned int hr_blocks;
126 unsigned long long hr_start_block;
128 unsigned int hr_block_bits;
129 unsigned int hr_block_bytes;
131 unsigned int hr_slots_per_page;
132 unsigned int hr_num_pages;
134 struct page **hr_slot_data;
135 struct block_device *hr_bdev;
136 struct o2hb_disk_slot *hr_slots;
138 /* let the person setting up hb wait for it to return until it
139 * has reached a 'steady' state. This will be fixed when we have
140 * a more complete api that doesn't lead to this sort of fragility. */
141 atomic_t hr_steady_iterations;
143 char hr_dev_name[BDEVNAME_SIZE];
145 unsigned int hr_timeout_ms;
147 /* randomized as the region goes up and down so that a node
148 * recognizes a node going up and down in one iteration */
149 u64 hr_generation;
151 struct delayed_work hr_write_timeout_work;
152 unsigned long hr_last_timeout_start;
154 /* Used during o2hb_check_slot to hold a copy of the block
155 * being checked because we temporarily have to zero out the
156 * crc field. */
157 struct o2hb_disk_heartbeat_block *hr_tmp_block;
160 struct o2hb_bio_wait_ctxt {
161 atomic_t wc_num_reqs;
162 struct completion wc_io_complete;
163 int wc_error;
166 static void o2hb_write_timeout(struct work_struct *work)
168 struct o2hb_region *reg =
169 container_of(work, struct o2hb_region,
170 hr_write_timeout_work.work);
172 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
173 "milliseconds\n", reg->hr_dev_name,
174 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
175 o2quo_disk_timeout();
178 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
180 mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n",
181 O2HB_MAX_WRITE_TIMEOUT_MS);
183 cancel_delayed_work(&reg->hr_write_timeout_work);
184 reg->hr_last_timeout_start = jiffies;
185 schedule_delayed_work(&reg->hr_write_timeout_work,
186 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
189 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
191 cancel_delayed_work(&reg->hr_write_timeout_work);
192 flush_scheduled_work();
195 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
197 atomic_set(&wc->wc_num_reqs, 1);
198 init_completion(&wc->wc_io_complete);
199 wc->wc_error = 0;
202 /* Used in error paths too */
203 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
204 unsigned int num)
206 /* sadly atomic_sub_and_test() isn't available on all platforms. The
207 * good news is that the fast path only completes one at a time */
208 while(num--) {
209 if (atomic_dec_and_test(&wc->wc_num_reqs)) {
210 BUG_ON(num > 0);
211 complete(&wc->wc_io_complete);
216 static void o2hb_wait_on_io(struct o2hb_region *reg,
217 struct o2hb_bio_wait_ctxt *wc)
219 struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
221 blk_run_address_space(mapping);
222 o2hb_bio_wait_dec(wc, 1);
224 wait_for_completion(&wc->wc_io_complete);
227 static void o2hb_bio_end_io(struct bio *bio,
228 int error)
230 struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
232 if (error) {
233 mlog(ML_ERROR, "IO Error %d\n", error);
234 wc->wc_error = error;
237 o2hb_bio_wait_dec(wc, 1);
238 bio_put(bio);
241 /* Setup a Bio to cover I/O against num_slots slots starting at
242 * start_slot. */
243 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
244 struct o2hb_bio_wait_ctxt *wc,
245 unsigned int *current_slot,
246 unsigned int max_slots)
248 int len, current_page;
249 unsigned int vec_len, vec_start;
250 unsigned int bits = reg->hr_block_bits;
251 unsigned int spp = reg->hr_slots_per_page;
252 unsigned int cs = *current_slot;
253 struct bio *bio;
254 struct page *page;
256 /* Testing has shown this allocation to take long enough under
257 * GFP_KERNEL that the local node can get fenced. It would be
258 * nicest if we could pre-allocate these bios and avoid this
259 * all together. */
260 bio = bio_alloc(GFP_ATOMIC, 16);
261 if (!bio) {
262 mlog(ML_ERROR, "Could not alloc slots BIO!\n");
263 bio = ERR_PTR(-ENOMEM);
264 goto bail;
267 /* Must put everything in 512 byte sectors for the bio... */
268 bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
269 bio->bi_bdev = reg->hr_bdev;
270 bio->bi_private = wc;
271 bio->bi_end_io = o2hb_bio_end_io;
273 vec_start = (cs << bits) % PAGE_CACHE_SIZE;
274 while(cs < max_slots) {
275 current_page = cs / spp;
276 page = reg->hr_slot_data[current_page];
278 vec_len = min(PAGE_CACHE_SIZE - vec_start,
279 (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );
281 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
282 current_page, vec_len, vec_start);
284 len = bio_add_page(bio, page, vec_len, vec_start);
285 if (len != vec_len) break;
287 cs += vec_len / (PAGE_CACHE_SIZE/spp);
288 vec_start = 0;
291 bail:
292 *current_slot = cs;
293 return bio;
296 static int o2hb_read_slots(struct o2hb_region *reg,
297 unsigned int max_slots)
299 unsigned int current_slot=0;
300 int status;
301 struct o2hb_bio_wait_ctxt wc;
302 struct bio *bio;
304 o2hb_bio_wait_init(&wc);
306 while(current_slot < max_slots) {
307 bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
308 if (IS_ERR(bio)) {
309 status = PTR_ERR(bio);
310 mlog_errno(status);
311 goto bail_and_wait;
314 atomic_inc(&wc.wc_num_reqs);
315 submit_bio(READ, bio);
318 status = 0;
320 bail_and_wait:
321 o2hb_wait_on_io(reg, &wc);
322 if (wc.wc_error && !status)
323 status = wc.wc_error;
325 return status;
328 static int o2hb_issue_node_write(struct o2hb_region *reg,
329 struct o2hb_bio_wait_ctxt *write_wc)
331 int status;
332 unsigned int slot;
333 struct bio *bio;
335 o2hb_bio_wait_init(write_wc);
337 slot = o2nm_this_node();
339 bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
340 if (IS_ERR(bio)) {
341 status = PTR_ERR(bio);
342 mlog_errno(status);
343 goto bail;
346 atomic_inc(&write_wc->wc_num_reqs);
347 submit_bio(WRITE, bio);
349 status = 0;
350 bail:
351 return status;
354 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
355 struct o2hb_disk_heartbeat_block *hb_block)
357 __le32 old_cksum;
358 u32 ret;
360 /* We want to compute the block crc with a 0 value in the
361 * hb_cksum field. Save it off here and replace after the
362 * crc. */
363 old_cksum = hb_block->hb_cksum;
364 hb_block->hb_cksum = 0;
366 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
368 hb_block->hb_cksum = old_cksum;
370 return ret;
373 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
375 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
376 "cksum = 0x%x, generation 0x%llx\n",
377 (long long)le64_to_cpu(hb_block->hb_seq),
378 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
379 (long long)le64_to_cpu(hb_block->hb_generation));
382 static int o2hb_verify_crc(struct o2hb_region *reg,
383 struct o2hb_disk_heartbeat_block *hb_block)
385 u32 read, computed;
387 read = le32_to_cpu(hb_block->hb_cksum);
388 computed = o2hb_compute_block_crc_le(reg, hb_block);
390 return read == computed;
393 /* We want to make sure that nobody is heartbeating on top of us --
394 * this will help detect an invalid configuration. */
395 static int o2hb_check_last_timestamp(struct o2hb_region *reg)
397 int node_num, ret;
398 struct o2hb_disk_slot *slot;
399 struct o2hb_disk_heartbeat_block *hb_block;
401 node_num = o2nm_this_node();
403 ret = 1;
404 slot = &reg->hr_slots[node_num];
405 /* Don't check on our 1st timestamp */
406 if (slot->ds_last_time) {
407 hb_block = slot->ds_raw_block;
409 if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
410 ret = 0;
413 return ret;
416 static inline void o2hb_prepare_block(struct o2hb_region *reg,
417 u64 generation)
419 int node_num;
420 u64 cputime;
421 struct o2hb_disk_slot *slot;
422 struct o2hb_disk_heartbeat_block *hb_block;
424 node_num = o2nm_this_node();
425 slot = &reg->hr_slots[node_num];
427 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
428 memset(hb_block, 0, reg->hr_block_bytes);
429 /* TODO: time stuff */
430 cputime = CURRENT_TIME.tv_sec;
431 if (!cputime)
432 cputime = 1;
434 hb_block->hb_seq = cpu_to_le64(cputime);
435 hb_block->hb_node = node_num;
436 hb_block->hb_generation = cpu_to_le64(generation);
437 hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
439 /* This step must always happen last! */
440 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
441 hb_block));
443 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
444 (long long)generation,
445 le32_to_cpu(hb_block->hb_cksum));
448 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
449 struct o2nm_node *node,
450 int idx)
452 struct list_head *iter;
453 struct o2hb_callback_func *f;
455 list_for_each(iter, &hbcall->list) {
456 f = list_entry(iter, struct o2hb_callback_func, hc_item);
457 mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
458 (f->hc_func)(node, idx, f->hc_data);
462 /* Will run the list in order until we process the passed event */
463 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
465 int empty;
466 struct o2hb_callback *hbcall;
467 struct o2hb_node_event *event;
469 spin_lock(&o2hb_live_lock);
470 empty = list_empty(&queued_event->hn_item);
471 spin_unlock(&o2hb_live_lock);
472 if (empty)
473 return;
475 /* Holding callback sem assures we don't alter the callback
476 * lists when doing this, and serializes ourselves with other
477 * processes wanting callbacks. */
478 down_write(&o2hb_callback_sem);
480 spin_lock(&o2hb_live_lock);
481 while (!list_empty(&o2hb_node_events)
482 && !list_empty(&queued_event->hn_item)) {
483 event = list_entry(o2hb_node_events.next,
484 struct o2hb_node_event,
485 hn_item);
486 list_del_init(&event->hn_item);
487 spin_unlock(&o2hb_live_lock);
489 mlog(ML_HEARTBEAT, "Node %s event for %d\n",
490 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
491 event->hn_node_num);
493 hbcall = hbcall_from_type(event->hn_event_type);
495 /* We should *never* have gotten on to the list with a
496 * bad type... This isn't something that we should try
497 * to recover from. */
498 BUG_ON(IS_ERR(hbcall));
500 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
502 spin_lock(&o2hb_live_lock);
504 spin_unlock(&o2hb_live_lock);
506 up_write(&o2hb_callback_sem);
509 static void o2hb_queue_node_event(struct o2hb_node_event *event,
510 enum o2hb_callback_type type,
511 struct o2nm_node *node,
512 int node_num)
514 assert_spin_locked(&o2hb_live_lock);
516 event->hn_event_type = type;
517 event->hn_node = node;
518 event->hn_node_num = node_num;
520 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
521 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
523 list_add_tail(&event->hn_item, &o2hb_node_events);
526 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
528 struct o2hb_node_event event =
529 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
530 struct o2nm_node *node;
532 node = o2nm_get_node_by_num(slot->ds_node_num);
533 if (!node)
534 return;
536 spin_lock(&o2hb_live_lock);
537 if (!list_empty(&slot->ds_live_item)) {
538 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
539 slot->ds_node_num);
541 list_del_init(&slot->ds_live_item);
543 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
544 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
546 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
547 slot->ds_node_num);
550 spin_unlock(&o2hb_live_lock);
552 o2hb_run_event_list(&event);
554 o2nm_node_put(node);
557 static int o2hb_check_slot(struct o2hb_region *reg,
558 struct o2hb_disk_slot *slot)
560 int changed = 0, gen_changed = 0;
561 struct o2hb_node_event event =
562 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
563 struct o2nm_node *node;
564 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
565 u64 cputime;
566 unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
567 unsigned int slot_dead_ms;
569 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
571 /* Is this correct? Do we assume that the node doesn't exist
572 * if we're not configured for him? */
573 node = o2nm_get_node_by_num(slot->ds_node_num);
574 if (!node)
575 return 0;
577 if (!o2hb_verify_crc(reg, hb_block)) {
578 /* all paths from here will drop o2hb_live_lock for
579 * us. */
580 spin_lock(&o2hb_live_lock);
582 /* Don't print an error on the console in this case -
583 * a freshly formatted heartbeat area will not have a
584 * crc set on it. */
585 if (list_empty(&slot->ds_live_item))
586 goto out;
588 /* The node is live but pushed out a bad crc. We
589 * consider it a transient miss but don't populate any
590 * other values as they may be junk. */
591 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
592 slot->ds_node_num, reg->hr_dev_name);
593 o2hb_dump_slot(hb_block);
595 slot->ds_equal_samples++;
596 goto fire_callbacks;
599 /* we don't care if these wrap.. the state transitions below
600 * clear at the right places */
601 cputime = le64_to_cpu(hb_block->hb_seq);
602 if (slot->ds_last_time != cputime)
603 slot->ds_changed_samples++;
604 else
605 slot->ds_equal_samples++;
606 slot->ds_last_time = cputime;
608 /* The node changed heartbeat generations. We assume this to
609 * mean it dropped off but came back before we timed out. We
610 * want to consider it down for the time being but don't want
611 * to lose any changed_samples state we might build up to
612 * considering it live again. */
613 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
614 gen_changed = 1;
615 slot->ds_equal_samples = 0;
616 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
617 "to 0x%llx)\n", slot->ds_node_num,
618 (long long)slot->ds_last_generation,
619 (long long)le64_to_cpu(hb_block->hb_generation));
622 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
624 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
625 "seq %llu last %llu changed %u equal %u\n",
626 slot->ds_node_num, (long long)slot->ds_last_generation,
627 le32_to_cpu(hb_block->hb_cksum),
628 (unsigned long long)le64_to_cpu(hb_block->hb_seq),
629 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
630 slot->ds_equal_samples);
632 spin_lock(&o2hb_live_lock);
634 fire_callbacks:
635 /* dead nodes only come to life after some number of
636 * changes at any time during their dead time */
637 if (list_empty(&slot->ds_live_item) &&
638 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
639 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
640 slot->ds_node_num, (long long)slot->ds_last_generation);
642 /* first on the list generates a callback */
643 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
644 set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
646 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
647 slot->ds_node_num);
649 changed = 1;
652 list_add_tail(&slot->ds_live_item,
653 &o2hb_live_slots[slot->ds_node_num]);
655 slot->ds_equal_samples = 0;
657 /* We want to be sure that all nodes agree on the
658 * number of milliseconds before a node will be
659 * considered dead. The self-fencing timeout is
660 * computed from this value, and a discrepancy might
661 * result in heartbeat calling a node dead when it
662 * hasn't self-fenced yet. */
663 slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
664 if (slot_dead_ms && slot_dead_ms != dead_ms) {
665 /* TODO: Perhaps we can fail the region here. */
666 mlog(ML_ERROR, "Node %d on device %s has a dead count "
667 "of %u ms, but our count is %u ms.\n"
668 "Please double check your configuration values "
669 "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
670 slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
671 dead_ms);
673 goto out;
676 /* if the list is dead, we're done.. */
677 if (list_empty(&slot->ds_live_item))
678 goto out;
680 /* live nodes only go dead after enough consequtive missed
681 * samples.. reset the missed counter whenever we see
682 * activity */
683 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
684 mlog(ML_HEARTBEAT, "Node %d left my region\n",
685 slot->ds_node_num);
687 /* last off the live_slot generates a callback */
688 list_del_init(&slot->ds_live_item);
689 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
690 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
692 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
693 slot->ds_node_num);
695 changed = 1;
698 /* We don't clear this because the node is still
699 * actually writing new blocks. */
700 if (!gen_changed)
701 slot->ds_changed_samples = 0;
702 goto out;
704 if (slot->ds_changed_samples) {
705 slot->ds_changed_samples = 0;
706 slot->ds_equal_samples = 0;
708 out:
709 spin_unlock(&o2hb_live_lock);
711 o2hb_run_event_list(&event);
713 o2nm_node_put(node);
714 return changed;
717 /* This could be faster if we just implmented a find_last_bit, but I
718 * don't think the circumstances warrant it. */
719 static int o2hb_highest_node(unsigned long *nodes,
720 int numbits)
722 int highest, node;
724 highest = numbits;
725 node = -1;
726 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
727 if (node >= numbits)
728 break;
730 highest = node;
733 return highest;
736 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
738 int i, ret, highest_node, change = 0;
739 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
740 struct o2hb_bio_wait_ctxt write_wc;
742 ret = o2nm_configured_node_map(configured_nodes,
743 sizeof(configured_nodes));
744 if (ret) {
745 mlog_errno(ret);
746 return ret;
749 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
750 if (highest_node >= O2NM_MAX_NODES) {
751 mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
752 return -EINVAL;
755 /* No sense in reading the slots of nodes that don't exist
756 * yet. Of course, if the node definitions have holes in them
757 * then we're reading an empty slot anyway... Consider this
758 * best-effort. */
759 ret = o2hb_read_slots(reg, highest_node + 1);
760 if (ret < 0) {
761 mlog_errno(ret);
762 return ret;
765 /* With an up to date view of the slots, we can check that no
766 * other node has been improperly configured to heartbeat in
767 * our slot. */
768 if (!o2hb_check_last_timestamp(reg))
769 mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
770 "in our slot!\n", reg->hr_dev_name);
772 /* fill in the proper info for our next heartbeat */
773 o2hb_prepare_block(reg, reg->hr_generation);
775 /* And fire off the write. Note that we don't wait on this I/O
776 * until later. */
777 ret = o2hb_issue_node_write(reg, &write_wc);
778 if (ret < 0) {
779 mlog_errno(ret);
780 return ret;
783 i = -1;
784 while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
786 change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
790 * We have to be sure we've advertised ourselves on disk
791 * before we can go to steady state. This ensures that
792 * people we find in our steady state have seen us.
794 o2hb_wait_on_io(reg, &write_wc);
795 if (write_wc.wc_error) {
796 /* Do not re-arm the write timeout on I/O error - we
797 * can't be sure that the new block ever made it to
798 * disk */
799 mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
800 write_wc.wc_error, reg->hr_dev_name);
801 return write_wc.wc_error;
804 o2hb_arm_write_timeout(reg);
806 /* let the person who launched us know when things are steady */
807 if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
808 if (atomic_dec_and_test(&reg->hr_steady_iterations))
809 wake_up(&o2hb_steady_queue);
812 return 0;
815 /* Subtract b from a, storing the result in a. a *must* have a larger
816 * value than b. */
817 static void o2hb_tv_subtract(struct timeval *a,
818 struct timeval *b)
820 /* just return 0 when a is after b */
821 if (a->tv_sec < b->tv_sec ||
822 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
823 a->tv_sec = 0;
824 a->tv_usec = 0;
825 return;
828 a->tv_sec -= b->tv_sec;
829 a->tv_usec -= b->tv_usec;
830 while ( a->tv_usec < 0 ) {
831 a->tv_sec--;
832 a->tv_usec += 1000000;
836 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
837 struct timeval *end)
839 struct timeval res = *end;
841 o2hb_tv_subtract(&res, start);
843 return res.tv_sec * 1000 + res.tv_usec / 1000;
847 * we ride the region ref that the region dir holds. before the region
848 * dir is removed and drops it ref it will wait to tear down this
849 * thread.
851 static int o2hb_thread(void *data)
853 int i, ret;
854 struct o2hb_region *reg = data;
855 struct o2hb_bio_wait_ctxt write_wc;
856 struct timeval before_hb, after_hb;
857 unsigned int elapsed_msec;
859 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
861 set_user_nice(current, -20);
863 while (!kthread_should_stop() && !reg->hr_unclean_stop) {
864 /* We track the time spent inside
865 * o2hb_do_disk_heartbeat so that we avoid more than
866 * hr_timeout_ms between disk writes. On busy systems
867 * this should result in a heartbeat which is less
868 * likely to time itself out. */
869 do_gettimeofday(&before_hb);
871 i = 0;
872 do {
873 ret = o2hb_do_disk_heartbeat(reg);
874 } while (ret && ++i < 2);
876 do_gettimeofday(&after_hb);
877 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
879 mlog(ML_HEARTBEAT,
880 "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
881 before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
882 after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
883 elapsed_msec);
885 if (elapsed_msec < reg->hr_timeout_ms) {
886 /* the kthread api has blocked signals for us so no
887 * need to record the return value. */
888 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
892 o2hb_disarm_write_timeout(reg);
894 /* unclean stop is only used in very bad situation */
895 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
896 o2hb_shutdown_slot(&reg->hr_slots[i]);
898 o2hb_prepare_block(reg, 0);
899 ret = o2hb_issue_node_write(reg, &write_wc);
900 if (ret == 0) {
901 o2hb_wait_on_io(reg, &write_wc);
902 } else {
903 mlog_errno(ret);
906 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
908 return 0;
911 #ifdef CONFIG_DEBUG_FS
912 static int o2hb_debug_open(struct inode *inode, struct file *file)
914 unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)];
915 char *buf = NULL;
916 int i = -1;
917 int out = 0;
919 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
920 if (!buf)
921 goto bail;
923 o2hb_fill_node_map(map, sizeof(map));
925 while ((i = find_next_bit(map, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES)
926 out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i);
927 out += snprintf(buf + out, PAGE_SIZE - out, "\n");
929 i_size_write(inode, out);
931 file->private_data = buf;
933 return 0;
934 bail:
935 return -ENOMEM;
938 static int o2hb_debug_release(struct inode *inode, struct file *file)
940 kfree(file->private_data);
941 return 0;
944 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
945 size_t nbytes, loff_t *ppos)
947 return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
948 i_size_read(file->f_mapping->host));
950 #else
951 static int o2hb_debug_open(struct inode *inode, struct file *file)
953 return 0;
955 static int o2hb_debug_release(struct inode *inode, struct file *file)
957 return 0;
959 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
960 size_t nbytes, loff_t *ppos)
962 return 0;
964 #endif /* CONFIG_DEBUG_FS */
966 static const struct file_operations o2hb_debug_fops = {
967 .open = o2hb_debug_open,
968 .release = o2hb_debug_release,
969 .read = o2hb_debug_read,
970 .llseek = generic_file_llseek,
973 void o2hb_exit(void)
975 if (o2hb_debug_livenodes)
976 debugfs_remove(o2hb_debug_livenodes);
977 if (o2hb_debug_dir)
978 debugfs_remove(o2hb_debug_dir);
981 int o2hb_init(void)
983 int i;
985 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
986 INIT_LIST_HEAD(&o2hb_callbacks[i].list);
988 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
989 INIT_LIST_HEAD(&o2hb_live_slots[i]);
991 INIT_LIST_HEAD(&o2hb_node_events);
993 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
995 o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL);
996 if (!o2hb_debug_dir) {
997 mlog_errno(-ENOMEM);
998 return -ENOMEM;
1001 o2hb_debug_livenodes = debugfs_create_file(O2HB_DEBUG_LIVENODES,
1002 S_IFREG|S_IRUSR,
1003 o2hb_debug_dir, NULL,
1004 &o2hb_debug_fops);
1005 if (!o2hb_debug_livenodes) {
1006 mlog_errno(-ENOMEM);
1007 debugfs_remove(o2hb_debug_dir);
1008 return -ENOMEM;
1011 return 0;
1014 /* if we're already in a callback then we're already serialized by the sem */
1015 static void o2hb_fill_node_map_from_callback(unsigned long *map,
1016 unsigned bytes)
1018 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
1020 memcpy(map, &o2hb_live_node_bitmap, bytes);
1024 * get a map of all nodes that are heartbeating in any regions
1026 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
1028 /* callers want to serialize this map and callbacks so that they
1029 * can trust that they don't miss nodes coming to the party */
1030 down_read(&o2hb_callback_sem);
1031 spin_lock(&o2hb_live_lock);
1032 o2hb_fill_node_map_from_callback(map, bytes);
1033 spin_unlock(&o2hb_live_lock);
1034 up_read(&o2hb_callback_sem);
1036 EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
1039 * heartbeat configfs bits. The heartbeat set is a default set under
1040 * the cluster set in nodemanager.c.
1043 static struct o2hb_region *to_o2hb_region(struct config_item *item)
1045 return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1048 /* drop_item only drops its ref after killing the thread, nothing should
1049 * be using the region anymore. this has to clean up any state that
1050 * attributes might have built up. */
1051 static void o2hb_region_release(struct config_item *item)
1053 int i;
1054 struct page *page;
1055 struct o2hb_region *reg = to_o2hb_region(item);
1057 if (reg->hr_tmp_block)
1058 kfree(reg->hr_tmp_block);
1060 if (reg->hr_slot_data) {
1061 for (i = 0; i < reg->hr_num_pages; i++) {
1062 page = reg->hr_slot_data[i];
1063 if (page)
1064 __free_page(page);
1066 kfree(reg->hr_slot_data);
1069 if (reg->hr_bdev)
1070 blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1072 if (reg->hr_slots)
1073 kfree(reg->hr_slots);
1075 spin_lock(&o2hb_live_lock);
1076 list_del(&reg->hr_all_item);
1077 spin_unlock(&o2hb_live_lock);
1079 kfree(reg);
1082 static int o2hb_read_block_input(struct o2hb_region *reg,
1083 const char *page,
1084 size_t count,
1085 unsigned long *ret_bytes,
1086 unsigned int *ret_bits)
1088 unsigned long bytes;
1089 char *p = (char *)page;
1091 bytes = simple_strtoul(p, &p, 0);
1092 if (!p || (*p && (*p != '\n')))
1093 return -EINVAL;
1095 /* Heartbeat and fs min / max block sizes are the same. */
1096 if (bytes > 4096 || bytes < 512)
1097 return -ERANGE;
1098 if (hweight16(bytes) != 1)
1099 return -EINVAL;
1101 if (ret_bytes)
1102 *ret_bytes = bytes;
1103 if (ret_bits)
1104 *ret_bits = ffs(bytes) - 1;
1106 return 0;
1109 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1110 char *page)
1112 return sprintf(page, "%u\n", reg->hr_block_bytes);
1115 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1116 const char *page,
1117 size_t count)
1119 int status;
1120 unsigned long block_bytes;
1121 unsigned int block_bits;
1123 if (reg->hr_bdev)
1124 return -EINVAL;
1126 status = o2hb_read_block_input(reg, page, count,
1127 &block_bytes, &block_bits);
1128 if (status)
1129 return status;
1131 reg->hr_block_bytes = (unsigned int)block_bytes;
1132 reg->hr_block_bits = block_bits;
1134 return count;
1137 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1138 char *page)
1140 return sprintf(page, "%llu\n", reg->hr_start_block);
1143 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1144 const char *page,
1145 size_t count)
1147 unsigned long long tmp;
1148 char *p = (char *)page;
1150 if (reg->hr_bdev)
1151 return -EINVAL;
1153 tmp = simple_strtoull(p, &p, 0);
1154 if (!p || (*p && (*p != '\n')))
1155 return -EINVAL;
1157 reg->hr_start_block = tmp;
1159 return count;
1162 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1163 char *page)
1165 return sprintf(page, "%d\n", reg->hr_blocks);
1168 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1169 const char *page,
1170 size_t count)
1172 unsigned long tmp;
1173 char *p = (char *)page;
1175 if (reg->hr_bdev)
1176 return -EINVAL;
1178 tmp = simple_strtoul(p, &p, 0);
1179 if (!p || (*p && (*p != '\n')))
1180 return -EINVAL;
1182 if (tmp > O2NM_MAX_NODES || tmp == 0)
1183 return -ERANGE;
1185 reg->hr_blocks = (unsigned int)tmp;
1187 return count;
1190 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1191 char *page)
1193 unsigned int ret = 0;
1195 if (reg->hr_bdev)
1196 ret = sprintf(page, "%s\n", reg->hr_dev_name);
1198 return ret;
1201 static void o2hb_init_region_params(struct o2hb_region *reg)
1203 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1204 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1206 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1207 reg->hr_start_block, reg->hr_blocks);
1208 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1209 reg->hr_block_bytes, reg->hr_block_bits);
1210 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1211 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1214 static int o2hb_map_slot_data(struct o2hb_region *reg)
1216 int i, j;
1217 unsigned int last_slot;
1218 unsigned int spp = reg->hr_slots_per_page;
1219 struct page *page;
1220 char *raw;
1221 struct o2hb_disk_slot *slot;
1223 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1224 if (reg->hr_tmp_block == NULL) {
1225 mlog_errno(-ENOMEM);
1226 return -ENOMEM;
1229 reg->hr_slots = kcalloc(reg->hr_blocks,
1230 sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1231 if (reg->hr_slots == NULL) {
1232 mlog_errno(-ENOMEM);
1233 return -ENOMEM;
1236 for(i = 0; i < reg->hr_blocks; i++) {
1237 slot = &reg->hr_slots[i];
1238 slot->ds_node_num = i;
1239 INIT_LIST_HEAD(&slot->ds_live_item);
1240 slot->ds_raw_block = NULL;
1243 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1244 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1245 "at %u blocks per page\n",
1246 reg->hr_num_pages, reg->hr_blocks, spp);
1248 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1249 GFP_KERNEL);
1250 if (!reg->hr_slot_data) {
1251 mlog_errno(-ENOMEM);
1252 return -ENOMEM;
1255 for(i = 0; i < reg->hr_num_pages; i++) {
1256 page = alloc_page(GFP_KERNEL);
1257 if (!page) {
1258 mlog_errno(-ENOMEM);
1259 return -ENOMEM;
1262 reg->hr_slot_data[i] = page;
1264 last_slot = i * spp;
1265 raw = page_address(page);
1266 for (j = 0;
1267 (j < spp) && ((j + last_slot) < reg->hr_blocks);
1268 j++) {
1269 BUG_ON((j + last_slot) >= reg->hr_blocks);
1271 slot = &reg->hr_slots[j + last_slot];
1272 slot->ds_raw_block =
1273 (struct o2hb_disk_heartbeat_block *) raw;
1275 raw += reg->hr_block_bytes;
1279 return 0;
1282 /* Read in all the slots available and populate the tracking
1283 * structures so that we can start with a baseline idea of what's
1284 * there. */
1285 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1287 int ret, i;
1288 struct o2hb_disk_slot *slot;
1289 struct o2hb_disk_heartbeat_block *hb_block;
1291 mlog_entry_void();
1293 ret = o2hb_read_slots(reg, reg->hr_blocks);
1294 if (ret) {
1295 mlog_errno(ret);
1296 goto out;
1299 /* We only want to get an idea of the values initially in each
1300 * slot, so we do no verification - o2hb_check_slot will
1301 * actually determine if each configured slot is valid and
1302 * whether any values have changed. */
1303 for(i = 0; i < reg->hr_blocks; i++) {
1304 slot = &reg->hr_slots[i];
1305 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1307 /* Only fill the values that o2hb_check_slot uses to
1308 * determine changing slots */
1309 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1310 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1313 out:
1314 mlog_exit(ret);
1315 return ret;
1318 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1319 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1320 const char *page,
1321 size_t count)
1323 struct task_struct *hb_task;
1324 long fd;
1325 int sectsize;
1326 char *p = (char *)page;
1327 struct file *filp = NULL;
1328 struct inode *inode = NULL;
1329 ssize_t ret = -EINVAL;
1331 if (reg->hr_bdev)
1332 goto out;
1334 /* We can't heartbeat without having had our node number
1335 * configured yet. */
1336 if (o2nm_this_node() == O2NM_MAX_NODES)
1337 goto out;
1339 fd = simple_strtol(p, &p, 0);
1340 if (!p || (*p && (*p != '\n')))
1341 goto out;
1343 if (fd < 0 || fd >= INT_MAX)
1344 goto out;
1346 filp = fget(fd);
1347 if (filp == NULL)
1348 goto out;
1350 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1351 reg->hr_block_bytes == 0)
1352 goto out;
1354 inode = igrab(filp->f_mapping->host);
1355 if (inode == NULL)
1356 goto out;
1358 if (!S_ISBLK(inode->i_mode))
1359 goto out;
1361 reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1362 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ);
1363 if (ret) {
1364 reg->hr_bdev = NULL;
1365 goto out;
1367 inode = NULL;
1369 bdevname(reg->hr_bdev, reg->hr_dev_name);
1371 sectsize = bdev_logical_block_size(reg->hr_bdev);
1372 if (sectsize != reg->hr_block_bytes) {
1373 mlog(ML_ERROR,
1374 "blocksize %u incorrect for device, expected %d",
1375 reg->hr_block_bytes, sectsize);
1376 ret = -EINVAL;
1377 goto out;
1380 o2hb_init_region_params(reg);
1382 /* Generation of zero is invalid */
1383 do {
1384 get_random_bytes(&reg->hr_generation,
1385 sizeof(reg->hr_generation));
1386 } while (reg->hr_generation == 0);
1388 ret = o2hb_map_slot_data(reg);
1389 if (ret) {
1390 mlog_errno(ret);
1391 goto out;
1394 ret = o2hb_populate_slot_data(reg);
1395 if (ret) {
1396 mlog_errno(ret);
1397 goto out;
1400 INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
1403 * A node is considered live after it has beat LIVE_THRESHOLD
1404 * times. We're not steady until we've given them a chance
1405 * _after_ our first read.
1407 atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1409 hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1410 reg->hr_item.ci_name);
1411 if (IS_ERR(hb_task)) {
1412 ret = PTR_ERR(hb_task);
1413 mlog_errno(ret);
1414 goto out;
1417 spin_lock(&o2hb_live_lock);
1418 reg->hr_task = hb_task;
1419 spin_unlock(&o2hb_live_lock);
1421 ret = wait_event_interruptible(o2hb_steady_queue,
1422 atomic_read(&reg->hr_steady_iterations) == 0);
1423 if (ret) {
1424 /* We got interrupted (hello ptrace!). Clean up */
1425 spin_lock(&o2hb_live_lock);
1426 hb_task = reg->hr_task;
1427 reg->hr_task = NULL;
1428 spin_unlock(&o2hb_live_lock);
1430 if (hb_task)
1431 kthread_stop(hb_task);
1432 goto out;
1435 /* Ok, we were woken. Make sure it wasn't by drop_item() */
1436 spin_lock(&o2hb_live_lock);
1437 hb_task = reg->hr_task;
1438 spin_unlock(&o2hb_live_lock);
1440 if (hb_task)
1441 ret = count;
1442 else
1443 ret = -EIO;
1445 out:
1446 if (filp)
1447 fput(filp);
1448 if (inode)
1449 iput(inode);
1450 if (ret < 0) {
1451 if (reg->hr_bdev) {
1452 blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1453 reg->hr_bdev = NULL;
1456 return ret;
1459 static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
1460 char *page)
1462 pid_t pid = 0;
1464 spin_lock(&o2hb_live_lock);
1465 if (reg->hr_task)
1466 pid = task_pid_nr(reg->hr_task);
1467 spin_unlock(&o2hb_live_lock);
1469 if (!pid)
1470 return 0;
1472 return sprintf(page, "%u\n", pid);
1475 struct o2hb_region_attribute {
1476 struct configfs_attribute attr;
1477 ssize_t (*show)(struct o2hb_region *, char *);
1478 ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1481 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1482 .attr = { .ca_owner = THIS_MODULE,
1483 .ca_name = "block_bytes",
1484 .ca_mode = S_IRUGO | S_IWUSR },
1485 .show = o2hb_region_block_bytes_read,
1486 .store = o2hb_region_block_bytes_write,
1489 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1490 .attr = { .ca_owner = THIS_MODULE,
1491 .ca_name = "start_block",
1492 .ca_mode = S_IRUGO | S_IWUSR },
1493 .show = o2hb_region_start_block_read,
1494 .store = o2hb_region_start_block_write,
1497 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1498 .attr = { .ca_owner = THIS_MODULE,
1499 .ca_name = "blocks",
1500 .ca_mode = S_IRUGO | S_IWUSR },
1501 .show = o2hb_region_blocks_read,
1502 .store = o2hb_region_blocks_write,
1505 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1506 .attr = { .ca_owner = THIS_MODULE,
1507 .ca_name = "dev",
1508 .ca_mode = S_IRUGO | S_IWUSR },
1509 .show = o2hb_region_dev_read,
1510 .store = o2hb_region_dev_write,
1513 static struct o2hb_region_attribute o2hb_region_attr_pid = {
1514 .attr = { .ca_owner = THIS_MODULE,
1515 .ca_name = "pid",
1516 .ca_mode = S_IRUGO | S_IRUSR },
1517 .show = o2hb_region_pid_read,
1520 static struct configfs_attribute *o2hb_region_attrs[] = {
1521 &o2hb_region_attr_block_bytes.attr,
1522 &o2hb_region_attr_start_block.attr,
1523 &o2hb_region_attr_blocks.attr,
1524 &o2hb_region_attr_dev.attr,
1525 &o2hb_region_attr_pid.attr,
1526 NULL,
1529 static ssize_t o2hb_region_show(struct config_item *item,
1530 struct configfs_attribute *attr,
1531 char *page)
1533 struct o2hb_region *reg = to_o2hb_region(item);
1534 struct o2hb_region_attribute *o2hb_region_attr =
1535 container_of(attr, struct o2hb_region_attribute, attr);
1536 ssize_t ret = 0;
1538 if (o2hb_region_attr->show)
1539 ret = o2hb_region_attr->show(reg, page);
1540 return ret;
1543 static ssize_t o2hb_region_store(struct config_item *item,
1544 struct configfs_attribute *attr,
1545 const char *page, size_t count)
1547 struct o2hb_region *reg = to_o2hb_region(item);
1548 struct o2hb_region_attribute *o2hb_region_attr =
1549 container_of(attr, struct o2hb_region_attribute, attr);
1550 ssize_t ret = -EINVAL;
1552 if (o2hb_region_attr->store)
1553 ret = o2hb_region_attr->store(reg, page, count);
1554 return ret;
1557 static struct configfs_item_operations o2hb_region_item_ops = {
1558 .release = o2hb_region_release,
1559 .show_attribute = o2hb_region_show,
1560 .store_attribute = o2hb_region_store,
1563 static struct config_item_type o2hb_region_type = {
1564 .ct_item_ops = &o2hb_region_item_ops,
1565 .ct_attrs = o2hb_region_attrs,
1566 .ct_owner = THIS_MODULE,
1569 /* heartbeat set */
1571 struct o2hb_heartbeat_group {
1572 struct config_group hs_group;
1573 /* some stuff? */
1576 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1578 return group ?
1579 container_of(group, struct o2hb_heartbeat_group, hs_group)
1580 : NULL;
1583 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1584 const char *name)
1586 struct o2hb_region *reg = NULL;
1588 reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
1589 if (reg == NULL)
1590 return ERR_PTR(-ENOMEM);
1592 config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1594 spin_lock(&o2hb_live_lock);
1595 list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1596 spin_unlock(&o2hb_live_lock);
1598 return &reg->hr_item;
1601 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1602 struct config_item *item)
1604 struct task_struct *hb_task;
1605 struct o2hb_region *reg = to_o2hb_region(item);
1607 /* stop the thread when the user removes the region dir */
1608 spin_lock(&o2hb_live_lock);
1609 hb_task = reg->hr_task;
1610 reg->hr_task = NULL;
1611 spin_unlock(&o2hb_live_lock);
1613 if (hb_task)
1614 kthread_stop(hb_task);
1617 * If we're racing a dev_write(), we need to wake them. They will
1618 * check reg->hr_task
1620 if (atomic_read(&reg->hr_steady_iterations) != 0) {
1621 atomic_set(&reg->hr_steady_iterations, 0);
1622 wake_up(&o2hb_steady_queue);
1625 config_item_put(item);
1628 struct o2hb_heartbeat_group_attribute {
1629 struct configfs_attribute attr;
1630 ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1631 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1634 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1635 struct configfs_attribute *attr,
1636 char *page)
1638 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1639 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1640 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1641 ssize_t ret = 0;
1643 if (o2hb_heartbeat_group_attr->show)
1644 ret = o2hb_heartbeat_group_attr->show(reg, page);
1645 return ret;
1648 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1649 struct configfs_attribute *attr,
1650 const char *page, size_t count)
1652 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1653 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1654 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1655 ssize_t ret = -EINVAL;
1657 if (o2hb_heartbeat_group_attr->store)
1658 ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1659 return ret;
1662 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1663 char *page)
1665 return sprintf(page, "%u\n", o2hb_dead_threshold);
1668 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1669 const char *page,
1670 size_t count)
1672 unsigned long tmp;
1673 char *p = (char *)page;
1675 tmp = simple_strtoul(p, &p, 10);
1676 if (!p || (*p && (*p != '\n')))
1677 return -EINVAL;
1679 /* this will validate ranges for us. */
1680 o2hb_dead_threshold_set((unsigned int) tmp);
1682 return count;
1685 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1686 .attr = { .ca_owner = THIS_MODULE,
1687 .ca_name = "dead_threshold",
1688 .ca_mode = S_IRUGO | S_IWUSR },
1689 .show = o2hb_heartbeat_group_threshold_show,
1690 .store = o2hb_heartbeat_group_threshold_store,
1693 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1694 &o2hb_heartbeat_group_attr_threshold.attr,
1695 NULL,
1698 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1699 .show_attribute = o2hb_heartbeat_group_show,
1700 .store_attribute = o2hb_heartbeat_group_store,
1703 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1704 .make_item = o2hb_heartbeat_group_make_item,
1705 .drop_item = o2hb_heartbeat_group_drop_item,
1708 static struct config_item_type o2hb_heartbeat_group_type = {
1709 .ct_group_ops = &o2hb_heartbeat_group_group_ops,
1710 .ct_item_ops = &o2hb_hearbeat_group_item_ops,
1711 .ct_attrs = o2hb_heartbeat_group_attrs,
1712 .ct_owner = THIS_MODULE,
1715 /* this is just here to avoid touching group in heartbeat.h which the
1716 * entire damn world #includes */
1717 struct config_group *o2hb_alloc_hb_set(void)
1719 struct o2hb_heartbeat_group *hs = NULL;
1720 struct config_group *ret = NULL;
1722 hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
1723 if (hs == NULL)
1724 goto out;
1726 config_group_init_type_name(&hs->hs_group, "heartbeat",
1727 &o2hb_heartbeat_group_type);
1729 ret = &hs->hs_group;
1730 out:
1731 if (ret == NULL)
1732 kfree(hs);
1733 return ret;
1736 void o2hb_free_hb_set(struct config_group *group)
1738 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1739 kfree(hs);
1742 /* hb callback registration and issueing */
1744 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1746 if (type == O2HB_NUM_CB)
1747 return ERR_PTR(-EINVAL);
1749 return &o2hb_callbacks[type];
1752 void o2hb_setup_callback(struct o2hb_callback_func *hc,
1753 enum o2hb_callback_type type,
1754 o2hb_cb_func *func,
1755 void *data,
1756 int priority)
1758 INIT_LIST_HEAD(&hc->hc_item);
1759 hc->hc_func = func;
1760 hc->hc_data = data;
1761 hc->hc_priority = priority;
1762 hc->hc_type = type;
1763 hc->hc_magic = O2HB_CB_MAGIC;
1765 EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1767 static struct o2hb_region *o2hb_find_region(const char *region_uuid)
1769 struct o2hb_region *p, *reg = NULL;
1771 assert_spin_locked(&o2hb_live_lock);
1773 list_for_each_entry(p, &o2hb_all_regions, hr_all_item) {
1774 if (!strcmp(region_uuid, config_item_name(&p->hr_item))) {
1775 reg = p;
1776 break;
1780 return reg;
1783 static int o2hb_region_get(const char *region_uuid)
1785 int ret = 0;
1786 struct o2hb_region *reg;
1788 spin_lock(&o2hb_live_lock);
1790 reg = o2hb_find_region(region_uuid);
1791 if (!reg)
1792 ret = -ENOENT;
1793 spin_unlock(&o2hb_live_lock);
1795 if (ret)
1796 goto out;
1798 ret = o2nm_depend_this_node();
1799 if (ret)
1800 goto out;
1802 ret = o2nm_depend_item(&reg->hr_item);
1803 if (ret)
1804 o2nm_undepend_this_node();
1806 out:
1807 return ret;
1810 static void o2hb_region_put(const char *region_uuid)
1812 struct o2hb_region *reg;
1814 spin_lock(&o2hb_live_lock);
1816 reg = o2hb_find_region(region_uuid);
1818 spin_unlock(&o2hb_live_lock);
1820 if (reg) {
1821 o2nm_undepend_item(&reg->hr_item);
1822 o2nm_undepend_this_node();
1826 int o2hb_register_callback(const char *region_uuid,
1827 struct o2hb_callback_func *hc)
1829 struct o2hb_callback_func *tmp;
1830 struct list_head *iter;
1831 struct o2hb_callback *hbcall;
1832 int ret;
1834 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1835 BUG_ON(!list_empty(&hc->hc_item));
1837 hbcall = hbcall_from_type(hc->hc_type);
1838 if (IS_ERR(hbcall)) {
1839 ret = PTR_ERR(hbcall);
1840 goto out;
1843 if (region_uuid) {
1844 ret = o2hb_region_get(region_uuid);
1845 if (ret)
1846 goto out;
1849 down_write(&o2hb_callback_sem);
1851 list_for_each(iter, &hbcall->list) {
1852 tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1853 if (hc->hc_priority < tmp->hc_priority) {
1854 list_add_tail(&hc->hc_item, iter);
1855 break;
1858 if (list_empty(&hc->hc_item))
1859 list_add_tail(&hc->hc_item, &hbcall->list);
1861 up_write(&o2hb_callback_sem);
1862 ret = 0;
1863 out:
1864 mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1865 ret, __builtin_return_address(0), hc);
1866 return ret;
1868 EXPORT_SYMBOL_GPL(o2hb_register_callback);
1870 void o2hb_unregister_callback(const char *region_uuid,
1871 struct o2hb_callback_func *hc)
1873 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1875 mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1876 __builtin_return_address(0), hc);
1878 if (list_empty(&hc->hc_item))
1879 return;
1881 if (region_uuid)
1882 o2hb_region_put(region_uuid);
1884 down_write(&o2hb_callback_sem);
1886 list_del_init(&hc->hc_item);
1888 up_write(&o2hb_callback_sem);
1890 EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1892 int o2hb_check_node_heartbeating(u8 node_num)
1894 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1896 o2hb_fill_node_map(testing_map, sizeof(testing_map));
1897 if (!test_bit(node_num, testing_map)) {
1898 mlog(ML_HEARTBEAT,
1899 "node (%u) does not have heartbeating enabled.\n",
1900 node_num);
1901 return 0;
1904 return 1;
1906 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1908 int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1910 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1912 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1913 if (!test_bit(node_num, testing_map)) {
1914 mlog(ML_HEARTBEAT,
1915 "node (%u) does not have heartbeating enabled.\n",
1916 node_num);
1917 return 0;
1920 return 1;
1922 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1924 /* Makes sure our local node is configured with a node number, and is
1925 * heartbeating. */
1926 int o2hb_check_local_node_heartbeating(void)
1928 u8 node_num;
1930 /* if this node was set then we have networking */
1931 node_num = o2nm_this_node();
1932 if (node_num == O2NM_MAX_NODES) {
1933 mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1934 return 0;
1937 return o2hb_check_node_heartbeating(node_num);
1939 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1942 * this is just a hack until we get the plumbing which flips file systems
1943 * read only and drops the hb ref instead of killing the node dead.
1945 void o2hb_stop_all_regions(void)
1947 struct o2hb_region *reg;
1949 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1951 spin_lock(&o2hb_live_lock);
1953 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1954 reg->hr_unclean_stop = 1;
1956 spin_unlock(&o2hb_live_lock);
1958 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);