GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / ntfs / inode.c
bloba47b4f734adce31bcefa87ee1e059d9da616ae03
1 /**
2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
44 /**
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
55 * Return 1 if the attributes match and 0 if not.
57 * NOTE: This function runs with the inode_lock spin lock held so it is not
58 * allowed to sleep.
60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
62 ntfs_inode *ni;
64 if (vi->i_ino != na->mft_no)
65 return 0;
66 ni = NTFS_I(vi);
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na->type != AT_UNUSED))
71 return 0;
72 } else {
73 /* A fake inode describing an attribute. */
74 if (ni->type != na->type)
75 return 0;
76 if (ni->name_len != na->name_len)
77 return 0;
78 if (na->name_len && memcmp(ni->name, na->name,
79 na->name_len * sizeof(ntfschar)))
80 return 0;
82 /* Match! */
83 return 1;
86 /**
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
99 * Return 0 on success and -errno on error.
101 * NOTE: This function runs with the inode_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
106 ntfs_inode *ni = NTFS_I(vi);
108 vi->i_ino = na->mft_no;
110 ni->type = na->type;
111 if (na->type == AT_INDEX_ALLOCATION)
112 NInoSetMstProtected(ni);
114 ni->name = na->name;
115 ni->name_len = na->name_len;
117 /* If initializing a normal inode, we are done. */
118 if (likely(na->type == AT_UNUSED)) {
119 BUG_ON(na->name);
120 BUG_ON(na->name_len);
121 return 0;
124 /* It is a fake inode. */
125 NInoSetAttr(ni);
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
132 * absolutely tiny.
134 if (na->name_len && na->name != I30) {
135 unsigned int i;
137 BUG_ON(!na->name);
138 i = na->name_len * sizeof(ntfschar);
139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 if (!ni->name)
141 return -ENOMEM;
142 memcpy(ni->name, na->name, i);
143 ni->name[na->name_len] = 0;
145 return 0;
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 struct inode *vi);
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
172 struct inode *vi;
173 int err;
174 ntfs_attr na;
176 na.mft_no = mft_no;
177 na.type = AT_UNUSED;
178 na.name = NULL;
179 na.name_len = 0;
181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 (set_t)ntfs_init_locked_inode, &na);
183 if (unlikely(!vi))
184 return ERR_PTR(-ENOMEM);
186 err = 0;
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi->i_state & I_NEW) {
190 err = ntfs_read_locked_inode(vi);
191 unlock_new_inode(vi);
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
197 if (unlikely(err == -ENOMEM)) {
198 iput(vi);
199 vi = ERR_PTR(err);
201 return vi;
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 ntfschar *name, u32 name_len)
230 struct inode *vi;
231 int err;
232 ntfs_attr na;
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type == AT_INDEX_ALLOCATION);
237 na.mft_no = base_vi->i_ino;
238 na.type = type;
239 na.name = name;
240 na.name_len = name_len;
242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 (set_t)ntfs_init_locked_inode, &na);
244 if (unlikely(!vi))
245 return ERR_PTR(-ENOMEM);
247 err = 0;
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi->i_state & I_NEW) {
251 err = ntfs_read_locked_attr_inode(base_vi, vi);
252 unlock_new_inode(vi);
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
257 * inodes elsewhere.
259 if (unlikely(err)) {
260 iput(vi);
261 vi = ERR_PTR(err);
263 return vi;
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
274 * inode @base_vi.
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 u32 name_len)
288 struct inode *vi;
289 int err;
290 ntfs_attr na;
292 na.mft_no = base_vi->i_ino;
293 na.type = AT_INDEX_ALLOCATION;
294 na.name = name;
295 na.name_len = name_len;
297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 (set_t)ntfs_init_locked_inode, &na);
299 if (unlikely(!vi))
300 return ERR_PTR(-ENOMEM);
302 err = 0;
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi->i_state & I_NEW) {
306 err = ntfs_read_locked_index_inode(base_vi, vi);
307 unlock_new_inode(vi);
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
312 * inodes elsewhere.
314 if (unlikely(err)) {
315 iput(vi);
316 vi = ERR_PTR(err);
318 return vi;
321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
323 ntfs_inode *ni;
325 ntfs_debug("Entering.");
326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 if (likely(ni != NULL)) {
328 ni->state = 0;
329 return VFS_I(ni);
331 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 return NULL;
335 void ntfs_destroy_big_inode(struct inode *inode)
337 ntfs_inode *ni = NTFS_I(inode);
339 ntfs_debug("Entering.");
340 BUG_ON(ni->page);
341 if (!atomic_dec_and_test(&ni->count))
342 BUG();
343 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
346 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
348 ntfs_inode *ni;
350 ntfs_debug("Entering.");
351 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
352 if (likely(ni != NULL)) {
353 ni->state = 0;
354 return ni;
356 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
357 return NULL;
360 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
362 ntfs_debug("Entering.");
363 BUG_ON(ni->page);
364 if (!atomic_dec_and_test(&ni->count))
365 BUG();
366 kmem_cache_free(ntfs_inode_cache, ni);
370 * The attribute runlist lock has separate locking rules from the
371 * normal runlist lock, so split the two lock-classes:
373 static struct lock_class_key attr_list_rl_lock_class;
376 * __ntfs_init_inode - initialize ntfs specific part of an inode
377 * @sb: super block of mounted volume
378 * @ni: freshly allocated ntfs inode which to initialize
380 * Initialize an ntfs inode to defaults.
382 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
383 * untouched. Make sure to initialize them elsewhere.
385 * Return zero on success and -ENOMEM on error.
387 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
389 ntfs_debug("Entering.");
390 rwlock_init(&ni->size_lock);
391 ni->initialized_size = ni->allocated_size = 0;
392 ni->seq_no = 0;
393 atomic_set(&ni->count, 1);
394 ni->vol = NTFS_SB(sb);
395 ntfs_init_runlist(&ni->runlist);
396 mutex_init(&ni->mrec_lock);
397 ni->page = NULL;
398 ni->page_ofs = 0;
399 ni->attr_list_size = 0;
400 ni->attr_list = NULL;
401 ntfs_init_runlist(&ni->attr_list_rl);
402 lockdep_set_class(&ni->attr_list_rl.lock,
403 &attr_list_rl_lock_class);
404 ni->itype.index.block_size = 0;
405 ni->itype.index.vcn_size = 0;
406 ni->itype.index.collation_rule = 0;
407 ni->itype.index.block_size_bits = 0;
408 ni->itype.index.vcn_size_bits = 0;
409 mutex_init(&ni->extent_lock);
410 ni->nr_extents = 0;
411 ni->ext.base_ntfs_ino = NULL;
415 * Extent inodes get MFT-mapped in a nested way, while the base inode
416 * is still mapped. Teach this nesting to the lock validator by creating
417 * a separate class for nested inode's mrec_lock's:
419 static struct lock_class_key extent_inode_mrec_lock_key;
421 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
422 unsigned long mft_no)
424 ntfs_inode *ni = ntfs_alloc_extent_inode();
426 ntfs_debug("Entering.");
427 if (likely(ni != NULL)) {
428 __ntfs_init_inode(sb, ni);
429 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
430 ni->mft_no = mft_no;
431 ni->type = AT_UNUSED;
432 ni->name = NULL;
433 ni->name_len = 0;
435 return ni;
439 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
440 * @ctx: initialized attribute search context
442 * Search all file name attributes in the inode described by the attribute
443 * search context @ctx and check if any of the names are in the $Extend system
444 * directory.
446 * Return values:
447 * 1: file is in $Extend directory
448 * 0: file is not in $Extend directory
449 * -errno: failed to determine if the file is in the $Extend directory
451 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
453 int nr_links, err;
455 /* Restart search. */
456 ntfs_attr_reinit_search_ctx(ctx);
458 /* Get number of hard links. */
459 nr_links = le16_to_cpu(ctx->mrec->link_count);
461 /* Loop through all hard links. */
462 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
463 ctx))) {
464 FILE_NAME_ATTR *file_name_attr;
465 ATTR_RECORD *attr = ctx->attr;
466 u8 *p, *p2;
468 nr_links--;
470 * Maximum sanity checking as we are called on an inode that
471 * we suspect might be corrupt.
473 p = (u8*)attr + le32_to_cpu(attr->length);
474 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
475 le32_to_cpu(ctx->mrec->bytes_in_use)) {
476 err_corrupt_attr:
477 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
478 "attribute. You should run chkdsk.");
479 return -EIO;
481 if (attr->non_resident) {
482 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
483 "name. You should run chkdsk.");
484 return -EIO;
486 if (attr->flags) {
487 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
488 "invalid flags. You should run "
489 "chkdsk.");
490 return -EIO;
492 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
493 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
494 "name. You should run chkdsk.");
495 return -EIO;
497 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
498 le16_to_cpu(attr->data.resident.value_offset));
499 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
500 if (p2 < (u8*)attr || p2 > p)
501 goto err_corrupt_attr;
502 /* This attribute is ok, but is it in the $Extend directory? */
503 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
504 return 1; /* YES, it's an extended system file. */
506 if (unlikely(err != -ENOENT))
507 return err;
508 if (unlikely(nr_links)) {
509 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
510 "doesn't match number of name attributes. You "
511 "should run chkdsk.");
512 return -EIO;
514 return 0; /* NO, it is not an extended system file. */
518 * ntfs_read_locked_inode - read an inode from its device
519 * @vi: inode to read
521 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
522 * described by @vi into memory from the device.
524 * The only fields in @vi that we need to/can look at when the function is
525 * called are i_sb, pointing to the mounted device's super block, and i_ino,
526 * the number of the inode to load.
528 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
529 * for reading and sets up the necessary @vi fields as well as initializing
530 * the ntfs inode.
532 * Q: What locks are held when the function is called?
533 * A: i_state has I_NEW set, hence the inode is locked, also
534 * i_count is set to 1, so it is not going to go away
535 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
536 * is allowed to write to them. We should of course be honouring them but
537 * we need to do that using the IS_* macros defined in include/linux/fs.h.
538 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
540 * Return 0 on success and -errno on error. In the error case, the inode will
541 * have had make_bad_inode() executed on it.
543 static int ntfs_read_locked_inode(struct inode *vi)
545 ntfs_volume *vol = NTFS_SB(vi->i_sb);
546 ntfs_inode *ni;
547 struct inode *bvi;
548 MFT_RECORD *m;
549 ATTR_RECORD *a;
550 STANDARD_INFORMATION *si;
551 ntfs_attr_search_ctx *ctx;
552 int err = 0;
554 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
556 /* Setup the generic vfs inode parts now. */
559 * This is for checking whether an inode has changed w.r.t. a file so
560 * that the file can be updated if necessary (compare with f_version).
562 vi->i_version = 1;
564 vi->i_uid = vol->uid;
565 vi->i_gid = vol->gid;
566 vi->i_mode = 0;
569 * Initialize the ntfs specific part of @vi special casing
570 * FILE_MFT which we need to do at mount time.
572 if (vi->i_ino != FILE_MFT)
573 ntfs_init_big_inode(vi);
574 ni = NTFS_I(vi);
576 m = map_mft_record(ni);
577 if (IS_ERR(m)) {
578 err = PTR_ERR(m);
579 goto err_out;
581 ctx = ntfs_attr_get_search_ctx(ni, m);
582 if (!ctx) {
583 err = -ENOMEM;
584 goto unm_err_out;
587 if (!(m->flags & MFT_RECORD_IN_USE)) {
588 ntfs_error(vi->i_sb, "Inode is not in use!");
589 goto unm_err_out;
591 if (m->base_mft_record) {
592 ntfs_error(vi->i_sb, "Inode is an extent inode!");
593 goto unm_err_out;
596 /* Transfer information from mft record into vfs and ntfs inodes. */
597 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
599 vi->i_nlink = le16_to_cpu(m->link_count);
600 /* Everyone gets all permissions. */
601 vi->i_mode |= S_IRWXUGO;
602 /* If read-only, noone gets write permissions. */
603 if (IS_RDONLY(vi))
604 vi->i_mode &= ~S_IWUGO;
605 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
606 vi->i_mode |= S_IFDIR;
608 * Apply the directory permissions mask set in the mount
609 * options.
611 vi->i_mode &= ~vol->dmask;
612 /* Things break without this kludge! */
613 if (vi->i_nlink > 1)
614 vi->i_nlink = 1;
615 } else {
616 vi->i_mode |= S_IFREG;
617 /* Apply the file permissions mask set in the mount options. */
618 vi->i_mode &= ~vol->fmask;
621 * Find the standard information attribute in the mft record. At this
622 * stage we haven't setup the attribute list stuff yet, so this could
623 * in fact fail if the standard information is in an extent record, but
624 * I don't think this actually ever happens.
626 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
627 ctx);
628 if (unlikely(err)) {
629 if (err == -ENOENT) {
631 * TODO: We should be performing a hot fix here (if the
632 * recover mount option is set) by creating a new
633 * attribute.
635 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
636 "is missing.");
638 goto unm_err_out;
640 a = ctx->attr;
641 /* Get the standard information attribute value. */
642 si = (STANDARD_INFORMATION*)((u8*)a +
643 le16_to_cpu(a->data.resident.value_offset));
645 /* Transfer information from the standard information into vi. */
647 * Note: The i_?times do not quite map perfectly onto the NTFS times,
648 * but they are close enough, and in the end it doesn't really matter
649 * that much...
652 * mtime is the last change of the data within the file. Not changed
653 * when only metadata is changed, e.g. a rename doesn't affect mtime.
655 vi->i_mtime = ntfs2utc(si->last_data_change_time);
657 * ctime is the last change of the metadata of the file. This obviously
658 * always changes, when mtime is changed. ctime can be changed on its
659 * own, mtime is then not changed, e.g. when a file is renamed.
661 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
663 * Last access to the data within the file. Not changed during a rename
664 * for example but changed whenever the file is written to.
666 vi->i_atime = ntfs2utc(si->last_access_time);
668 /* Find the attribute list attribute if present. */
669 ntfs_attr_reinit_search_ctx(ctx);
670 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
671 if (err) {
672 if (unlikely(err != -ENOENT)) {
673 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
674 "attribute.");
675 goto unm_err_out;
677 } else /* if (!err) */ {
678 if (vi->i_ino == FILE_MFT)
679 goto skip_attr_list_load;
680 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
681 NInoSetAttrList(ni);
682 a = ctx->attr;
683 if (a->flags & ATTR_COMPRESSION_MASK) {
684 ntfs_error(vi->i_sb, "Attribute list attribute is "
685 "compressed.");
686 goto unm_err_out;
688 if (a->flags & ATTR_IS_ENCRYPTED ||
689 a->flags & ATTR_IS_SPARSE) {
690 if (a->non_resident) {
691 ntfs_error(vi->i_sb, "Non-resident attribute "
692 "list attribute is encrypted/"
693 "sparse.");
694 goto unm_err_out;
696 ntfs_warning(vi->i_sb, "Resident attribute list "
697 "attribute in inode 0x%lx is marked "
698 "encrypted/sparse which is not true. "
699 "However, Windows allows this and "
700 "chkdsk does not detect or correct it "
701 "so we will just ignore the invalid "
702 "flags and pretend they are not set.",
703 vi->i_ino);
705 /* Now allocate memory for the attribute list. */
706 ni->attr_list_size = (u32)ntfs_attr_size(a);
707 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
708 if (!ni->attr_list) {
709 ntfs_error(vi->i_sb, "Not enough memory to allocate "
710 "buffer for attribute list.");
711 err = -ENOMEM;
712 goto unm_err_out;
714 if (a->non_resident) {
715 NInoSetAttrListNonResident(ni);
716 if (a->data.non_resident.lowest_vcn) {
717 ntfs_error(vi->i_sb, "Attribute list has non "
718 "zero lowest_vcn.");
719 goto unm_err_out;
722 * Setup the runlist. No need for locking as we have
723 * exclusive access to the inode at this time.
725 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
726 a, NULL);
727 if (IS_ERR(ni->attr_list_rl.rl)) {
728 err = PTR_ERR(ni->attr_list_rl.rl);
729 ni->attr_list_rl.rl = NULL;
730 ntfs_error(vi->i_sb, "Mapping pairs "
731 "decompression failed.");
732 goto unm_err_out;
734 /* Now load the attribute list. */
735 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
736 ni->attr_list, ni->attr_list_size,
737 sle64_to_cpu(a->data.non_resident.
738 initialized_size)))) {
739 ntfs_error(vi->i_sb, "Failed to load "
740 "attribute list attribute.");
741 goto unm_err_out;
743 } else /* if (!a->non_resident) */ {
744 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
745 + le32_to_cpu(
746 a->data.resident.value_length) >
747 (u8*)ctx->mrec + vol->mft_record_size) {
748 ntfs_error(vi->i_sb, "Corrupt attribute list "
749 "in inode.");
750 goto unm_err_out;
752 /* Now copy the attribute list. */
753 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
754 a->data.resident.value_offset),
755 le32_to_cpu(
756 a->data.resident.value_length));
759 skip_attr_list_load:
761 * If an attribute list is present we now have the attribute list value
762 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
764 if (S_ISDIR(vi->i_mode)) {
765 loff_t bvi_size;
766 ntfs_inode *bni;
767 INDEX_ROOT *ir;
768 u8 *ir_end, *index_end;
770 /* It is a directory, find index root attribute. */
771 ntfs_attr_reinit_search_ctx(ctx);
772 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
773 0, NULL, 0, ctx);
774 if (unlikely(err)) {
775 if (err == -ENOENT) {
776 // index root attribute if recovery option is
777 // set.
778 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
779 "is missing.");
781 goto unm_err_out;
783 a = ctx->attr;
784 /* Set up the state. */
785 if (unlikely(a->non_resident)) {
786 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
787 "resident.");
788 goto unm_err_out;
790 /* Ensure the attribute name is placed before the value. */
791 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
792 le16_to_cpu(a->data.resident.value_offset)))) {
793 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
794 "placed after the attribute value.");
795 goto unm_err_out;
798 * Compressed/encrypted index root just means that the newly
799 * created files in that directory should be created compressed/
800 * encrypted. However index root cannot be both compressed and
801 * encrypted.
803 if (a->flags & ATTR_COMPRESSION_MASK)
804 NInoSetCompressed(ni);
805 if (a->flags & ATTR_IS_ENCRYPTED) {
806 if (a->flags & ATTR_COMPRESSION_MASK) {
807 ntfs_error(vi->i_sb, "Found encrypted and "
808 "compressed attribute.");
809 goto unm_err_out;
811 NInoSetEncrypted(ni);
813 if (a->flags & ATTR_IS_SPARSE)
814 NInoSetSparse(ni);
815 ir = (INDEX_ROOT*)((u8*)a +
816 le16_to_cpu(a->data.resident.value_offset));
817 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
818 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
819 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
820 "corrupt.");
821 goto unm_err_out;
823 index_end = (u8*)&ir->index +
824 le32_to_cpu(ir->index.index_length);
825 if (index_end > ir_end) {
826 ntfs_error(vi->i_sb, "Directory index is corrupt.");
827 goto unm_err_out;
829 if (ir->type != AT_FILE_NAME) {
830 ntfs_error(vi->i_sb, "Indexed attribute is not "
831 "$FILE_NAME.");
832 goto unm_err_out;
834 if (ir->collation_rule != COLLATION_FILE_NAME) {
835 ntfs_error(vi->i_sb, "Index collation rule is not "
836 "COLLATION_FILE_NAME.");
837 goto unm_err_out;
839 ni->itype.index.collation_rule = ir->collation_rule;
840 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
841 if (ni->itype.index.block_size &
842 (ni->itype.index.block_size - 1)) {
843 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
844 "power of two.",
845 ni->itype.index.block_size);
846 goto unm_err_out;
848 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
849 ntfs_error(vi->i_sb, "Index block size (%u) > "
850 "PAGE_CACHE_SIZE (%ld) is not "
851 "supported. Sorry.",
852 ni->itype.index.block_size,
853 PAGE_CACHE_SIZE);
854 err = -EOPNOTSUPP;
855 goto unm_err_out;
857 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
858 ntfs_error(vi->i_sb, "Index block size (%u) < "
859 "NTFS_BLOCK_SIZE (%i) is not "
860 "supported. Sorry.",
861 ni->itype.index.block_size,
862 NTFS_BLOCK_SIZE);
863 err = -EOPNOTSUPP;
864 goto unm_err_out;
866 ni->itype.index.block_size_bits =
867 ffs(ni->itype.index.block_size) - 1;
868 /* Determine the size of a vcn in the directory index. */
869 if (vol->cluster_size <= ni->itype.index.block_size) {
870 ni->itype.index.vcn_size = vol->cluster_size;
871 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
872 } else {
873 ni->itype.index.vcn_size = vol->sector_size;
874 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
877 /* Setup the index allocation attribute, even if not present. */
878 NInoSetMstProtected(ni);
879 ni->type = AT_INDEX_ALLOCATION;
880 ni->name = I30;
881 ni->name_len = 4;
883 if (!(ir->index.flags & LARGE_INDEX)) {
884 /* No index allocation. */
885 vi->i_size = ni->initialized_size =
886 ni->allocated_size = 0;
887 /* We are done with the mft record, so we release it. */
888 ntfs_attr_put_search_ctx(ctx);
889 unmap_mft_record(ni);
890 m = NULL;
891 ctx = NULL;
892 goto skip_large_dir_stuff;
893 } /* LARGE_INDEX: Index allocation present. Setup state. */
894 NInoSetIndexAllocPresent(ni);
895 /* Find index allocation attribute. */
896 ntfs_attr_reinit_search_ctx(ctx);
897 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
898 CASE_SENSITIVE, 0, NULL, 0, ctx);
899 if (unlikely(err)) {
900 if (err == -ENOENT)
901 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
902 "attribute is not present but "
903 "$INDEX_ROOT indicated it is.");
904 else
905 ntfs_error(vi->i_sb, "Failed to lookup "
906 "$INDEX_ALLOCATION "
907 "attribute.");
908 goto unm_err_out;
910 a = ctx->attr;
911 if (!a->non_resident) {
912 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
913 "is resident.");
914 goto unm_err_out;
917 * Ensure the attribute name is placed before the mapping pairs
918 * array.
920 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
921 le16_to_cpu(
922 a->data.non_resident.mapping_pairs_offset)))) {
923 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
924 "is placed after the mapping pairs "
925 "array.");
926 goto unm_err_out;
928 if (a->flags & ATTR_IS_ENCRYPTED) {
929 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
930 "is encrypted.");
931 goto unm_err_out;
933 if (a->flags & ATTR_IS_SPARSE) {
934 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
935 "is sparse.");
936 goto unm_err_out;
938 if (a->flags & ATTR_COMPRESSION_MASK) {
939 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
940 "is compressed.");
941 goto unm_err_out;
943 if (a->data.non_resident.lowest_vcn) {
944 ntfs_error(vi->i_sb, "First extent of "
945 "$INDEX_ALLOCATION attribute has non "
946 "zero lowest_vcn.");
947 goto unm_err_out;
949 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
950 ni->initialized_size = sle64_to_cpu(
951 a->data.non_resident.initialized_size);
952 ni->allocated_size = sle64_to_cpu(
953 a->data.non_resident.allocated_size);
955 * We are done with the mft record, so we release it. Otherwise
956 * we would deadlock in ntfs_attr_iget().
958 ntfs_attr_put_search_ctx(ctx);
959 unmap_mft_record(ni);
960 m = NULL;
961 ctx = NULL;
962 /* Get the index bitmap attribute inode. */
963 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
964 if (IS_ERR(bvi)) {
965 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
966 err = PTR_ERR(bvi);
967 goto unm_err_out;
969 bni = NTFS_I(bvi);
970 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
971 NInoSparse(bni)) {
972 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
973 "and/or encrypted and/or sparse.");
974 goto iput_unm_err_out;
976 /* Consistency check bitmap size vs. index allocation size. */
977 bvi_size = i_size_read(bvi);
978 if ((bvi_size << 3) < (vi->i_size >>
979 ni->itype.index.block_size_bits)) {
980 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
981 "for index allocation (0x%llx).",
982 bvi_size << 3, vi->i_size);
983 goto iput_unm_err_out;
985 /* No longer need the bitmap attribute inode. */
986 iput(bvi);
987 skip_large_dir_stuff:
988 /* Setup the operations for this inode. */
989 vi->i_op = &ntfs_dir_inode_ops;
990 vi->i_fop = &ntfs_dir_ops;
991 } else {
992 /* It is a file. */
993 ntfs_attr_reinit_search_ctx(ctx);
995 /* Setup the data attribute, even if not present. */
996 ni->type = AT_DATA;
997 ni->name = NULL;
998 ni->name_len = 0;
1000 /* Find first extent of the unnamed data attribute. */
1001 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1002 if (unlikely(err)) {
1003 vi->i_size = ni->initialized_size =
1004 ni->allocated_size = 0;
1005 if (err != -ENOENT) {
1006 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1007 "attribute.");
1008 goto unm_err_out;
1011 * FILE_Secure does not have an unnamed $DATA
1012 * attribute, so we special case it here.
1014 if (vi->i_ino == FILE_Secure)
1015 goto no_data_attr_special_case;
1017 * Most if not all the system files in the $Extend
1018 * system directory do not have unnamed data
1019 * attributes so we need to check if the parent
1020 * directory of the file is FILE_Extend and if it is
1021 * ignore this error. To do this we need to get the
1022 * name of this inode from the mft record as the name
1023 * contains the back reference to the parent directory.
1025 if (ntfs_is_extended_system_file(ctx) > 0)
1026 goto no_data_attr_special_case;
1027 // attribute if recovery option is set.
1028 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1029 goto unm_err_out;
1031 a = ctx->attr;
1032 /* Setup the state. */
1033 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1034 if (a->flags & ATTR_COMPRESSION_MASK) {
1035 NInoSetCompressed(ni);
1036 if (vol->cluster_size > 4096) {
1037 ntfs_error(vi->i_sb, "Found "
1038 "compressed data but "
1039 "compression is "
1040 "disabled due to "
1041 "cluster size (%i) > "
1042 "4kiB.",
1043 vol->cluster_size);
1044 goto unm_err_out;
1046 if ((a->flags & ATTR_COMPRESSION_MASK)
1047 != ATTR_IS_COMPRESSED) {
1048 ntfs_error(vi->i_sb, "Found unknown "
1049 "compression method "
1050 "or corrupt file.");
1051 goto unm_err_out;
1054 if (a->flags & ATTR_IS_SPARSE)
1055 NInoSetSparse(ni);
1057 if (a->flags & ATTR_IS_ENCRYPTED) {
1058 if (NInoCompressed(ni)) {
1059 ntfs_error(vi->i_sb, "Found encrypted and "
1060 "compressed data.");
1061 goto unm_err_out;
1063 NInoSetEncrypted(ni);
1065 if (a->non_resident) {
1066 NInoSetNonResident(ni);
1067 if (NInoCompressed(ni) || NInoSparse(ni)) {
1068 if (NInoCompressed(ni) && a->data.non_resident.
1069 compression_unit != 4) {
1070 ntfs_error(vi->i_sb, "Found "
1071 "non-standard "
1072 "compression unit (%u "
1073 "instead of 4). "
1074 "Cannot handle this.",
1075 a->data.non_resident.
1076 compression_unit);
1077 err = -EOPNOTSUPP;
1078 goto unm_err_out;
1080 if (a->data.non_resident.compression_unit) {
1081 ni->itype.compressed.block_size = 1U <<
1082 (a->data.non_resident.
1083 compression_unit +
1084 vol->cluster_size_bits);
1085 ni->itype.compressed.block_size_bits =
1086 ffs(ni->itype.
1087 compressed.
1088 block_size) - 1;
1089 ni->itype.compressed.block_clusters =
1090 1U << a->data.
1091 non_resident.
1092 compression_unit;
1093 } else {
1094 ni->itype.compressed.block_size = 0;
1095 ni->itype.compressed.block_size_bits =
1097 ni->itype.compressed.block_clusters =
1100 ni->itype.compressed.size = sle64_to_cpu(
1101 a->data.non_resident.
1102 compressed_size);
1104 if (a->data.non_resident.lowest_vcn) {
1105 ntfs_error(vi->i_sb, "First extent of $DATA "
1106 "attribute has non zero "
1107 "lowest_vcn.");
1108 goto unm_err_out;
1110 vi->i_size = sle64_to_cpu(
1111 a->data.non_resident.data_size);
1112 ni->initialized_size = sle64_to_cpu(
1113 a->data.non_resident.initialized_size);
1114 ni->allocated_size = sle64_to_cpu(
1115 a->data.non_resident.allocated_size);
1116 } else { /* Resident attribute. */
1117 vi->i_size = ni->initialized_size = le32_to_cpu(
1118 a->data.resident.value_length);
1119 ni->allocated_size = le32_to_cpu(a->length) -
1120 le16_to_cpu(
1121 a->data.resident.value_offset);
1122 if (vi->i_size > ni->allocated_size) {
1123 ntfs_error(vi->i_sb, "Resident data attribute "
1124 "is corrupt (size exceeds "
1125 "allocation).");
1126 goto unm_err_out;
1129 no_data_attr_special_case:
1130 /* We are done with the mft record, so we release it. */
1131 ntfs_attr_put_search_ctx(ctx);
1132 unmap_mft_record(ni);
1133 m = NULL;
1134 ctx = NULL;
1135 /* Setup the operations for this inode. */
1136 vi->i_op = &ntfs_file_inode_ops;
1137 vi->i_fop = &ntfs_file_ops;
1139 if (NInoMstProtected(ni))
1140 vi->i_mapping->a_ops = &ntfs_mst_aops;
1141 else
1142 vi->i_mapping->a_ops = &ntfs_aops;
1144 * The number of 512-byte blocks used on disk (for stat). This is in so
1145 * far inaccurate as it doesn't account for any named streams or other
1146 * special non-resident attributes, but that is how Windows works, too,
1147 * so we are at least consistent with Windows, if not entirely
1148 * consistent with the Linux Way. Doing it the Linux Way would cause a
1149 * significant slowdown as it would involve iterating over all
1150 * attributes in the mft record and adding the allocated/compressed
1151 * sizes of all non-resident attributes present to give us the Linux
1152 * correct size that should go into i_blocks (after division by 512).
1154 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1155 vi->i_blocks = ni->itype.compressed.size >> 9;
1156 else
1157 vi->i_blocks = ni->allocated_size >> 9;
1158 ntfs_debug("Done.");
1159 return 0;
1160 iput_unm_err_out:
1161 iput(bvi);
1162 unm_err_out:
1163 if (!err)
1164 err = -EIO;
1165 if (ctx)
1166 ntfs_attr_put_search_ctx(ctx);
1167 if (m)
1168 unmap_mft_record(ni);
1169 err_out:
1170 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1171 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1172 make_bad_inode(vi);
1173 if (err != -EOPNOTSUPP && err != -ENOMEM)
1174 NVolSetErrors(vol);
1175 return err;
1179 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1180 * @base_vi: base inode
1181 * @vi: attribute inode to read
1183 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1184 * attribute inode described by @vi into memory from the base mft record
1185 * described by @base_ni.
1187 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1188 * reading and looks up the attribute described by @vi before setting up the
1189 * necessary fields in @vi as well as initializing the ntfs inode.
1191 * Q: What locks are held when the function is called?
1192 * A: i_state has I_NEW set, hence the inode is locked, also
1193 * i_count is set to 1, so it is not going to go away
1195 * Return 0 on success and -errno on error. In the error case, the inode will
1196 * have had make_bad_inode() executed on it.
1198 * Note this cannot be called for AT_INDEX_ALLOCATION.
1200 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1202 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1203 ntfs_inode *ni, *base_ni;
1204 MFT_RECORD *m;
1205 ATTR_RECORD *a;
1206 ntfs_attr_search_ctx *ctx;
1207 int err = 0;
1209 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1211 ntfs_init_big_inode(vi);
1213 ni = NTFS_I(vi);
1214 base_ni = NTFS_I(base_vi);
1216 /* Just mirror the values from the base inode. */
1217 vi->i_version = base_vi->i_version;
1218 vi->i_uid = base_vi->i_uid;
1219 vi->i_gid = base_vi->i_gid;
1220 vi->i_nlink = base_vi->i_nlink;
1221 vi->i_mtime = base_vi->i_mtime;
1222 vi->i_ctime = base_vi->i_ctime;
1223 vi->i_atime = base_vi->i_atime;
1224 vi->i_generation = ni->seq_no = base_ni->seq_no;
1226 /* Set inode type to zero but preserve permissions. */
1227 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1229 m = map_mft_record(base_ni);
1230 if (IS_ERR(m)) {
1231 err = PTR_ERR(m);
1232 goto err_out;
1234 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1235 if (!ctx) {
1236 err = -ENOMEM;
1237 goto unm_err_out;
1239 /* Find the attribute. */
1240 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1241 CASE_SENSITIVE, 0, NULL, 0, ctx);
1242 if (unlikely(err))
1243 goto unm_err_out;
1244 a = ctx->attr;
1245 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1246 if (a->flags & ATTR_COMPRESSION_MASK) {
1247 NInoSetCompressed(ni);
1248 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1249 ni->name_len)) {
1250 ntfs_error(vi->i_sb, "Found compressed "
1251 "non-data or named data "
1252 "attribute. Please report "
1253 "you saw this message to "
1254 "linux-ntfs-dev@lists."
1255 "sourceforge.net");
1256 goto unm_err_out;
1258 if (vol->cluster_size > 4096) {
1259 ntfs_error(vi->i_sb, "Found compressed "
1260 "attribute but compression is "
1261 "disabled due to cluster size "
1262 "(%i) > 4kiB.",
1263 vol->cluster_size);
1264 goto unm_err_out;
1266 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1267 ATTR_IS_COMPRESSED) {
1268 ntfs_error(vi->i_sb, "Found unknown "
1269 "compression method.");
1270 goto unm_err_out;
1274 * The compressed/sparse flag set in an index root just means
1275 * to compress all files.
1277 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1278 ntfs_error(vi->i_sb, "Found mst protected attribute "
1279 "but the attribute is %s. Please "
1280 "report you saw this message to "
1281 "linux-ntfs-dev@lists.sourceforge.net",
1282 NInoCompressed(ni) ? "compressed" :
1283 "sparse");
1284 goto unm_err_out;
1286 if (a->flags & ATTR_IS_SPARSE)
1287 NInoSetSparse(ni);
1289 if (a->flags & ATTR_IS_ENCRYPTED) {
1290 if (NInoCompressed(ni)) {
1291 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1292 "data.");
1293 goto unm_err_out;
1296 * The encryption flag set in an index root just means to
1297 * encrypt all files.
1299 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1300 ntfs_error(vi->i_sb, "Found mst protected attribute "
1301 "but the attribute is encrypted. "
1302 "Please report you saw this message "
1303 "to linux-ntfs-dev@lists.sourceforge."
1304 "net");
1305 goto unm_err_out;
1307 if (ni->type != AT_DATA) {
1308 ntfs_error(vi->i_sb, "Found encrypted non-data "
1309 "attribute.");
1310 goto unm_err_out;
1312 NInoSetEncrypted(ni);
1314 if (!a->non_resident) {
1315 /* Ensure the attribute name is placed before the value. */
1316 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1317 le16_to_cpu(a->data.resident.value_offset)))) {
1318 ntfs_error(vol->sb, "Attribute name is placed after "
1319 "the attribute value.");
1320 goto unm_err_out;
1322 if (NInoMstProtected(ni)) {
1323 ntfs_error(vi->i_sb, "Found mst protected attribute "
1324 "but the attribute is resident. "
1325 "Please report you saw this message to "
1326 "linux-ntfs-dev@lists.sourceforge.net");
1327 goto unm_err_out;
1329 vi->i_size = ni->initialized_size = le32_to_cpu(
1330 a->data.resident.value_length);
1331 ni->allocated_size = le32_to_cpu(a->length) -
1332 le16_to_cpu(a->data.resident.value_offset);
1333 if (vi->i_size > ni->allocated_size) {
1334 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1335 "(size exceeds allocation).");
1336 goto unm_err_out;
1338 } else {
1339 NInoSetNonResident(ni);
1341 * Ensure the attribute name is placed before the mapping pairs
1342 * array.
1344 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1345 le16_to_cpu(
1346 a->data.non_resident.mapping_pairs_offset)))) {
1347 ntfs_error(vol->sb, "Attribute name is placed after "
1348 "the mapping pairs array.");
1349 goto unm_err_out;
1351 if (NInoCompressed(ni) || NInoSparse(ni)) {
1352 if (NInoCompressed(ni) && a->data.non_resident.
1353 compression_unit != 4) {
1354 ntfs_error(vi->i_sb, "Found non-standard "
1355 "compression unit (%u instead "
1356 "of 4). Cannot handle this.",
1357 a->data.non_resident.
1358 compression_unit);
1359 err = -EOPNOTSUPP;
1360 goto unm_err_out;
1362 if (a->data.non_resident.compression_unit) {
1363 ni->itype.compressed.block_size = 1U <<
1364 (a->data.non_resident.
1365 compression_unit +
1366 vol->cluster_size_bits);
1367 ni->itype.compressed.block_size_bits =
1368 ffs(ni->itype.compressed.
1369 block_size) - 1;
1370 ni->itype.compressed.block_clusters = 1U <<
1371 a->data.non_resident.
1372 compression_unit;
1373 } else {
1374 ni->itype.compressed.block_size = 0;
1375 ni->itype.compressed.block_size_bits = 0;
1376 ni->itype.compressed.block_clusters = 0;
1378 ni->itype.compressed.size = sle64_to_cpu(
1379 a->data.non_resident.compressed_size);
1381 if (a->data.non_resident.lowest_vcn) {
1382 ntfs_error(vi->i_sb, "First extent of attribute has "
1383 "non-zero lowest_vcn.");
1384 goto unm_err_out;
1386 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1387 ni->initialized_size = sle64_to_cpu(
1388 a->data.non_resident.initialized_size);
1389 ni->allocated_size = sle64_to_cpu(
1390 a->data.non_resident.allocated_size);
1392 if (NInoMstProtected(ni))
1393 vi->i_mapping->a_ops = &ntfs_mst_aops;
1394 else
1395 vi->i_mapping->a_ops = &ntfs_aops;
1396 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1397 vi->i_blocks = ni->itype.compressed.size >> 9;
1398 else
1399 vi->i_blocks = ni->allocated_size >> 9;
1401 * Make sure the base inode does not go away and attach it to the
1402 * attribute inode.
1404 igrab(base_vi);
1405 ni->ext.base_ntfs_ino = base_ni;
1406 ni->nr_extents = -1;
1408 ntfs_attr_put_search_ctx(ctx);
1409 unmap_mft_record(base_ni);
1411 ntfs_debug("Done.");
1412 return 0;
1414 unm_err_out:
1415 if (!err)
1416 err = -EIO;
1417 if (ctx)
1418 ntfs_attr_put_search_ctx(ctx);
1419 unmap_mft_record(base_ni);
1420 err_out:
1421 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1422 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1423 "Marking corrupt inode and base inode 0x%lx as bad. "
1424 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1425 base_vi->i_ino);
1426 make_bad_inode(vi);
1427 if (err != -ENOMEM)
1428 NVolSetErrors(vol);
1429 return err;
1433 * ntfs_read_locked_index_inode - read an index inode from its base inode
1434 * @base_vi: base inode
1435 * @vi: index inode to read
1437 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1438 * index inode described by @vi into memory from the base mft record described
1439 * by @base_ni.
1441 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1442 * reading and looks up the attributes relating to the index described by @vi
1443 * before setting up the necessary fields in @vi as well as initializing the
1444 * ntfs inode.
1446 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1447 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1448 * are setup like directory inodes since directories are a special case of
1449 * indices ao they need to be treated in much the same way. Most importantly,
1450 * for small indices the index allocation attribute might not actually exist.
1451 * However, the index root attribute always exists but this does not need to
1452 * have an inode associated with it and this is why we define a new inode type
1453 * index. Also, like for directories, we need to have an attribute inode for
1454 * the bitmap attribute corresponding to the index allocation attribute and we
1455 * can store this in the appropriate field of the inode, just like we do for
1456 * normal directory inodes.
1458 * Q: What locks are held when the function is called?
1459 * A: i_state has I_NEW set, hence the inode is locked, also
1460 * i_count is set to 1, so it is not going to go away
1462 * Return 0 on success and -errno on error. In the error case, the inode will
1463 * have had make_bad_inode() executed on it.
1465 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1467 loff_t bvi_size;
1468 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1469 ntfs_inode *ni, *base_ni, *bni;
1470 struct inode *bvi;
1471 MFT_RECORD *m;
1472 ATTR_RECORD *a;
1473 ntfs_attr_search_ctx *ctx;
1474 INDEX_ROOT *ir;
1475 u8 *ir_end, *index_end;
1476 int err = 0;
1478 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1479 ntfs_init_big_inode(vi);
1480 ni = NTFS_I(vi);
1481 base_ni = NTFS_I(base_vi);
1482 /* Just mirror the values from the base inode. */
1483 vi->i_version = base_vi->i_version;
1484 vi->i_uid = base_vi->i_uid;
1485 vi->i_gid = base_vi->i_gid;
1486 vi->i_nlink = base_vi->i_nlink;
1487 vi->i_mtime = base_vi->i_mtime;
1488 vi->i_ctime = base_vi->i_ctime;
1489 vi->i_atime = base_vi->i_atime;
1490 vi->i_generation = ni->seq_no = base_ni->seq_no;
1491 /* Set inode type to zero but preserve permissions. */
1492 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1493 /* Map the mft record for the base inode. */
1494 m = map_mft_record(base_ni);
1495 if (IS_ERR(m)) {
1496 err = PTR_ERR(m);
1497 goto err_out;
1499 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1500 if (!ctx) {
1501 err = -ENOMEM;
1502 goto unm_err_out;
1504 /* Find the index root attribute. */
1505 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1506 CASE_SENSITIVE, 0, NULL, 0, ctx);
1507 if (unlikely(err)) {
1508 if (err == -ENOENT)
1509 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1510 "missing.");
1511 goto unm_err_out;
1513 a = ctx->attr;
1514 /* Set up the state. */
1515 if (unlikely(a->non_resident)) {
1516 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1517 goto unm_err_out;
1519 /* Ensure the attribute name is placed before the value. */
1520 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1521 le16_to_cpu(a->data.resident.value_offset)))) {
1522 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1523 "after the attribute value.");
1524 goto unm_err_out;
1527 * Compressed/encrypted/sparse index root is not allowed, except for
1528 * directories of course but those are not dealt with here.
1530 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1531 ATTR_IS_SPARSE)) {
1532 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1533 "root attribute.");
1534 goto unm_err_out;
1536 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1537 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1538 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1539 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1540 goto unm_err_out;
1542 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1543 if (index_end > ir_end) {
1544 ntfs_error(vi->i_sb, "Index is corrupt.");
1545 goto unm_err_out;
1547 if (ir->type) {
1548 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1549 le32_to_cpu(ir->type));
1550 goto unm_err_out;
1552 ni->itype.index.collation_rule = ir->collation_rule;
1553 ntfs_debug("Index collation rule is 0x%x.",
1554 le32_to_cpu(ir->collation_rule));
1555 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1556 if (!is_power_of_2(ni->itype.index.block_size)) {
1557 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1558 "two.", ni->itype.index.block_size);
1559 goto unm_err_out;
1561 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1562 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1563 "(%ld) is not supported. Sorry.",
1564 ni->itype.index.block_size, PAGE_CACHE_SIZE);
1565 err = -EOPNOTSUPP;
1566 goto unm_err_out;
1568 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1569 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1570 "(%i) is not supported. Sorry.",
1571 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1572 err = -EOPNOTSUPP;
1573 goto unm_err_out;
1575 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1576 /* Determine the size of a vcn in the index. */
1577 if (vol->cluster_size <= ni->itype.index.block_size) {
1578 ni->itype.index.vcn_size = vol->cluster_size;
1579 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1580 } else {
1581 ni->itype.index.vcn_size = vol->sector_size;
1582 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1584 /* Check for presence of index allocation attribute. */
1585 if (!(ir->index.flags & LARGE_INDEX)) {
1586 /* No index allocation. */
1587 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1588 /* We are done with the mft record, so we release it. */
1589 ntfs_attr_put_search_ctx(ctx);
1590 unmap_mft_record(base_ni);
1591 m = NULL;
1592 ctx = NULL;
1593 goto skip_large_index_stuff;
1594 } /* LARGE_INDEX: Index allocation present. Setup state. */
1595 NInoSetIndexAllocPresent(ni);
1596 /* Find index allocation attribute. */
1597 ntfs_attr_reinit_search_ctx(ctx);
1598 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1599 CASE_SENSITIVE, 0, NULL, 0, ctx);
1600 if (unlikely(err)) {
1601 if (err == -ENOENT)
1602 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1603 "not present but $INDEX_ROOT "
1604 "indicated it is.");
1605 else
1606 ntfs_error(vi->i_sb, "Failed to lookup "
1607 "$INDEX_ALLOCATION attribute.");
1608 goto unm_err_out;
1610 a = ctx->attr;
1611 if (!a->non_resident) {
1612 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1613 "resident.");
1614 goto unm_err_out;
1617 * Ensure the attribute name is placed before the mapping pairs array.
1619 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1620 le16_to_cpu(
1621 a->data.non_resident.mapping_pairs_offset)))) {
1622 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1623 "placed after the mapping pairs array.");
1624 goto unm_err_out;
1626 if (a->flags & ATTR_IS_ENCRYPTED) {
1627 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1628 "encrypted.");
1629 goto unm_err_out;
1631 if (a->flags & ATTR_IS_SPARSE) {
1632 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1633 goto unm_err_out;
1635 if (a->flags & ATTR_COMPRESSION_MASK) {
1636 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1637 "compressed.");
1638 goto unm_err_out;
1640 if (a->data.non_resident.lowest_vcn) {
1641 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1642 "attribute has non zero lowest_vcn.");
1643 goto unm_err_out;
1645 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1646 ni->initialized_size = sle64_to_cpu(
1647 a->data.non_resident.initialized_size);
1648 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1650 * We are done with the mft record, so we release it. Otherwise
1651 * we would deadlock in ntfs_attr_iget().
1653 ntfs_attr_put_search_ctx(ctx);
1654 unmap_mft_record(base_ni);
1655 m = NULL;
1656 ctx = NULL;
1657 /* Get the index bitmap attribute inode. */
1658 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1659 if (IS_ERR(bvi)) {
1660 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1661 err = PTR_ERR(bvi);
1662 goto unm_err_out;
1664 bni = NTFS_I(bvi);
1665 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1666 NInoSparse(bni)) {
1667 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1668 "encrypted and/or sparse.");
1669 goto iput_unm_err_out;
1671 /* Consistency check bitmap size vs. index allocation size. */
1672 bvi_size = i_size_read(bvi);
1673 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1674 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1675 "index allocation (0x%llx).", bvi_size << 3,
1676 vi->i_size);
1677 goto iput_unm_err_out;
1679 iput(bvi);
1680 skip_large_index_stuff:
1681 /* Setup the operations for this index inode. */
1682 vi->i_op = NULL;
1683 vi->i_fop = NULL;
1684 vi->i_mapping->a_ops = &ntfs_mst_aops;
1685 vi->i_blocks = ni->allocated_size >> 9;
1687 * Make sure the base inode doesn't go away and attach it to the
1688 * index inode.
1690 igrab(base_vi);
1691 ni->ext.base_ntfs_ino = base_ni;
1692 ni->nr_extents = -1;
1694 ntfs_debug("Done.");
1695 return 0;
1696 iput_unm_err_out:
1697 iput(bvi);
1698 unm_err_out:
1699 if (!err)
1700 err = -EIO;
1701 if (ctx)
1702 ntfs_attr_put_search_ctx(ctx);
1703 if (m)
1704 unmap_mft_record(base_ni);
1705 err_out:
1706 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1707 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1708 ni->name_len);
1709 make_bad_inode(vi);
1710 if (err != -EOPNOTSUPP && err != -ENOMEM)
1711 NVolSetErrors(vol);
1712 return err;
1716 * The MFT inode has special locking, so teach the lock validator
1717 * about this by splitting off the locking rules of the MFT from
1718 * the locking rules of other inodes. The MFT inode can never be
1719 * accessed from the VFS side (or even internally), only by the
1720 * map_mft functions.
1722 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1725 * ntfs_read_inode_mount - special read_inode for mount time use only
1726 * @vi: inode to read
1728 * Read inode FILE_MFT at mount time, only called with super_block lock
1729 * held from within the read_super() code path.
1731 * This function exists because when it is called the page cache for $MFT/$DATA
1732 * is not initialized and hence we cannot get at the contents of mft records
1733 * by calling map_mft_record*().
1735 * Further it needs to cope with the circular references problem, i.e. cannot
1736 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1737 * we do not know where the other extent mft records are yet and again, because
1738 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1739 * attribute list is actually present in $MFT inode.
1741 * We solve these problems by starting with the $DATA attribute before anything
1742 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1743 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1744 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1745 * sufficient information for the next step to complete.
1747 * This should work but there are two possible pit falls (see inline comments
1748 * below), but only time will tell if they are real pits or just smoke...
1750 int ntfs_read_inode_mount(struct inode *vi)
1752 VCN next_vcn, last_vcn, highest_vcn;
1753 s64 block;
1754 struct super_block *sb = vi->i_sb;
1755 ntfs_volume *vol = NTFS_SB(sb);
1756 struct buffer_head *bh;
1757 ntfs_inode *ni;
1758 MFT_RECORD *m = NULL;
1759 ATTR_RECORD *a;
1760 ntfs_attr_search_ctx *ctx;
1761 unsigned int i, nr_blocks;
1762 int err;
1764 ntfs_debug("Entering.");
1766 /* Initialize the ntfs specific part of @vi. */
1767 ntfs_init_big_inode(vi);
1769 ni = NTFS_I(vi);
1771 /* Setup the data attribute. It is special as it is mst protected. */
1772 NInoSetNonResident(ni);
1773 NInoSetMstProtected(ni);
1774 NInoSetSparseDisabled(ni);
1775 ni->type = AT_DATA;
1776 ni->name = NULL;
1777 ni->name_len = 0;
1779 * This sets up our little cheat allowing us to reuse the async read io
1780 * completion handler for directories.
1782 ni->itype.index.block_size = vol->mft_record_size;
1783 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1785 /* Very important! Needed to be able to call map_mft_record*(). */
1786 vol->mft_ino = vi;
1788 /* Allocate enough memory to read the first mft record. */
1789 if (vol->mft_record_size > 64 * 1024) {
1790 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1791 vol->mft_record_size);
1792 goto err_out;
1794 i = vol->mft_record_size;
1795 if (i < sb->s_blocksize)
1796 i = sb->s_blocksize;
1797 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1798 if (!m) {
1799 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1800 goto err_out;
1803 /* Determine the first block of the $MFT/$DATA attribute. */
1804 block = vol->mft_lcn << vol->cluster_size_bits >>
1805 sb->s_blocksize_bits;
1806 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1807 if (!nr_blocks)
1808 nr_blocks = 1;
1810 /* Load $MFT/$DATA's first mft record. */
1811 for (i = 0; i < nr_blocks; i++) {
1812 bh = sb_bread(sb, block++);
1813 if (!bh) {
1814 ntfs_error(sb, "Device read failed.");
1815 goto err_out;
1817 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1818 sb->s_blocksize);
1819 brelse(bh);
1822 /* Apply the mst fixups. */
1823 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1824 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1825 goto err_out;
1828 /* Need this to sanity check attribute list references to $MFT. */
1829 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1831 /* Provides readpage() and sync_page() for map_mft_record(). */
1832 vi->i_mapping->a_ops = &ntfs_mst_aops;
1834 ctx = ntfs_attr_get_search_ctx(ni, m);
1835 if (!ctx) {
1836 err = -ENOMEM;
1837 goto err_out;
1840 /* Find the attribute list attribute if present. */
1841 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1842 if (err) {
1843 if (unlikely(err != -ENOENT)) {
1844 ntfs_error(sb, "Failed to lookup attribute list "
1845 "attribute. You should run chkdsk.");
1846 goto put_err_out;
1848 } else /* if (!err) */ {
1849 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1850 u8 *al_end;
1851 static const char *es = " Not allowed. $MFT is corrupt. "
1852 "You should run chkdsk.";
1854 ntfs_debug("Attribute list attribute found in $MFT.");
1855 NInoSetAttrList(ni);
1856 a = ctx->attr;
1857 if (a->flags & ATTR_COMPRESSION_MASK) {
1858 ntfs_error(sb, "Attribute list attribute is "
1859 "compressed.%s", es);
1860 goto put_err_out;
1862 if (a->flags & ATTR_IS_ENCRYPTED ||
1863 a->flags & ATTR_IS_SPARSE) {
1864 if (a->non_resident) {
1865 ntfs_error(sb, "Non-resident attribute list "
1866 "attribute is encrypted/"
1867 "sparse.%s", es);
1868 goto put_err_out;
1870 ntfs_warning(sb, "Resident attribute list attribute "
1871 "in $MFT system file is marked "
1872 "encrypted/sparse which is not true. "
1873 "However, Windows allows this and "
1874 "chkdsk does not detect or correct it "
1875 "so we will just ignore the invalid "
1876 "flags and pretend they are not set.");
1878 /* Now allocate memory for the attribute list. */
1879 ni->attr_list_size = (u32)ntfs_attr_size(a);
1880 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1881 if (!ni->attr_list) {
1882 ntfs_error(sb, "Not enough memory to allocate buffer "
1883 "for attribute list.");
1884 goto put_err_out;
1886 if (a->non_resident) {
1887 NInoSetAttrListNonResident(ni);
1888 if (a->data.non_resident.lowest_vcn) {
1889 ntfs_error(sb, "Attribute list has non zero "
1890 "lowest_vcn. $MFT is corrupt. "
1891 "You should run chkdsk.");
1892 goto put_err_out;
1894 /* Setup the runlist. */
1895 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1896 a, NULL);
1897 if (IS_ERR(ni->attr_list_rl.rl)) {
1898 err = PTR_ERR(ni->attr_list_rl.rl);
1899 ni->attr_list_rl.rl = NULL;
1900 ntfs_error(sb, "Mapping pairs decompression "
1901 "failed with error code %i.",
1902 -err);
1903 goto put_err_out;
1905 /* Now load the attribute list. */
1906 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1907 ni->attr_list, ni->attr_list_size,
1908 sle64_to_cpu(a->data.
1909 non_resident.initialized_size)))) {
1910 ntfs_error(sb, "Failed to load attribute list "
1911 "attribute with error code %i.",
1912 -err);
1913 goto put_err_out;
1915 } else /* if (!ctx.attr->non_resident) */ {
1916 if ((u8*)a + le16_to_cpu(
1917 a->data.resident.value_offset) +
1918 le32_to_cpu(
1919 a->data.resident.value_length) >
1920 (u8*)ctx->mrec + vol->mft_record_size) {
1921 ntfs_error(sb, "Corrupt attribute list "
1922 "attribute.");
1923 goto put_err_out;
1925 /* Now copy the attribute list. */
1926 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1927 a->data.resident.value_offset),
1928 le32_to_cpu(
1929 a->data.resident.value_length));
1931 /* The attribute list is now setup in memory. */
1932 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1933 al_end = (u8*)al_entry + ni->attr_list_size;
1934 for (;; al_entry = next_al_entry) {
1935 /* Out of bounds check. */
1936 if ((u8*)al_entry < ni->attr_list ||
1937 (u8*)al_entry > al_end)
1938 goto em_put_err_out;
1939 /* Catch the end of the attribute list. */
1940 if ((u8*)al_entry == al_end)
1941 goto em_put_err_out;
1942 if (!al_entry->length)
1943 goto em_put_err_out;
1944 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1945 le16_to_cpu(al_entry->length) > al_end)
1946 goto em_put_err_out;
1947 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1948 le16_to_cpu(al_entry->length));
1949 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1950 goto em_put_err_out;
1951 if (AT_DATA != al_entry->type)
1952 continue;
1953 /* We want an unnamed attribute. */
1954 if (al_entry->name_length)
1955 goto em_put_err_out;
1956 /* Want the first entry, i.e. lowest_vcn == 0. */
1957 if (al_entry->lowest_vcn)
1958 goto em_put_err_out;
1959 /* First entry has to be in the base mft record. */
1960 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1961 /* MFT references do not match, logic fails. */
1962 ntfs_error(sb, "BUG: The first $DATA extent "
1963 "of $MFT is not in the base "
1964 "mft record. Please report "
1965 "you saw this message to "
1966 "linux-ntfs-dev@lists."
1967 "sourceforge.net");
1968 goto put_err_out;
1969 } else {
1970 /* Sequence numbers must match. */
1971 if (MSEQNO_LE(al_entry->mft_reference) !=
1972 ni->seq_no)
1973 goto em_put_err_out;
1974 /* Got it. All is ok. We can stop now. */
1975 break;
1980 ntfs_attr_reinit_search_ctx(ctx);
1982 /* Now load all attribute extents. */
1983 a = NULL;
1984 next_vcn = last_vcn = highest_vcn = 0;
1985 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
1986 ctx))) {
1987 runlist_element *nrl;
1989 /* Cache the current attribute. */
1990 a = ctx->attr;
1991 /* $MFT must be non-resident. */
1992 if (!a->non_resident) {
1993 ntfs_error(sb, "$MFT must be non-resident but a "
1994 "resident extent was found. $MFT is "
1995 "corrupt. Run chkdsk.");
1996 goto put_err_out;
1998 /* $MFT must be uncompressed and unencrypted. */
1999 if (a->flags & ATTR_COMPRESSION_MASK ||
2000 a->flags & ATTR_IS_ENCRYPTED ||
2001 a->flags & ATTR_IS_SPARSE) {
2002 ntfs_error(sb, "$MFT must be uncompressed, "
2003 "non-sparse, and unencrypted but a "
2004 "compressed/sparse/encrypted extent "
2005 "was found. $MFT is corrupt. Run "
2006 "chkdsk.");
2007 goto put_err_out;
2010 * Decompress the mapping pairs array of this extent and merge
2011 * the result into the existing runlist. No need for locking
2012 * as we have exclusive access to the inode at this time and we
2013 * are a mount in progress task, too.
2015 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2016 if (IS_ERR(nrl)) {
2017 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2018 "failed with error code %ld. $MFT is "
2019 "corrupt.", PTR_ERR(nrl));
2020 goto put_err_out;
2022 ni->runlist.rl = nrl;
2024 /* Are we in the first extent? */
2025 if (!next_vcn) {
2026 if (a->data.non_resident.lowest_vcn) {
2027 ntfs_error(sb, "First extent of $DATA "
2028 "attribute has non zero "
2029 "lowest_vcn. $MFT is corrupt. "
2030 "You should run chkdsk.");
2031 goto put_err_out;
2033 /* Get the last vcn in the $DATA attribute. */
2034 last_vcn = sle64_to_cpu(
2035 a->data.non_resident.allocated_size)
2036 >> vol->cluster_size_bits;
2037 /* Fill in the inode size. */
2038 vi->i_size = sle64_to_cpu(
2039 a->data.non_resident.data_size);
2040 ni->initialized_size = sle64_to_cpu(
2041 a->data.non_resident.initialized_size);
2042 ni->allocated_size = sle64_to_cpu(
2043 a->data.non_resident.allocated_size);
2045 * Verify the number of mft records does not exceed
2046 * 2^32 - 1.
2048 if ((vi->i_size >> vol->mft_record_size_bits) >=
2049 (1ULL << 32)) {
2050 ntfs_error(sb, "$MFT is too big! Aborting.");
2051 goto put_err_out;
2054 * We have got the first extent of the runlist for
2055 * $MFT which means it is now relatively safe to call
2056 * the normal ntfs_read_inode() function.
2057 * Complete reading the inode, this will actually
2058 * re-read the mft record for $MFT, this time entering
2059 * it into the page cache with which we complete the
2060 * kick start of the volume. It should be safe to do
2061 * this now as the first extent of $MFT/$DATA is
2062 * already known and we would hope that we don't need
2063 * further extents in order to find the other
2064 * attributes belonging to $MFT. Only time will tell if
2065 * this is really the case. If not we will have to play
2066 * magic at this point, possibly duplicating a lot of
2067 * ntfs_read_inode() at this point. We will need to
2068 * ensure we do enough of its work to be able to call
2069 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2070 * hope this never happens...
2072 ntfs_read_locked_inode(vi);
2073 if (is_bad_inode(vi)) {
2074 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2075 "failed. BUG or corrupt $MFT. "
2076 "Run chkdsk and if no errors "
2077 "are found, please report you "
2078 "saw this message to "
2079 "linux-ntfs-dev@lists."
2080 "sourceforge.net");
2081 ntfs_attr_put_search_ctx(ctx);
2082 /* Revert to the safe super operations. */
2083 ntfs_free(m);
2084 return -1;
2087 * Re-initialize some specifics about $MFT's inode as
2088 * ntfs_read_inode() will have set up the default ones.
2090 /* Set uid and gid to root. */
2091 vi->i_uid = vi->i_gid = 0;
2092 /* Regular file. No access for anyone. */
2093 vi->i_mode = S_IFREG;
2094 /* No VFS initiated operations allowed for $MFT. */
2095 vi->i_op = &ntfs_empty_inode_ops;
2096 vi->i_fop = &ntfs_empty_file_ops;
2099 /* Get the lowest vcn for the next extent. */
2100 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2101 next_vcn = highest_vcn + 1;
2103 /* Only one extent or error, which we catch below. */
2104 if (next_vcn <= 0)
2105 break;
2107 /* Avoid endless loops due to corruption. */
2108 if (next_vcn < sle64_to_cpu(
2109 a->data.non_resident.lowest_vcn)) {
2110 ntfs_error(sb, "$MFT has corrupt attribute list "
2111 "attribute. Run chkdsk.");
2112 goto put_err_out;
2115 if (err != -ENOENT) {
2116 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2117 "$MFT is corrupt. Run chkdsk.");
2118 goto put_err_out;
2120 if (!a) {
2121 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2122 "corrupt. Run chkdsk.");
2123 goto put_err_out;
2125 if (highest_vcn && highest_vcn != last_vcn - 1) {
2126 ntfs_error(sb, "Failed to load the complete runlist for "
2127 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2128 "Run chkdsk.");
2129 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2130 (unsigned long long)highest_vcn,
2131 (unsigned long long)last_vcn - 1);
2132 goto put_err_out;
2134 ntfs_attr_put_search_ctx(ctx);
2135 ntfs_debug("Done.");
2136 ntfs_free(m);
2139 * Split the locking rules of the MFT inode from the
2140 * locking rules of other inodes:
2142 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2143 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2145 return 0;
2147 em_put_err_out:
2148 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2149 "attribute list. $MFT is corrupt. Run chkdsk.");
2150 put_err_out:
2151 ntfs_attr_put_search_ctx(ctx);
2152 err_out:
2153 ntfs_error(sb, "Failed. Marking inode as bad.");
2154 make_bad_inode(vi);
2155 ntfs_free(m);
2156 return -1;
2159 static void __ntfs_clear_inode(ntfs_inode *ni)
2161 /* Free all alocated memory. */
2162 down_write(&ni->runlist.lock);
2163 if (ni->runlist.rl) {
2164 ntfs_free(ni->runlist.rl);
2165 ni->runlist.rl = NULL;
2167 up_write(&ni->runlist.lock);
2169 if (ni->attr_list) {
2170 ntfs_free(ni->attr_list);
2171 ni->attr_list = NULL;
2174 down_write(&ni->attr_list_rl.lock);
2175 if (ni->attr_list_rl.rl) {
2176 ntfs_free(ni->attr_list_rl.rl);
2177 ni->attr_list_rl.rl = NULL;
2179 up_write(&ni->attr_list_rl.lock);
2181 if (ni->name_len && ni->name != I30) {
2182 /* Catch bugs... */
2183 BUG_ON(!ni->name);
2184 kfree(ni->name);
2188 void ntfs_clear_extent_inode(ntfs_inode *ni)
2190 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2192 BUG_ON(NInoAttr(ni));
2193 BUG_ON(ni->nr_extents != -1);
2195 #ifdef NTFS_RW
2196 if (NInoDirty(ni)) {
2197 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2198 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2199 "Losing data! This is a BUG!!!");
2201 #endif /* NTFS_RW */
2203 __ntfs_clear_inode(ni);
2205 /* Bye, bye... */
2206 ntfs_destroy_extent_inode(ni);
2210 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2211 * @vi: vfs inode pending annihilation
2213 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2214 * is called, which deallocates all memory belonging to the NTFS specific part
2215 * of the inode and returns.
2217 * If the MFT record is dirty, we commit it before doing anything else.
2219 void ntfs_evict_big_inode(struct inode *vi)
2221 ntfs_inode *ni = NTFS_I(vi);
2223 truncate_inode_pages(&vi->i_data, 0);
2224 end_writeback(vi);
2226 #ifdef NTFS_RW
2227 if (NInoDirty(ni)) {
2228 bool was_bad = (is_bad_inode(vi));
2230 /* Committing the inode also commits all extent inodes. */
2231 ntfs_commit_inode(vi);
2233 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2234 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2235 "0x%lx. Losing data!", vi->i_ino);
2238 #endif /* NTFS_RW */
2240 /* No need to lock at this stage as no one else has a reference. */
2241 if (ni->nr_extents > 0) {
2242 int i;
2244 for (i = 0; i < ni->nr_extents; i++)
2245 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2246 kfree(ni->ext.extent_ntfs_inos);
2249 __ntfs_clear_inode(ni);
2251 if (NInoAttr(ni)) {
2252 /* Release the base inode if we are holding it. */
2253 if (ni->nr_extents == -1) {
2254 iput(VFS_I(ni->ext.base_ntfs_ino));
2255 ni->nr_extents = 0;
2256 ni->ext.base_ntfs_ino = NULL;
2259 return;
2263 * ntfs_show_options - show mount options in /proc/mounts
2264 * @sf: seq_file in which to write our mount options
2265 * @mnt: vfs mount whose mount options to display
2267 * Called by the VFS once for each mounted ntfs volume when someone reads
2268 * /proc/mounts in order to display the NTFS specific mount options of each
2269 * mount. The mount options of the vfs mount @mnt are written to the seq file
2270 * @sf and success is returned.
2272 int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt)
2274 ntfs_volume *vol = NTFS_SB(mnt->mnt_sb);
2275 int i;
2277 seq_printf(sf, ",uid=%i", vol->uid);
2278 seq_printf(sf, ",gid=%i", vol->gid);
2279 if (vol->fmask == vol->dmask)
2280 seq_printf(sf, ",umask=0%o", vol->fmask);
2281 else {
2282 seq_printf(sf, ",fmask=0%o", vol->fmask);
2283 seq_printf(sf, ",dmask=0%o", vol->dmask);
2285 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2286 if (NVolCaseSensitive(vol))
2287 seq_printf(sf, ",case_sensitive");
2288 if (NVolShowSystemFiles(vol))
2289 seq_printf(sf, ",show_sys_files");
2290 if (!NVolSparseEnabled(vol))
2291 seq_printf(sf, ",disable_sparse");
2292 for (i = 0; on_errors_arr[i].val; i++) {
2293 if (on_errors_arr[i].val & vol->on_errors)
2294 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2296 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2297 return 0;
2300 #ifdef NTFS_RW
2302 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2303 "chkdsk.";
2306 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2307 * @vi: inode for which the i_size was changed
2309 * We only support i_size changes for normal files at present, i.e. not
2310 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2311 * below.
2313 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2314 * that the change is allowed.
2316 * This implies for us that @vi is a file inode rather than a directory, index,
2317 * or attribute inode as well as that @vi is a base inode.
2319 * Returns 0 on success or -errno on error.
2321 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for
2322 * writing. The only case in the kernel where ->i_alloc_sem is not held is
2323 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2324 * with the current i_size as the offset. The analogous place in NTFS is in
2325 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2326 * without holding ->i_alloc_sem.
2328 int ntfs_truncate(struct inode *vi)
2330 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2331 VCN highest_vcn;
2332 unsigned long flags;
2333 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2334 ntfs_volume *vol = ni->vol;
2335 ntfs_attr_search_ctx *ctx;
2336 MFT_RECORD *m;
2337 ATTR_RECORD *a;
2338 const char *te = " Leaving file length out of sync with i_size.";
2339 int err, mp_size, size_change, alloc_change;
2340 u32 attr_len;
2342 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2343 BUG_ON(NInoAttr(ni));
2344 BUG_ON(S_ISDIR(vi->i_mode));
2345 BUG_ON(NInoMstProtected(ni));
2346 BUG_ON(ni->nr_extents < 0);
2347 retry_truncate:
2349 * Lock the runlist for writing and map the mft record to ensure it is
2350 * safe to mess with the attribute runlist and sizes.
2352 down_write(&ni->runlist.lock);
2353 if (!NInoAttr(ni))
2354 base_ni = ni;
2355 else
2356 base_ni = ni->ext.base_ntfs_ino;
2357 m = map_mft_record(base_ni);
2358 if (IS_ERR(m)) {
2359 err = PTR_ERR(m);
2360 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2361 "(error code %d).%s", vi->i_ino, err, te);
2362 ctx = NULL;
2363 m = NULL;
2364 goto old_bad_out;
2366 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2367 if (unlikely(!ctx)) {
2368 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2369 "inode 0x%lx (not enough memory).%s",
2370 vi->i_ino, te);
2371 err = -ENOMEM;
2372 goto old_bad_out;
2374 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2375 CASE_SENSITIVE, 0, NULL, 0, ctx);
2376 if (unlikely(err)) {
2377 if (err == -ENOENT) {
2378 ntfs_error(vi->i_sb, "Open attribute is missing from "
2379 "mft record. Inode 0x%lx is corrupt. "
2380 "Run chkdsk.%s", vi->i_ino, te);
2381 err = -EIO;
2382 } else
2383 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2384 "inode 0x%lx (error code %d).%s",
2385 vi->i_ino, err, te);
2386 goto old_bad_out;
2388 m = ctx->mrec;
2389 a = ctx->attr;
2391 * The i_size of the vfs inode is the new size for the attribute value.
2393 new_size = i_size_read(vi);
2394 /* The current size of the attribute value is the old size. */
2395 old_size = ntfs_attr_size(a);
2396 /* Calculate the new allocated size. */
2397 if (NInoNonResident(ni))
2398 new_alloc_size = (new_size + vol->cluster_size - 1) &
2399 ~(s64)vol->cluster_size_mask;
2400 else
2401 new_alloc_size = (new_size + 7) & ~7;
2402 /* The current allocated size is the old allocated size. */
2403 read_lock_irqsave(&ni->size_lock, flags);
2404 old_alloc_size = ni->allocated_size;
2405 read_unlock_irqrestore(&ni->size_lock, flags);
2407 * The change in the file size. This will be 0 if no change, >0 if the
2408 * size is growing, and <0 if the size is shrinking.
2410 size_change = -1;
2411 if (new_size - old_size >= 0) {
2412 size_change = 1;
2413 if (new_size == old_size)
2414 size_change = 0;
2416 /* As above for the allocated size. */
2417 alloc_change = -1;
2418 if (new_alloc_size - old_alloc_size >= 0) {
2419 alloc_change = 1;
2420 if (new_alloc_size == old_alloc_size)
2421 alloc_change = 0;
2424 * If neither the size nor the allocation are being changed there is
2425 * nothing to do.
2427 if (!size_change && !alloc_change)
2428 goto unm_done;
2429 /* If the size is changing, check if new size is allowed in $AttrDef. */
2430 if (size_change) {
2431 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2432 if (unlikely(err)) {
2433 if (err == -ERANGE) {
2434 ntfs_error(vol->sb, "Truncate would cause the "
2435 "inode 0x%lx to %simum size "
2436 "for its attribute type "
2437 "(0x%x). Aborting truncate.",
2438 vi->i_ino,
2439 new_size > old_size ? "exceed "
2440 "the max" : "go under the min",
2441 le32_to_cpu(ni->type));
2442 err = -EFBIG;
2443 } else {
2444 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2445 "attribute type 0x%x. "
2446 "Aborting truncate.",
2447 vi->i_ino,
2448 le32_to_cpu(ni->type));
2449 err = -EIO;
2451 /* Reset the vfs inode size to the old size. */
2452 i_size_write(vi, old_size);
2453 goto err_out;
2456 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2457 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2458 "supported yet for %s files, ignoring.",
2459 NInoCompressed(ni) ? "compressed" :
2460 "encrypted");
2461 err = -EOPNOTSUPP;
2462 goto bad_out;
2464 if (a->non_resident)
2465 goto do_non_resident_truncate;
2466 BUG_ON(NInoNonResident(ni));
2467 /* Resize the attribute record to best fit the new attribute size. */
2468 if (new_size < vol->mft_record_size &&
2469 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2470 /* The resize succeeded! */
2471 flush_dcache_mft_record_page(ctx->ntfs_ino);
2472 mark_mft_record_dirty(ctx->ntfs_ino);
2473 write_lock_irqsave(&ni->size_lock, flags);
2474 /* Update the sizes in the ntfs inode and all is done. */
2475 ni->allocated_size = le32_to_cpu(a->length) -
2476 le16_to_cpu(a->data.resident.value_offset);
2478 * Note ntfs_resident_attr_value_resize() has already done any
2479 * necessary data clearing in the attribute record. When the
2480 * file is being shrunk vmtruncate() will already have cleared
2481 * the top part of the last partial page, i.e. since this is
2482 * the resident case this is the page with index 0. However,
2483 * when the file is being expanded, the page cache page data
2484 * between the old data_size, i.e. old_size, and the new_size
2485 * has not been zeroed. Fortunately, we do not need to zero it
2486 * either since on one hand it will either already be zero due
2487 * to both readpage and writepage clearing partial page data
2488 * beyond i_size in which case there is nothing to do or in the
2489 * case of the file being mmap()ped at the same time, POSIX
2490 * specifies that the behaviour is unspecified thus we do not
2491 * have to do anything. This means that in our implementation
2492 * in the rare case that the file is mmap()ped and a write
2493 * occured into the mmap()ped region just beyond the file size
2494 * and writepage has not yet been called to write out the page
2495 * (which would clear the area beyond the file size) and we now
2496 * extend the file size to incorporate this dirty region
2497 * outside the file size, a write of the page would result in
2498 * this data being written to disk instead of being cleared.
2499 * Given both POSIX and the Linux mmap(2) man page specify that
2500 * this corner case is undefined, we choose to leave it like
2501 * that as this is much simpler for us as we cannot lock the
2502 * relevant page now since we are holding too many ntfs locks
2503 * which would result in a lock reversal deadlock.
2505 ni->initialized_size = new_size;
2506 write_unlock_irqrestore(&ni->size_lock, flags);
2507 goto unm_done;
2509 /* If the above resize failed, this must be an attribute extension. */
2510 BUG_ON(size_change < 0);
2512 * We have to drop all the locks so we can call
2513 * ntfs_attr_make_non_resident(). This could be optimised by try-
2514 * locking the first page cache page and only if that fails dropping
2515 * the locks, locking the page, and redoing all the locking and
2516 * lookups. While this would be a huge optimisation, it is not worth
2517 * it as this is definitely a slow code path as it only ever can happen
2518 * once for any given file.
2520 ntfs_attr_put_search_ctx(ctx);
2521 unmap_mft_record(base_ni);
2522 up_write(&ni->runlist.lock);
2524 * Not enough space in the mft record, try to make the attribute
2525 * non-resident and if successful restart the truncation process.
2527 err = ntfs_attr_make_non_resident(ni, old_size);
2528 if (likely(!err))
2529 goto retry_truncate;
2531 * Could not make non-resident. If this is due to this not being
2532 * permitted for this attribute type or there not being enough space,
2533 * try to make other attributes non-resident. Otherwise fail.
2535 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2536 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2537 "type 0x%x, because the conversion from "
2538 "resident to non-resident attribute failed "
2539 "with error code %i.", vi->i_ino,
2540 (unsigned)le32_to_cpu(ni->type), err);
2541 if (err != -ENOMEM)
2542 err = -EIO;
2543 goto conv_err_out;
2545 /* TODO: Not implemented from here, abort. */
2546 if (err == -ENOSPC)
2547 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2548 "disk for the non-resident attribute value. "
2549 "This case is not implemented yet.");
2550 else /* if (err == -EPERM) */
2551 ntfs_error(vol->sb, "This attribute type may not be "
2552 "non-resident. This case is not implemented "
2553 "yet.");
2554 err = -EOPNOTSUPP;
2555 goto conv_err_out;
2556 do_non_resident_truncate:
2557 BUG_ON(!NInoNonResident(ni));
2558 if (alloc_change < 0) {
2559 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2560 if (highest_vcn > 0 &&
2561 old_alloc_size >> vol->cluster_size_bits >
2562 highest_vcn + 1) {
2564 * This attribute has multiple extents. Not yet
2565 * supported.
2567 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2568 "attribute type 0x%x, because the "
2569 "attribute is highly fragmented (it "
2570 "consists of multiple extents) and "
2571 "this case is not implemented yet.",
2572 vi->i_ino,
2573 (unsigned)le32_to_cpu(ni->type));
2574 err = -EOPNOTSUPP;
2575 goto bad_out;
2579 * If the size is shrinking, need to reduce the initialized_size and
2580 * the data_size before reducing the allocation.
2582 if (size_change < 0) {
2584 * Make the valid size smaller (i_size is already up-to-date).
2586 write_lock_irqsave(&ni->size_lock, flags);
2587 if (new_size < ni->initialized_size) {
2588 ni->initialized_size = new_size;
2589 a->data.non_resident.initialized_size =
2590 cpu_to_sle64(new_size);
2592 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2593 write_unlock_irqrestore(&ni->size_lock, flags);
2594 flush_dcache_mft_record_page(ctx->ntfs_ino);
2595 mark_mft_record_dirty(ctx->ntfs_ino);
2596 /* If the allocated size is not changing, we are done. */
2597 if (!alloc_change)
2598 goto unm_done;
2600 * If the size is shrinking it makes no sense for the
2601 * allocation to be growing.
2603 BUG_ON(alloc_change > 0);
2604 } else /* if (size_change >= 0) */ {
2606 * The file size is growing or staying the same but the
2607 * allocation can be shrinking, growing or staying the same.
2609 if (alloc_change > 0) {
2611 * We need to extend the allocation and possibly update
2612 * the data size. If we are updating the data size,
2613 * since we are not touching the initialized_size we do
2614 * not need to worry about the actual data on disk.
2615 * And as far as the page cache is concerned, there
2616 * will be no pages beyond the old data size and any
2617 * partial region in the last page between the old and
2618 * new data size (or the end of the page if the new
2619 * data size is outside the page) does not need to be
2620 * modified as explained above for the resident
2621 * attribute truncate case. To do this, we simply drop
2622 * the locks we hold and leave all the work to our
2623 * friendly helper ntfs_attr_extend_allocation().
2625 ntfs_attr_put_search_ctx(ctx);
2626 unmap_mft_record(base_ni);
2627 up_write(&ni->runlist.lock);
2628 err = ntfs_attr_extend_allocation(ni, new_size,
2629 size_change > 0 ? new_size : -1, -1);
2631 * ntfs_attr_extend_allocation() will have done error
2632 * output already.
2634 goto done;
2636 if (!alloc_change)
2637 goto alloc_done;
2639 /* alloc_change < 0 */
2640 /* Free the clusters. */
2641 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2642 vol->cluster_size_bits, -1, ctx);
2643 m = ctx->mrec;
2644 a = ctx->attr;
2645 if (unlikely(nr_freed < 0)) {
2646 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2647 "%lli). Unmount and run chkdsk to recover "
2648 "the lost cluster(s).", (long long)nr_freed);
2649 NVolSetErrors(vol);
2650 nr_freed = 0;
2652 /* Truncate the runlist. */
2653 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2654 new_alloc_size >> vol->cluster_size_bits);
2656 * If the runlist truncation failed and/or the search context is no
2657 * longer valid, we cannot resize the attribute record or build the
2658 * mapping pairs array thus we mark the inode bad so that no access to
2659 * the freed clusters can happen.
2661 if (unlikely(err || IS_ERR(m))) {
2662 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2663 IS_ERR(m) ?
2664 "restore attribute search context" :
2665 "truncate attribute runlist",
2666 IS_ERR(m) ? PTR_ERR(m) : err, es);
2667 err = -EIO;
2668 goto bad_out;
2670 /* Get the size for the shrunk mapping pairs array for the runlist. */
2671 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2672 if (unlikely(mp_size <= 0)) {
2673 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2674 "attribute type 0x%x, because determining the "
2675 "size for the mapping pairs failed with error "
2676 "code %i.%s", vi->i_ino,
2677 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2678 err = -EIO;
2679 goto bad_out;
2682 * Shrink the attribute record for the new mapping pairs array. Note,
2683 * this cannot fail since we are making the attribute smaller thus by
2684 * definition there is enough space to do so.
2686 attr_len = le32_to_cpu(a->length);
2687 err = ntfs_attr_record_resize(m, a, mp_size +
2688 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2689 BUG_ON(err);
2691 * Generate the mapping pairs array directly into the attribute record.
2693 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2694 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2695 mp_size, ni->runlist.rl, 0, -1, NULL);
2696 if (unlikely(err)) {
2697 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2698 "attribute type 0x%x, because building the "
2699 "mapping pairs failed with error code %i.%s",
2700 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2701 err, es);
2702 err = -EIO;
2703 goto bad_out;
2705 /* Update the allocated/compressed size as well as the highest vcn. */
2706 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2707 vol->cluster_size_bits) - 1);
2708 write_lock_irqsave(&ni->size_lock, flags);
2709 ni->allocated_size = new_alloc_size;
2710 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2711 if (NInoSparse(ni) || NInoCompressed(ni)) {
2712 if (nr_freed) {
2713 ni->itype.compressed.size -= nr_freed <<
2714 vol->cluster_size_bits;
2715 BUG_ON(ni->itype.compressed.size < 0);
2716 a->data.non_resident.compressed_size = cpu_to_sle64(
2717 ni->itype.compressed.size);
2718 vi->i_blocks = ni->itype.compressed.size >> 9;
2720 } else
2721 vi->i_blocks = new_alloc_size >> 9;
2722 write_unlock_irqrestore(&ni->size_lock, flags);
2724 * We have shrunk the allocation. If this is a shrinking truncate we
2725 * have already dealt with the initialized_size and the data_size above
2726 * and we are done. If the truncate is only changing the allocation
2727 * and not the data_size, we are also done. If this is an extending
2728 * truncate, need to extend the data_size now which is ensured by the
2729 * fact that @size_change is positive.
2731 alloc_done:
2733 * If the size is growing, need to update it now. If it is shrinking,
2734 * we have already updated it above (before the allocation change).
2736 if (size_change > 0)
2737 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2738 /* Ensure the modified mft record is written out. */
2739 flush_dcache_mft_record_page(ctx->ntfs_ino);
2740 mark_mft_record_dirty(ctx->ntfs_ino);
2741 unm_done:
2742 ntfs_attr_put_search_ctx(ctx);
2743 unmap_mft_record(base_ni);
2744 up_write(&ni->runlist.lock);
2745 done:
2746 /* Update the mtime and ctime on the base inode. */
2747 /* normally ->truncate shouldn't update ctime or mtime,
2748 * but ntfs did before so it got a copy & paste version
2749 * of file_update_time. one day someone should fix this
2750 * for real.
2752 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2753 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2754 int sync_it = 0;
2756 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2757 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2758 sync_it = 1;
2759 VFS_I(base_ni)->i_mtime = now;
2760 VFS_I(base_ni)->i_ctime = now;
2762 if (sync_it)
2763 mark_inode_dirty_sync(VFS_I(base_ni));
2766 if (likely(!err)) {
2767 NInoClearTruncateFailed(ni);
2768 ntfs_debug("Done.");
2770 return err;
2771 old_bad_out:
2772 old_size = -1;
2773 bad_out:
2774 if (err != -ENOMEM && err != -EOPNOTSUPP)
2775 NVolSetErrors(vol);
2776 if (err != -EOPNOTSUPP)
2777 NInoSetTruncateFailed(ni);
2778 else if (old_size >= 0)
2779 i_size_write(vi, old_size);
2780 err_out:
2781 if (ctx)
2782 ntfs_attr_put_search_ctx(ctx);
2783 if (m)
2784 unmap_mft_record(base_ni);
2785 up_write(&ni->runlist.lock);
2786 out:
2787 ntfs_debug("Failed. Returning error code %i.", err);
2788 return err;
2789 conv_err_out:
2790 if (err != -ENOMEM && err != -EOPNOTSUPP)
2791 NVolSetErrors(vol);
2792 if (err != -EOPNOTSUPP)
2793 NInoSetTruncateFailed(ni);
2794 else
2795 i_size_write(vi, old_size);
2796 goto out;
2800 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2801 * @vi: inode for which the i_size was changed
2803 * Wrapper for ntfs_truncate() that has no return value.
2805 * See ntfs_truncate() description above for details.
2807 void ntfs_truncate_vfs(struct inode *vi) {
2808 ntfs_truncate(vi);
2812 * ntfs_setattr - called from notify_change() when an attribute is being changed
2813 * @dentry: dentry whose attributes to change
2814 * @attr: structure describing the attributes and the changes
2816 * We have to trap VFS attempts to truncate the file described by @dentry as
2817 * soon as possible, because we do not implement changes in i_size yet. So we
2818 * abort all i_size changes here.
2820 * We also abort all changes of user, group, and mode as we do not implement
2821 * the NTFS ACLs yet.
2823 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also
2824 * called with ->i_alloc_sem held for writing.
2826 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2828 struct inode *vi = dentry->d_inode;
2829 int err;
2830 unsigned int ia_valid = attr->ia_valid;
2832 err = inode_change_ok(vi, attr);
2833 if (err)
2834 goto out;
2835 /* We do not support NTFS ACLs yet. */
2836 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2837 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2838 "supported yet, ignoring.");
2839 err = -EOPNOTSUPP;
2840 goto out;
2842 if (ia_valid & ATTR_SIZE) {
2843 if (attr->ia_size != i_size_read(vi)) {
2844 ntfs_inode *ni = NTFS_I(vi);
2845 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2846 ntfs_warning(vi->i_sb, "Changes in inode size "
2847 "are not supported yet for "
2848 "%s files, ignoring.",
2849 NInoCompressed(ni) ?
2850 "compressed" : "encrypted");
2851 err = -EOPNOTSUPP;
2852 } else
2853 err = vmtruncate(vi, attr->ia_size);
2854 if (err || ia_valid == ATTR_SIZE)
2855 goto out;
2856 } else {
2858 * We skipped the truncate but must still update
2859 * timestamps.
2861 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2864 if (ia_valid & ATTR_ATIME)
2865 vi->i_atime = timespec_trunc(attr->ia_atime,
2866 vi->i_sb->s_time_gran);
2867 if (ia_valid & ATTR_MTIME)
2868 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2869 vi->i_sb->s_time_gran);
2870 if (ia_valid & ATTR_CTIME)
2871 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2872 vi->i_sb->s_time_gran);
2873 mark_inode_dirty(vi);
2874 out:
2875 return err;
2879 * ntfs_write_inode - write out a dirty inode
2880 * @vi: inode to write out
2881 * @sync: if true, write out synchronously
2883 * Write out a dirty inode to disk including any extent inodes if present.
2885 * If @sync is true, commit the inode to disk and wait for io completion. This
2886 * is done using write_mft_record().
2888 * If @sync is false, just schedule the write to happen but do not wait for i/o
2889 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2890 * marking the page (and in this case mft record) dirty but we do not implement
2891 * this yet as write_mft_record() largely ignores the @sync parameter and
2892 * always performs synchronous writes.
2894 * Return 0 on success and -errno on error.
2896 int __ntfs_write_inode(struct inode *vi, int sync)
2898 sle64 nt;
2899 ntfs_inode *ni = NTFS_I(vi);
2900 ntfs_attr_search_ctx *ctx;
2901 MFT_RECORD *m;
2902 STANDARD_INFORMATION *si;
2903 int err = 0;
2904 bool modified = false;
2906 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2907 vi->i_ino);
2909 * Dirty attribute inodes are written via their real inodes so just
2910 * clean them here. Access time updates are taken care off when the
2911 * real inode is written.
2913 if (NInoAttr(ni)) {
2914 NInoClearDirty(ni);
2915 ntfs_debug("Done.");
2916 return 0;
2918 /* Map, pin, and lock the mft record belonging to the inode. */
2919 m = map_mft_record(ni);
2920 if (IS_ERR(m)) {
2921 err = PTR_ERR(m);
2922 goto err_out;
2924 /* Update the access times in the standard information attribute. */
2925 ctx = ntfs_attr_get_search_ctx(ni, m);
2926 if (unlikely(!ctx)) {
2927 err = -ENOMEM;
2928 goto unm_err_out;
2930 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2931 CASE_SENSITIVE, 0, NULL, 0, ctx);
2932 if (unlikely(err)) {
2933 ntfs_attr_put_search_ctx(ctx);
2934 goto unm_err_out;
2936 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2937 le16_to_cpu(ctx->attr->data.resident.value_offset));
2938 /* Update the access times if they have changed. */
2939 nt = utc2ntfs(vi->i_mtime);
2940 if (si->last_data_change_time != nt) {
2941 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2942 "new = 0x%llx", vi->i_ino, (long long)
2943 sle64_to_cpu(si->last_data_change_time),
2944 (long long)sle64_to_cpu(nt));
2945 si->last_data_change_time = nt;
2946 modified = true;
2948 nt = utc2ntfs(vi->i_ctime);
2949 if (si->last_mft_change_time != nt) {
2950 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2951 "new = 0x%llx", vi->i_ino, (long long)
2952 sle64_to_cpu(si->last_mft_change_time),
2953 (long long)sle64_to_cpu(nt));
2954 si->last_mft_change_time = nt;
2955 modified = true;
2957 nt = utc2ntfs(vi->i_atime);
2958 if (si->last_access_time != nt) {
2959 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
2960 "new = 0x%llx", vi->i_ino,
2961 (long long)sle64_to_cpu(si->last_access_time),
2962 (long long)sle64_to_cpu(nt));
2963 si->last_access_time = nt;
2964 modified = true;
2967 * If we just modified the standard information attribute we need to
2968 * mark the mft record it is in dirty. We do this manually so that
2969 * mark_inode_dirty() is not called which would redirty the inode and
2970 * hence result in an infinite loop of trying to write the inode.
2971 * There is no need to mark the base inode nor the base mft record
2972 * dirty, since we are going to write this mft record below in any case
2973 * and the base mft record may actually not have been modified so it
2974 * might not need to be written out.
2975 * NOTE: It is not a problem when the inode for $MFT itself is being
2976 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
2977 * on the $MFT inode and hence ntfs_write_inode() will not be
2978 * re-invoked because of it which in turn is ok since the dirtied mft
2979 * record will be cleaned and written out to disk below, i.e. before
2980 * this function returns.
2982 if (modified) {
2983 flush_dcache_mft_record_page(ctx->ntfs_ino);
2984 if (!NInoTestSetDirty(ctx->ntfs_ino))
2985 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
2986 ctx->ntfs_ino->page_ofs);
2988 ntfs_attr_put_search_ctx(ctx);
2989 /* Now the access times are updated, write the base mft record. */
2990 if (NInoDirty(ni))
2991 err = write_mft_record(ni, m, sync);
2992 /* Write all attached extent mft records. */
2993 mutex_lock(&ni->extent_lock);
2994 if (ni->nr_extents > 0) {
2995 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
2996 int i;
2998 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
2999 for (i = 0; i < ni->nr_extents; i++) {
3000 ntfs_inode *tni = extent_nis[i];
3002 if (NInoDirty(tni)) {
3003 MFT_RECORD *tm = map_mft_record(tni);
3004 int ret;
3006 if (IS_ERR(tm)) {
3007 if (!err || err == -ENOMEM)
3008 err = PTR_ERR(tm);
3009 continue;
3011 ret = write_mft_record(tni, tm, sync);
3012 unmap_mft_record(tni);
3013 if (unlikely(ret)) {
3014 if (!err || err == -ENOMEM)
3015 err = ret;
3020 mutex_unlock(&ni->extent_lock);
3021 unmap_mft_record(ni);
3022 if (unlikely(err))
3023 goto err_out;
3024 ntfs_debug("Done.");
3025 return 0;
3026 unm_err_out:
3027 unmap_mft_record(ni);
3028 err_out:
3029 if (err == -ENOMEM) {
3030 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3031 "Marking the inode dirty again, so the VFS "
3032 "retries later.");
3033 mark_inode_dirty(vi);
3034 } else {
3035 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3036 NVolSetErrors(ni->vol);
3038 return err;
3041 #endif /* NTFS_RW */