GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / ext3 / inode.c
bloba1cd90ba2793c1bad529db0cadc077e96e57a132
1 /*
2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
44 static int ext3_writepage_trans_blocks(struct inode *inode);
47 * Test whether an inode is a fast symlink.
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
51 int ea_blocks = EXT3_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
54 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
58 * The ext3 forget function must perform a revoke if we are freeing data
59 * which has been journaled. Metadata (eg. indirect blocks) must be
60 * revoked in all cases.
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67 struct buffer_head *bh, ext3_fsblk_t blocknr)
69 int err;
71 might_sleep();
73 BUFFER_TRACE(bh, "enter");
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
91 return 0;
95 * data!=journal && (is_metadata || should_journal_data(inode))
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
100 ext3_abort(inode->i_sb, __func__,
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
107 * Work out how many blocks we need to proceed with the next chunk of a
108 * truncate transaction.
110 static unsigned long blocks_for_truncate(struct inode *inode)
112 unsigned long needed;
114 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
122 if (needed < 2)
123 needed = 2;
125 /* But we need to bound the transaction so we don't overflow the
126 * journal. */
127 if (needed > EXT3_MAX_TRANS_DATA)
128 needed = EXT3_MAX_TRANS_DATA;
130 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
141 * transaction in the top-level truncate loop. --sct
143 static handle_t *start_transaction(struct inode *inode)
145 handle_t *result;
147 result = ext3_journal_start(inode, blocks_for_truncate(inode));
148 if (!IS_ERR(result))
149 return result;
151 ext3_std_error(inode->i_sb, PTR_ERR(result));
152 return result;
156 * Try to extend this transaction for the purposes of truncation.
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
163 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164 return 0;
165 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166 return 0;
167 return 1;
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
173 * this transaction.
175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
177 int ret;
179 jbd_debug(2, "restarting handle %p\n", handle);
181 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182 * At this moment, get_block can be called only for blocks inside
183 * i_size since page cache has been already dropped and writes are
184 * blocked by i_mutex. So we can safely drop the truncate_mutex.
186 mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187 ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188 mutex_lock(&EXT3_I(inode)->truncate_mutex);
189 return ret;
193 * Called at inode eviction from icache
195 void ext3_evict_inode (struct inode *inode)
197 struct ext3_block_alloc_info *rsv;
198 handle_t *handle;
199 int want_delete = 0;
201 if (!inode->i_nlink && !is_bad_inode(inode)) {
202 dquot_initialize(inode);
203 want_delete = 1;
206 truncate_inode_pages(&inode->i_data, 0);
208 ext3_discard_reservation(inode);
209 rsv = EXT3_I(inode)->i_block_alloc_info;
210 EXT3_I(inode)->i_block_alloc_info = NULL;
211 if (unlikely(rsv))
212 kfree(rsv);
214 if (!want_delete)
215 goto no_delete;
217 handle = start_transaction(inode);
218 if (IS_ERR(handle)) {
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
224 ext3_orphan_del(NULL, inode);
225 goto no_delete;
228 if (IS_SYNC(inode))
229 handle->h_sync = 1;
230 inode->i_size = 0;
231 if (inode->i_blocks)
232 ext3_truncate(inode);
234 * Kill off the orphan record which ext3_truncate created.
235 * AKPM: I think this can be inside the above `if'.
236 * Note that ext3_orphan_del() has to be able to cope with the
237 * deletion of a non-existent orphan - this is because we don't
238 * know if ext3_truncate() actually created an orphan record.
239 * (Well, we could do this if we need to, but heck - it works)
241 ext3_orphan_del(handle, inode);
242 EXT3_I(inode)->i_dtime = get_seconds();
245 * One subtle ordering requirement: if anything has gone wrong
246 * (transaction abort, IO errors, whatever), then we can still
247 * do these next steps (the fs will already have been marked as
248 * having errors), but we can't free the inode if the mark_dirty
249 * fails.
251 if (ext3_mark_inode_dirty(handle, inode)) {
252 /* If that failed, just dquot_drop() and be done with that */
253 dquot_drop(inode);
254 end_writeback(inode);
255 } else {
256 ext3_xattr_delete_inode(handle, inode);
257 dquot_free_inode(inode);
258 dquot_drop(inode);
259 end_writeback(inode);
260 ext3_free_inode(handle, inode);
262 ext3_journal_stop(handle);
263 return;
264 no_delete:
265 end_writeback(inode);
266 dquot_drop(inode);
269 typedef struct {
270 __le32 *p;
271 __le32 key;
272 struct buffer_head *bh;
273 } Indirect;
275 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
277 p->key = *(p->p = v);
278 p->bh = bh;
281 static int verify_chain(Indirect *from, Indirect *to)
283 while (from <= to && from->key == *from->p)
284 from++;
285 return (from > to);
289 * ext3_block_to_path - parse the block number into array of offsets
290 * @inode: inode in question (we are only interested in its superblock)
291 * @i_block: block number to be parsed
292 * @offsets: array to store the offsets in
293 * @boundary: set this non-zero if the referred-to block is likely to be
294 * followed (on disk) by an indirect block.
296 * To store the locations of file's data ext3 uses a data structure common
297 * for UNIX filesystems - tree of pointers anchored in the inode, with
298 * data blocks at leaves and indirect blocks in intermediate nodes.
299 * This function translates the block number into path in that tree -
300 * return value is the path length and @offsets[n] is the offset of
301 * pointer to (n+1)th node in the nth one. If @block is out of range
302 * (negative or too large) warning is printed and zero returned.
304 * Note: function doesn't find node addresses, so no IO is needed. All
305 * we need to know is the capacity of indirect blocks (taken from the
306 * inode->i_sb).
310 * Portability note: the last comparison (check that we fit into triple
311 * indirect block) is spelled differently, because otherwise on an
312 * architecture with 32-bit longs and 8Kb pages we might get into trouble
313 * if our filesystem had 8Kb blocks. We might use long long, but that would
314 * kill us on x86. Oh, well, at least the sign propagation does not matter -
315 * i_block would have to be negative in the very beginning, so we would not
316 * get there at all.
319 static int ext3_block_to_path(struct inode *inode,
320 long i_block, int offsets[4], int *boundary)
322 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
323 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
324 const long direct_blocks = EXT3_NDIR_BLOCKS,
325 indirect_blocks = ptrs,
326 double_blocks = (1 << (ptrs_bits * 2));
327 int n = 0;
328 int final = 0;
330 if (i_block < 0) {
331 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
332 } else if (i_block < direct_blocks) {
333 offsets[n++] = i_block;
334 final = direct_blocks;
335 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
336 offsets[n++] = EXT3_IND_BLOCK;
337 offsets[n++] = i_block;
338 final = ptrs;
339 } else if ((i_block -= indirect_blocks) < double_blocks) {
340 offsets[n++] = EXT3_DIND_BLOCK;
341 offsets[n++] = i_block >> ptrs_bits;
342 offsets[n++] = i_block & (ptrs - 1);
343 final = ptrs;
344 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345 offsets[n++] = EXT3_TIND_BLOCK;
346 offsets[n++] = i_block >> (ptrs_bits * 2);
347 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348 offsets[n++] = i_block & (ptrs - 1);
349 final = ptrs;
350 } else {
351 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
353 if (boundary)
354 *boundary = final - 1 - (i_block & (ptrs - 1));
355 return n;
359 * ext3_get_branch - read the chain of indirect blocks leading to data
360 * @inode: inode in question
361 * @depth: depth of the chain (1 - direct pointer, etc.)
362 * @offsets: offsets of pointers in inode/indirect blocks
363 * @chain: place to store the result
364 * @err: here we store the error value
366 * Function fills the array of triples <key, p, bh> and returns %NULL
367 * if everything went OK or the pointer to the last filled triple
368 * (incomplete one) otherwise. Upon the return chain[i].key contains
369 * the number of (i+1)-th block in the chain (as it is stored in memory,
370 * i.e. little-endian 32-bit), chain[i].p contains the address of that
371 * number (it points into struct inode for i==0 and into the bh->b_data
372 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
373 * block for i>0 and NULL for i==0. In other words, it holds the block
374 * numbers of the chain, addresses they were taken from (and where we can
375 * verify that chain did not change) and buffer_heads hosting these
376 * numbers.
378 * Function stops when it stumbles upon zero pointer (absent block)
379 * (pointer to last triple returned, *@err == 0)
380 * or when it gets an IO error reading an indirect block
381 * (ditto, *@err == -EIO)
382 * or when it notices that chain had been changed while it was reading
383 * (ditto, *@err == -EAGAIN)
384 * or when it reads all @depth-1 indirect blocks successfully and finds
385 * the whole chain, all way to the data (returns %NULL, *err == 0).
387 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
388 Indirect chain[4], int *err)
390 struct super_block *sb = inode->i_sb;
391 Indirect *p = chain;
392 struct buffer_head *bh;
394 *err = 0;
395 /* i_data is not going away, no lock needed */
396 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
397 if (!p->key)
398 goto no_block;
399 while (--depth) {
400 bh = sb_bread(sb, le32_to_cpu(p->key));
401 if (!bh)
402 goto failure;
403 /* Reader: pointers */
404 if (!verify_chain(chain, p))
405 goto changed;
406 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
407 /* Reader: end */
408 if (!p->key)
409 goto no_block;
411 return NULL;
413 changed:
414 brelse(bh);
415 *err = -EAGAIN;
416 goto no_block;
417 failure:
418 *err = -EIO;
419 no_block:
420 return p;
424 * ext3_find_near - find a place for allocation with sufficient locality
425 * @inode: owner
426 * @ind: descriptor of indirect block.
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
441 * Caller must make sure that @ind is valid and will stay that way.
443 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
445 struct ext3_inode_info *ei = EXT3_I(inode);
446 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
447 __le32 *p;
448 ext3_fsblk_t bg_start;
449 ext3_grpblk_t colour;
451 /* Try to find previous block */
452 for (p = ind->p - 1; p >= start; p--) {
453 if (*p)
454 return le32_to_cpu(*p);
457 /* No such thing, so let's try location of indirect block */
458 if (ind->bh)
459 return ind->bh->b_blocknr;
462 * It is going to be referred to from the inode itself? OK, just put it
463 * into the same cylinder group then.
465 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
466 colour = (current->pid % 16) *
467 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
468 return bg_start + colour;
472 * ext3_find_goal - find a preferred place for allocation.
473 * @inode: owner
474 * @block: block we want
475 * @partial: pointer to the last triple within a chain
477 * Normally this function find the preferred place for block allocation,
478 * returns it.
481 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
482 Indirect *partial)
484 struct ext3_block_alloc_info *block_i;
486 block_i = EXT3_I(inode)->i_block_alloc_info;
489 * try the heuristic for sequential allocation,
490 * failing that at least try to get decent locality.
492 if (block_i && (block == block_i->last_alloc_logical_block + 1)
493 && (block_i->last_alloc_physical_block != 0)) {
494 return block_i->last_alloc_physical_block + 1;
497 return ext3_find_near(inode, partial);
501 * ext3_blks_to_allocate: Look up the block map and count the number
502 * of direct blocks need to be allocated for the given branch.
504 * @branch: chain of indirect blocks
505 * @k: number of blocks need for indirect blocks
506 * @blks: number of data blocks to be mapped.
507 * @blocks_to_boundary: the offset in the indirect block
509 * return the total number of blocks to be allocate, including the
510 * direct and indirect blocks.
512 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
513 int blocks_to_boundary)
515 unsigned long count = 0;
518 * Simple case, [t,d]Indirect block(s) has not allocated yet
519 * then it's clear blocks on that path have not allocated
521 if (k > 0) {
522 /* right now we don't handle cross boundary allocation */
523 if (blks < blocks_to_boundary + 1)
524 count += blks;
525 else
526 count += blocks_to_boundary + 1;
527 return count;
530 count++;
531 while (count < blks && count <= blocks_to_boundary &&
532 le32_to_cpu(*(branch[0].p + count)) == 0) {
533 count++;
535 return count;
539 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
540 * @indirect_blks: the number of blocks need to allocate for indirect
541 * blocks
543 * @new_blocks: on return it will store the new block numbers for
544 * the indirect blocks(if needed) and the first direct block,
545 * @blks: on return it will store the total number of allocated
546 * direct blocks
548 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
549 ext3_fsblk_t goal, int indirect_blks, int blks,
550 ext3_fsblk_t new_blocks[4], int *err)
552 int target, i;
553 unsigned long count = 0;
554 int index = 0;
555 ext3_fsblk_t current_block = 0;
556 int ret = 0;
559 * Here we try to allocate the requested multiple blocks at once,
560 * on a best-effort basis.
561 * To build a branch, we should allocate blocks for
562 * the indirect blocks(if not allocated yet), and at least
563 * the first direct block of this branch. That's the
564 * minimum number of blocks need to allocate(required)
566 target = blks + indirect_blks;
568 while (1) {
569 count = target;
570 /* allocating blocks for indirect blocks and direct blocks */
571 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
572 if (*err)
573 goto failed_out;
575 target -= count;
576 /* allocate blocks for indirect blocks */
577 while (index < indirect_blks && count) {
578 new_blocks[index++] = current_block++;
579 count--;
582 if (count > 0)
583 break;
586 /* save the new block number for the first direct block */
587 new_blocks[index] = current_block;
589 /* total number of blocks allocated for direct blocks */
590 ret = count;
591 *err = 0;
592 return ret;
593 failed_out:
594 for (i = 0; i <index; i++)
595 ext3_free_blocks(handle, inode, new_blocks[i], 1);
596 return ret;
600 * ext3_alloc_branch - allocate and set up a chain of blocks.
601 * @inode: owner
602 * @indirect_blks: number of allocated indirect blocks
603 * @blks: number of allocated direct blocks
604 * @offsets: offsets (in the blocks) to store the pointers to next.
605 * @branch: place to store the chain in.
607 * This function allocates blocks, zeroes out all but the last one,
608 * links them into chain and (if we are synchronous) writes them to disk.
609 * In other words, it prepares a branch that can be spliced onto the
610 * inode. It stores the information about that chain in the branch[], in
611 * the same format as ext3_get_branch() would do. We are calling it after
612 * we had read the existing part of chain and partial points to the last
613 * triple of that (one with zero ->key). Upon the exit we have the same
614 * picture as after the successful ext3_get_block(), except that in one
615 * place chain is disconnected - *branch->p is still zero (we did not
616 * set the last link), but branch->key contains the number that should
617 * be placed into *branch->p to fill that gap.
619 * If allocation fails we free all blocks we've allocated (and forget
620 * their buffer_heads) and return the error value the from failed
621 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
622 * as described above and return 0.
624 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
625 int indirect_blks, int *blks, ext3_fsblk_t goal,
626 int *offsets, Indirect *branch)
628 int blocksize = inode->i_sb->s_blocksize;
629 int i, n = 0;
630 int err = 0;
631 struct buffer_head *bh;
632 int num;
633 ext3_fsblk_t new_blocks[4];
634 ext3_fsblk_t current_block;
636 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
637 *blks, new_blocks, &err);
638 if (err)
639 return err;
641 branch[0].key = cpu_to_le32(new_blocks[0]);
643 * metadata blocks and data blocks are allocated.
645 for (n = 1; n <= indirect_blks; n++) {
647 * Get buffer_head for parent block, zero it out
648 * and set the pointer to new one, then send
649 * parent to disk.
651 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
652 branch[n].bh = bh;
653 lock_buffer(bh);
654 BUFFER_TRACE(bh, "call get_create_access");
655 err = ext3_journal_get_create_access(handle, bh);
656 if (err) {
657 unlock_buffer(bh);
658 brelse(bh);
659 goto failed;
662 memset(bh->b_data, 0, blocksize);
663 branch[n].p = (__le32 *) bh->b_data + offsets[n];
664 branch[n].key = cpu_to_le32(new_blocks[n]);
665 *branch[n].p = branch[n].key;
666 if ( n == indirect_blks) {
667 current_block = new_blocks[n];
669 * End of chain, update the last new metablock of
670 * the chain to point to the new allocated
671 * data blocks numbers
673 for (i=1; i < num; i++)
674 *(branch[n].p + i) = cpu_to_le32(++current_block);
676 BUFFER_TRACE(bh, "marking uptodate");
677 set_buffer_uptodate(bh);
678 unlock_buffer(bh);
680 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
681 err = ext3_journal_dirty_metadata(handle, bh);
682 if (err)
683 goto failed;
685 *blks = num;
686 return err;
687 failed:
688 /* Allocation failed, free what we already allocated */
689 for (i = 1; i <= n ; i++) {
690 BUFFER_TRACE(branch[i].bh, "call journal_forget");
691 ext3_journal_forget(handle, branch[i].bh);
693 for (i = 0; i <indirect_blks; i++)
694 ext3_free_blocks(handle, inode, new_blocks[i], 1);
696 ext3_free_blocks(handle, inode, new_blocks[i], num);
698 return err;
702 * ext3_splice_branch - splice the allocated branch onto inode.
703 * @inode: owner
704 * @block: (logical) number of block we are adding
705 * @chain: chain of indirect blocks (with a missing link - see
706 * ext3_alloc_branch)
707 * @where: location of missing link
708 * @num: number of indirect blocks we are adding
709 * @blks: number of direct blocks we are adding
711 * This function fills the missing link and does all housekeeping needed in
712 * inode (->i_blocks, etc.). In case of success we end up with the full
713 * chain to new block and return 0.
715 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
716 long block, Indirect *where, int num, int blks)
718 int i;
719 int err = 0;
720 struct ext3_block_alloc_info *block_i;
721 ext3_fsblk_t current_block;
722 struct ext3_inode_info *ei = EXT3_I(inode);
724 block_i = ei->i_block_alloc_info;
726 * If we're splicing into a [td]indirect block (as opposed to the
727 * inode) then we need to get write access to the [td]indirect block
728 * before the splice.
730 if (where->bh) {
731 BUFFER_TRACE(where->bh, "get_write_access");
732 err = ext3_journal_get_write_access(handle, where->bh);
733 if (err)
734 goto err_out;
736 /* That's it */
738 *where->p = where->key;
741 * Update the host buffer_head or inode to point to more just allocated
742 * direct blocks blocks
744 if (num == 0 && blks > 1) {
745 current_block = le32_to_cpu(where->key) + 1;
746 for (i = 1; i < blks; i++)
747 *(where->p + i ) = cpu_to_le32(current_block++);
751 * update the most recently allocated logical & physical block
752 * in i_block_alloc_info, to assist find the proper goal block for next
753 * allocation
755 if (block_i) {
756 block_i->last_alloc_logical_block = block + blks - 1;
757 block_i->last_alloc_physical_block =
758 le32_to_cpu(where[num].key) + blks - 1;
761 /* We are done with atomic stuff, now do the rest of housekeeping */
763 inode->i_ctime = CURRENT_TIME_SEC;
764 ext3_mark_inode_dirty(handle, inode);
765 /* ext3_mark_inode_dirty already updated i_sync_tid */
766 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
768 /* had we spliced it onto indirect block? */
769 if (where->bh) {
771 * If we spliced it onto an indirect block, we haven't
772 * altered the inode. Note however that if it is being spliced
773 * onto an indirect block at the very end of the file (the
774 * file is growing) then we *will* alter the inode to reflect
775 * the new i_size. But that is not done here - it is done in
776 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
778 jbd_debug(5, "splicing indirect only\n");
779 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
780 err = ext3_journal_dirty_metadata(handle, where->bh);
781 if (err)
782 goto err_out;
783 } else {
785 * OK, we spliced it into the inode itself on a direct block.
786 * Inode was dirtied above.
788 jbd_debug(5, "splicing direct\n");
790 return err;
792 err_out:
793 for (i = 1; i <= num; i++) {
794 BUFFER_TRACE(where[i].bh, "call journal_forget");
795 ext3_journal_forget(handle, where[i].bh);
796 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
798 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
800 return err;
804 * Allocation strategy is simple: if we have to allocate something, we will
805 * have to go the whole way to leaf. So let's do it before attaching anything
806 * to tree, set linkage between the newborn blocks, write them if sync is
807 * required, recheck the path, free and repeat if check fails, otherwise
808 * set the last missing link (that will protect us from any truncate-generated
809 * removals - all blocks on the path are immune now) and possibly force the
810 * write on the parent block.
811 * That has a nice additional property: no special recovery from the failed
812 * allocations is needed - we simply release blocks and do not touch anything
813 * reachable from inode.
815 * `handle' can be NULL if create == 0.
817 * The BKL may not be held on entry here. Be sure to take it early.
818 * return > 0, # of blocks mapped or allocated.
819 * return = 0, if plain lookup failed.
820 * return < 0, error case.
822 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
823 sector_t iblock, unsigned long maxblocks,
824 struct buffer_head *bh_result,
825 int create)
827 int err = -EIO;
828 int offsets[4];
829 Indirect chain[4];
830 Indirect *partial;
831 ext3_fsblk_t goal;
832 int indirect_blks;
833 int blocks_to_boundary = 0;
834 int depth;
835 struct ext3_inode_info *ei = EXT3_I(inode);
836 int count = 0;
837 ext3_fsblk_t first_block = 0;
840 J_ASSERT(handle != NULL || create == 0);
841 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
843 if (depth == 0)
844 goto out;
846 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
848 /* Simplest case - block found, no allocation needed */
849 if (!partial) {
850 first_block = le32_to_cpu(chain[depth - 1].key);
851 clear_buffer_new(bh_result);
852 count++;
853 /*map more blocks*/
854 while (count < maxblocks && count <= blocks_to_boundary) {
855 ext3_fsblk_t blk;
857 if (!verify_chain(chain, chain + depth - 1)) {
859 * Indirect block might be removed by
860 * truncate while we were reading it.
861 * Handling of that case: forget what we've
862 * got now. Flag the err as EAGAIN, so it
863 * will reread.
865 err = -EAGAIN;
866 count = 0;
867 break;
869 blk = le32_to_cpu(*(chain[depth-1].p + count));
871 if (blk == first_block + count)
872 count++;
873 else
874 break;
876 if (err != -EAGAIN)
877 goto got_it;
880 /* Next simple case - plain lookup or failed read of indirect block */
881 if (!create || err == -EIO)
882 goto cleanup;
884 mutex_lock(&ei->truncate_mutex);
887 * If the indirect block is missing while we are reading
888 * the chain(ext3_get_branch() returns -EAGAIN err), or
889 * if the chain has been changed after we grab the semaphore,
890 * (either because another process truncated this branch, or
891 * another get_block allocated this branch) re-grab the chain to see if
892 * the request block has been allocated or not.
894 * Since we already block the truncate/other get_block
895 * at this point, we will have the current copy of the chain when we
896 * splice the branch into the tree.
898 if (err == -EAGAIN || !verify_chain(chain, partial)) {
899 while (partial > chain) {
900 brelse(partial->bh);
901 partial--;
903 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
904 if (!partial) {
905 count++;
906 mutex_unlock(&ei->truncate_mutex);
907 if (err)
908 goto cleanup;
909 clear_buffer_new(bh_result);
910 goto got_it;
915 * Okay, we need to do block allocation. Lazily initialize the block
916 * allocation info here if necessary
918 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
919 ext3_init_block_alloc_info(inode);
921 goal = ext3_find_goal(inode, iblock, partial);
923 /* the number of blocks need to allocate for [d,t]indirect blocks */
924 indirect_blks = (chain + depth) - partial - 1;
927 * Next look up the indirect map to count the totoal number of
928 * direct blocks to allocate for this branch.
930 count = ext3_blks_to_allocate(partial, indirect_blks,
931 maxblocks, blocks_to_boundary);
933 * Block out ext3_truncate while we alter the tree
935 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
936 offsets + (partial - chain), partial);
939 * The ext3_splice_branch call will free and forget any buffers
940 * on the new chain if there is a failure, but that risks using
941 * up transaction credits, especially for bitmaps where the
942 * credits cannot be returned. Can we handle this somehow? We
943 * may need to return -EAGAIN upwards in the worst case. --sct
945 if (!err)
946 err = ext3_splice_branch(handle, inode, iblock,
947 partial, indirect_blks, count);
948 mutex_unlock(&ei->truncate_mutex);
949 if (err)
950 goto cleanup;
952 set_buffer_new(bh_result);
953 got_it:
954 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
955 if (count > blocks_to_boundary)
956 set_buffer_boundary(bh_result);
957 err = count;
958 /* Clean up and exit */
959 partial = chain + depth - 1; /* the whole chain */
960 cleanup:
961 while (partial > chain) {
962 BUFFER_TRACE(partial->bh, "call brelse");
963 brelse(partial->bh);
964 partial--;
966 BUFFER_TRACE(bh_result, "returned");
967 out:
968 return err;
971 /* Maximum number of blocks we map for direct IO at once. */
972 #define DIO_MAX_BLOCKS 4096
974 * Number of credits we need for writing DIO_MAX_BLOCKS:
975 * We need sb + group descriptor + bitmap + inode -> 4
976 * For B blocks with A block pointers per block we need:
977 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
978 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
980 #define DIO_CREDITS 25
982 static int ext3_get_block(struct inode *inode, sector_t iblock,
983 struct buffer_head *bh_result, int create)
985 handle_t *handle = ext3_journal_current_handle();
986 int ret = 0, started = 0;
987 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
989 if (create && !handle) { /* Direct IO write... */
990 if (max_blocks > DIO_MAX_BLOCKS)
991 max_blocks = DIO_MAX_BLOCKS;
992 handle = ext3_journal_start(inode, DIO_CREDITS +
993 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
994 if (IS_ERR(handle)) {
995 ret = PTR_ERR(handle);
996 goto out;
998 started = 1;
1001 ret = ext3_get_blocks_handle(handle, inode, iblock,
1002 max_blocks, bh_result, create);
1003 if (ret > 0) {
1004 bh_result->b_size = (ret << inode->i_blkbits);
1005 ret = 0;
1007 if (started)
1008 ext3_journal_stop(handle);
1009 out:
1010 return ret;
1013 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1014 u64 start, u64 len)
1016 return generic_block_fiemap(inode, fieinfo, start, len,
1017 ext3_get_block);
1021 * `handle' can be NULL if create is zero
1023 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1024 long block, int create, int *errp)
1026 struct buffer_head dummy;
1027 int fatal = 0, err;
1029 J_ASSERT(handle != NULL || create == 0);
1031 dummy.b_state = 0;
1032 dummy.b_blocknr = -1000;
1033 buffer_trace_init(&dummy.b_history);
1034 err = ext3_get_blocks_handle(handle, inode, block, 1,
1035 &dummy, create);
1037 * ext3_get_blocks_handle() returns number of blocks
1038 * mapped. 0 in case of a HOLE.
1040 if (err > 0) {
1041 if (err > 1)
1042 WARN_ON(1);
1043 err = 0;
1045 *errp = err;
1046 if (!err && buffer_mapped(&dummy)) {
1047 struct buffer_head *bh;
1048 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1049 if (!bh) {
1050 *errp = -EIO;
1051 goto err;
1053 if (buffer_new(&dummy)) {
1054 J_ASSERT(create != 0);
1055 J_ASSERT(handle != NULL);
1058 * Now that we do not always journal data, we should
1059 * keep in mind whether this should always journal the
1060 * new buffer as metadata. For now, regular file
1061 * writes use ext3_get_block instead, so it's not a
1062 * problem.
1064 lock_buffer(bh);
1065 BUFFER_TRACE(bh, "call get_create_access");
1066 fatal = ext3_journal_get_create_access(handle, bh);
1067 if (!fatal && !buffer_uptodate(bh)) {
1068 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1069 set_buffer_uptodate(bh);
1071 unlock_buffer(bh);
1072 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1073 err = ext3_journal_dirty_metadata(handle, bh);
1074 if (!fatal)
1075 fatal = err;
1076 } else {
1077 BUFFER_TRACE(bh, "not a new buffer");
1079 if (fatal) {
1080 *errp = fatal;
1081 brelse(bh);
1082 bh = NULL;
1084 return bh;
1086 err:
1087 return NULL;
1090 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1091 int block, int create, int *err)
1093 struct buffer_head * bh;
1095 bh = ext3_getblk(handle, inode, block, create, err);
1096 if (!bh)
1097 return bh;
1098 if (buffer_uptodate(bh))
1099 return bh;
1100 ll_rw_block(READ_META, 1, &bh);
1101 wait_on_buffer(bh);
1102 if (buffer_uptodate(bh))
1103 return bh;
1104 put_bh(bh);
1105 *err = -EIO;
1106 return NULL;
1109 static int walk_page_buffers( handle_t *handle,
1110 struct buffer_head *head,
1111 unsigned from,
1112 unsigned to,
1113 int *partial,
1114 int (*fn)( handle_t *handle,
1115 struct buffer_head *bh))
1117 struct buffer_head *bh;
1118 unsigned block_start, block_end;
1119 unsigned blocksize = head->b_size;
1120 int err, ret = 0;
1121 struct buffer_head *next;
1123 for ( bh = head, block_start = 0;
1124 ret == 0 && (bh != head || !block_start);
1125 block_start = block_end, bh = next)
1127 next = bh->b_this_page;
1128 block_end = block_start + blocksize;
1129 if (block_end <= from || block_start >= to) {
1130 if (partial && !buffer_uptodate(bh))
1131 *partial = 1;
1132 continue;
1134 err = (*fn)(handle, bh);
1135 if (!ret)
1136 ret = err;
1138 return ret;
1142 * To preserve ordering, it is essential that the hole instantiation and
1143 * the data write be encapsulated in a single transaction. We cannot
1144 * close off a transaction and start a new one between the ext3_get_block()
1145 * and the commit_write(). So doing the journal_start at the start of
1146 * prepare_write() is the right place.
1148 * Also, this function can nest inside ext3_writepage() ->
1149 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1150 * has generated enough buffer credits to do the whole page. So we won't
1151 * block on the journal in that case, which is good, because the caller may
1152 * be PF_MEMALLOC.
1154 * By accident, ext3 can be reentered when a transaction is open via
1155 * quota file writes. If we were to commit the transaction while thus
1156 * reentered, there can be a deadlock - we would be holding a quota
1157 * lock, and the commit would never complete if another thread had a
1158 * transaction open and was blocking on the quota lock - a ranking
1159 * violation.
1161 * So what we do is to rely on the fact that journal_stop/journal_start
1162 * will _not_ run commit under these circumstances because handle->h_ref
1163 * is elevated. We'll still have enough credits for the tiny quotafile
1164 * write.
1166 static int do_journal_get_write_access(handle_t *handle,
1167 struct buffer_head *bh)
1169 int dirty = buffer_dirty(bh);
1170 int ret;
1172 if (!buffer_mapped(bh) || buffer_freed(bh))
1173 return 0;
1175 * __block_prepare_write() could have dirtied some buffers. Clean
1176 * the dirty bit as jbd2_journal_get_write_access() could complain
1177 * otherwise about fs integrity issues. Setting of the dirty bit
1178 * by __block_prepare_write() isn't a real problem here as we clear
1179 * the bit before releasing a page lock and thus writeback cannot
1180 * ever write the buffer.
1182 if (dirty)
1183 clear_buffer_dirty(bh);
1184 ret = ext3_journal_get_write_access(handle, bh);
1185 if (!ret && dirty)
1186 ret = ext3_journal_dirty_metadata(handle, bh);
1187 return ret;
1191 * Truncate blocks that were not used by write. We have to truncate the
1192 * pagecache as well so that corresponding buffers get properly unmapped.
1194 static void ext3_truncate_failed_write(struct inode *inode)
1196 truncate_inode_pages(inode->i_mapping, inode->i_size);
1197 ext3_truncate(inode);
1200 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1201 loff_t pos, unsigned len, unsigned flags,
1202 struct page **pagep, void **fsdata)
1204 struct inode *inode = mapping->host;
1205 int ret;
1206 handle_t *handle;
1207 int retries = 0;
1208 struct page *page;
1209 pgoff_t index;
1210 unsigned from, to;
1211 /* Reserve one block more for addition to orphan list in case
1212 * we allocate blocks but write fails for some reason */
1213 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1215 index = pos >> PAGE_CACHE_SHIFT;
1216 from = pos & (PAGE_CACHE_SIZE - 1);
1217 to = from + len;
1219 retry:
1220 page = grab_cache_page_write_begin(mapping, index, flags);
1221 if (!page)
1222 return -ENOMEM;
1223 *pagep = page;
1225 handle = ext3_journal_start(inode, needed_blocks);
1226 if (IS_ERR(handle)) {
1227 unlock_page(page);
1228 page_cache_release(page);
1229 ret = PTR_ERR(handle);
1230 goto out;
1232 ret = __block_write_begin(page, pos, len, ext3_get_block);
1233 if (ret)
1234 goto write_begin_failed;
1236 if (ext3_should_journal_data(inode)) {
1237 ret = walk_page_buffers(handle, page_buffers(page),
1238 from, to, NULL, do_journal_get_write_access);
1240 write_begin_failed:
1241 if (ret) {
1243 * block_write_begin may have instantiated a few blocks
1244 * outside i_size. Trim these off again. Don't need
1245 * i_size_read because we hold i_mutex.
1247 * Add inode to orphan list in case we crash before truncate
1248 * finishes. Do this only if ext3_can_truncate() agrees so
1249 * that orphan processing code is happy.
1251 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1252 ext3_orphan_add(handle, inode);
1253 ext3_journal_stop(handle);
1254 unlock_page(page);
1255 page_cache_release(page);
1256 if (pos + len > inode->i_size)
1257 ext3_truncate_failed_write(inode);
1259 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1260 goto retry;
1261 out:
1262 return ret;
1266 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1268 int err = journal_dirty_data(handle, bh);
1269 if (err)
1270 ext3_journal_abort_handle(__func__, __func__,
1271 bh, handle, err);
1272 return err;
1275 /* For ordered writepage and write_end functions */
1276 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1279 * Write could have mapped the buffer but it didn't copy the data in
1280 * yet. So avoid filing such buffer into a transaction.
1282 if (buffer_mapped(bh) && buffer_uptodate(bh))
1283 return ext3_journal_dirty_data(handle, bh);
1284 return 0;
1287 /* For write_end() in data=journal mode */
1288 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1290 if (!buffer_mapped(bh) || buffer_freed(bh))
1291 return 0;
1292 set_buffer_uptodate(bh);
1293 return ext3_journal_dirty_metadata(handle, bh);
1297 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1298 * for the whole page but later we failed to copy the data in. Update inode
1299 * size according to what we managed to copy. The rest is going to be
1300 * truncated in write_end function.
1302 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1304 /* What matters to us is i_disksize. We don't write i_size anywhere */
1305 if (pos + copied > inode->i_size)
1306 i_size_write(inode, pos + copied);
1307 if (pos + copied > EXT3_I(inode)->i_disksize) {
1308 EXT3_I(inode)->i_disksize = pos + copied;
1309 mark_inode_dirty(inode);
1314 * We need to pick up the new inode size which generic_commit_write gave us
1315 * `file' can be NULL - eg, when called from page_symlink().
1317 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1318 * buffers are managed internally.
1320 static int ext3_ordered_write_end(struct file *file,
1321 struct address_space *mapping,
1322 loff_t pos, unsigned len, unsigned copied,
1323 struct page *page, void *fsdata)
1325 handle_t *handle = ext3_journal_current_handle();
1326 struct inode *inode = file->f_mapping->host;
1327 unsigned from, to;
1328 int ret = 0, ret2;
1330 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1332 from = pos & (PAGE_CACHE_SIZE - 1);
1333 to = from + copied;
1334 ret = walk_page_buffers(handle, page_buffers(page),
1335 from, to, NULL, journal_dirty_data_fn);
1337 if (ret == 0)
1338 update_file_sizes(inode, pos, copied);
1340 * There may be allocated blocks outside of i_size because
1341 * we failed to copy some data. Prepare for truncate.
1343 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1344 ext3_orphan_add(handle, inode);
1345 ret2 = ext3_journal_stop(handle);
1346 if (!ret)
1347 ret = ret2;
1348 unlock_page(page);
1349 page_cache_release(page);
1351 if (pos + len > inode->i_size)
1352 ext3_truncate_failed_write(inode);
1353 return ret ? ret : copied;
1356 static int ext3_writeback_write_end(struct file *file,
1357 struct address_space *mapping,
1358 loff_t pos, unsigned len, unsigned copied,
1359 struct page *page, void *fsdata)
1361 handle_t *handle = ext3_journal_current_handle();
1362 struct inode *inode = file->f_mapping->host;
1363 int ret;
1365 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1366 update_file_sizes(inode, pos, copied);
1368 * There may be allocated blocks outside of i_size because
1369 * we failed to copy some data. Prepare for truncate.
1371 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1372 ext3_orphan_add(handle, inode);
1373 ret = ext3_journal_stop(handle);
1374 unlock_page(page);
1375 page_cache_release(page);
1377 if (pos + len > inode->i_size)
1378 ext3_truncate_failed_write(inode);
1379 return ret ? ret : copied;
1382 static int ext3_journalled_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
1387 handle_t *handle = ext3_journal_current_handle();
1388 struct inode *inode = mapping->host;
1389 int ret = 0, ret2;
1390 int partial = 0;
1391 unsigned from, to;
1393 from = pos & (PAGE_CACHE_SIZE - 1);
1394 to = from + len;
1396 if (copied < len) {
1397 if (!PageUptodate(page))
1398 copied = 0;
1399 page_zero_new_buffers(page, from + copied, to);
1400 to = from + copied;
1403 ret = walk_page_buffers(handle, page_buffers(page), from,
1404 to, &partial, write_end_fn);
1405 if (!partial)
1406 SetPageUptodate(page);
1408 if (pos + copied > inode->i_size)
1409 i_size_write(inode, pos + copied);
1411 * There may be allocated blocks outside of i_size because
1412 * we failed to copy some data. Prepare for truncate.
1414 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1415 ext3_orphan_add(handle, inode);
1416 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1417 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1418 EXT3_I(inode)->i_disksize = inode->i_size;
1419 ret2 = ext3_mark_inode_dirty(handle, inode);
1420 if (!ret)
1421 ret = ret2;
1424 ret2 = ext3_journal_stop(handle);
1425 if (!ret)
1426 ret = ret2;
1427 unlock_page(page);
1428 page_cache_release(page);
1430 if (pos + len > inode->i_size)
1431 ext3_truncate_failed_write(inode);
1432 return ret ? ret : copied;
1436 * bmap() is special. It gets used by applications such as lilo and by
1437 * the swapper to find the on-disk block of a specific piece of data.
1439 * Naturally, this is dangerous if the block concerned is still in the
1440 * journal. If somebody makes a swapfile on an ext3 data-journaling
1441 * filesystem and enables swap, then they may get a nasty shock when the
1442 * data getting swapped to that swapfile suddenly gets overwritten by
1443 * the original zero's written out previously to the journal and
1444 * awaiting writeback in the kernel's buffer cache.
1446 * So, if we see any bmap calls here on a modified, data-journaled file,
1447 * take extra steps to flush any blocks which might be in the cache.
1449 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1451 struct inode *inode = mapping->host;
1452 journal_t *journal;
1453 int err;
1455 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1457 * This is a REALLY heavyweight approach, but the use of
1458 * bmap on dirty files is expected to be extremely rare:
1459 * only if we run lilo or swapon on a freshly made file
1460 * do we expect this to happen.
1462 * (bmap requires CAP_SYS_RAWIO so this does not
1463 * represent an unprivileged user DOS attack --- we'd be
1464 * in trouble if mortal users could trigger this path at
1465 * will.)
1467 * NB. EXT3_STATE_JDATA is not set on files other than
1468 * regular files. If somebody wants to bmap a directory
1469 * or symlink and gets confused because the buffer
1470 * hasn't yet been flushed to disk, they deserve
1471 * everything they get.
1474 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1475 journal = EXT3_JOURNAL(inode);
1476 journal_lock_updates(journal);
1477 err = journal_flush(journal);
1478 journal_unlock_updates(journal);
1480 if (err)
1481 return 0;
1484 return generic_block_bmap(mapping,block,ext3_get_block);
1487 static int bget_one(handle_t *handle, struct buffer_head *bh)
1489 get_bh(bh);
1490 return 0;
1493 static int bput_one(handle_t *handle, struct buffer_head *bh)
1495 put_bh(bh);
1496 return 0;
1499 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1501 return !buffer_mapped(bh);
1504 static int ext3_ordered_writepage(struct page *page,
1505 struct writeback_control *wbc)
1507 struct inode *inode = page->mapping->host;
1508 struct buffer_head *page_bufs;
1509 handle_t *handle = NULL;
1510 int ret = 0;
1511 int err;
1513 J_ASSERT(PageLocked(page));
1514 WARN_ON_ONCE(IS_RDONLY(inode));
1517 * We give up here if we're reentered, because it might be for a
1518 * different filesystem.
1520 if (ext3_journal_current_handle())
1521 goto out_fail;
1523 if (!page_has_buffers(page)) {
1524 create_empty_buffers(page, inode->i_sb->s_blocksize,
1525 (1 << BH_Dirty)|(1 << BH_Uptodate));
1526 page_bufs = page_buffers(page);
1527 } else {
1528 page_bufs = page_buffers(page);
1529 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1530 NULL, buffer_unmapped)) {
1531 /* Provide NULL get_block() to catch bugs if buffers
1532 * weren't really mapped */
1533 return block_write_full_page(page, NULL, wbc);
1536 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1538 if (IS_ERR(handle)) {
1539 ret = PTR_ERR(handle);
1540 goto out_fail;
1543 walk_page_buffers(handle, page_bufs, 0,
1544 PAGE_CACHE_SIZE, NULL, bget_one);
1546 ret = block_write_full_page(page, ext3_get_block, wbc);
1549 * The page can become unlocked at any point now, and
1550 * truncate can then come in and change things. So we
1551 * can't touch *page from now on. But *page_bufs is
1552 * safe due to elevated refcount.
1556 * And attach them to the current transaction. But only if
1557 * block_write_full_page() succeeded. Otherwise they are unmapped,
1558 * and generally junk.
1560 if (ret == 0) {
1561 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1562 NULL, journal_dirty_data_fn);
1563 if (!ret)
1564 ret = err;
1566 walk_page_buffers(handle, page_bufs, 0,
1567 PAGE_CACHE_SIZE, NULL, bput_one);
1568 err = ext3_journal_stop(handle);
1569 if (!ret)
1570 ret = err;
1571 return ret;
1573 out_fail:
1574 redirty_page_for_writepage(wbc, page);
1575 unlock_page(page);
1576 return ret;
1579 static int ext3_writeback_writepage(struct page *page,
1580 struct writeback_control *wbc)
1582 struct inode *inode = page->mapping->host;
1583 handle_t *handle = NULL;
1584 int ret = 0;
1585 int err;
1587 J_ASSERT(PageLocked(page));
1588 WARN_ON_ONCE(IS_RDONLY(inode));
1590 if (ext3_journal_current_handle())
1591 goto out_fail;
1593 if (page_has_buffers(page)) {
1594 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1595 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1596 /* Provide NULL get_block() to catch bugs if buffers
1597 * weren't really mapped */
1598 return block_write_full_page(page, NULL, wbc);
1602 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1603 if (IS_ERR(handle)) {
1604 ret = PTR_ERR(handle);
1605 goto out_fail;
1608 ret = block_write_full_page(page, ext3_get_block, wbc);
1610 err = ext3_journal_stop(handle);
1611 if (!ret)
1612 ret = err;
1613 return ret;
1615 out_fail:
1616 redirty_page_for_writepage(wbc, page);
1617 unlock_page(page);
1618 return ret;
1621 static int ext3_journalled_writepage(struct page *page,
1622 struct writeback_control *wbc)
1624 struct inode *inode = page->mapping->host;
1625 handle_t *handle = NULL;
1626 int ret = 0;
1627 int err;
1629 J_ASSERT(PageLocked(page));
1630 WARN_ON_ONCE(IS_RDONLY(inode));
1632 if (ext3_journal_current_handle())
1633 goto no_write;
1635 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1636 if (IS_ERR(handle)) {
1637 ret = PTR_ERR(handle);
1638 goto no_write;
1641 if (!page_has_buffers(page) || PageChecked(page)) {
1643 * It's mmapped pagecache. Add buffers and journal it. There
1644 * doesn't seem much point in redirtying the page here.
1646 ClearPageChecked(page);
1647 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1648 ext3_get_block);
1649 if (ret != 0) {
1650 ext3_journal_stop(handle);
1651 goto out_unlock;
1653 ret = walk_page_buffers(handle, page_buffers(page), 0,
1654 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1656 err = walk_page_buffers(handle, page_buffers(page), 0,
1657 PAGE_CACHE_SIZE, NULL, write_end_fn);
1658 if (ret == 0)
1659 ret = err;
1660 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1661 unlock_page(page);
1662 } else {
1664 * It may be a page full of checkpoint-mode buffers. We don't
1665 * really know unless we go poke around in the buffer_heads.
1666 * But block_write_full_page will do the right thing.
1668 ret = block_write_full_page(page, ext3_get_block, wbc);
1670 err = ext3_journal_stop(handle);
1671 if (!ret)
1672 ret = err;
1673 out:
1674 return ret;
1676 no_write:
1677 redirty_page_for_writepage(wbc, page);
1678 out_unlock:
1679 unlock_page(page);
1680 goto out;
1683 static int ext3_readpage(struct file *file, struct page *page)
1685 return mpage_readpage(page, ext3_get_block);
1688 static int
1689 ext3_readpages(struct file *file, struct address_space *mapping,
1690 struct list_head *pages, unsigned nr_pages)
1692 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1695 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1697 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1700 * If it's a full truncate we just forget about the pending dirtying
1702 if (offset == 0)
1703 ClearPageChecked(page);
1705 journal_invalidatepage(journal, page, offset);
1708 static int ext3_releasepage(struct page *page, gfp_t wait)
1710 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1712 WARN_ON(PageChecked(page));
1713 if (!page_has_buffers(page))
1714 return 0;
1715 return journal_try_to_free_buffers(journal, page, wait);
1719 * If the O_DIRECT write will extend the file then add this inode to the
1720 * orphan list. So recovery will truncate it back to the original size
1721 * if the machine crashes during the write.
1723 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1724 * crashes then stale disk data _may_ be exposed inside the file. But current
1725 * VFS code falls back into buffered path in that case so we are safe.
1727 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1728 const struct iovec *iov, loff_t offset,
1729 unsigned long nr_segs)
1731 struct file *file = iocb->ki_filp;
1732 struct inode *inode = file->f_mapping->host;
1733 struct ext3_inode_info *ei = EXT3_I(inode);
1734 handle_t *handle;
1735 ssize_t ret;
1736 int orphan = 0;
1737 size_t count = iov_length(iov, nr_segs);
1738 int retries = 0;
1740 if (rw == WRITE) {
1741 loff_t final_size = offset + count;
1743 if (final_size > inode->i_size) {
1744 /* Credits for sb + inode write */
1745 handle = ext3_journal_start(inode, 2);
1746 if (IS_ERR(handle)) {
1747 ret = PTR_ERR(handle);
1748 goto out;
1750 ret = ext3_orphan_add(handle, inode);
1751 if (ret) {
1752 ext3_journal_stop(handle);
1753 goto out;
1755 orphan = 1;
1756 ei->i_disksize = inode->i_size;
1757 ext3_journal_stop(handle);
1761 retry:
1762 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1763 offset, nr_segs,
1764 ext3_get_block, NULL);
1766 * In case of error extending write may have instantiated a few
1767 * blocks outside i_size. Trim these off again.
1769 if (unlikely((rw & WRITE) && ret < 0)) {
1770 loff_t isize = i_size_read(inode);
1771 loff_t end = offset + iov_length(iov, nr_segs);
1773 if (end > isize)
1774 vmtruncate(inode, isize);
1776 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1777 goto retry;
1779 if (orphan) {
1780 int err;
1782 /* Credits for sb + inode write */
1783 handle = ext3_journal_start(inode, 2);
1784 if (IS_ERR(handle)) {
1785 /* This is really bad luck. We've written the data
1786 * but cannot extend i_size. Truncate allocated blocks
1787 * and pretend the write failed... */
1788 ext3_truncate(inode);
1789 ret = PTR_ERR(handle);
1790 goto out;
1792 if (inode->i_nlink)
1793 ext3_orphan_del(handle, inode);
1794 if (ret > 0) {
1795 loff_t end = offset + ret;
1796 if (end > inode->i_size) {
1797 ei->i_disksize = end;
1798 i_size_write(inode, end);
1800 * We're going to return a positive `ret'
1801 * here due to non-zero-length I/O, so there's
1802 * no way of reporting error returns from
1803 * ext3_mark_inode_dirty() to userspace. So
1804 * ignore it.
1806 ext3_mark_inode_dirty(handle, inode);
1809 err = ext3_journal_stop(handle);
1810 if (ret == 0)
1811 ret = err;
1813 out:
1814 return ret;
1818 * Pages can be marked dirty completely asynchronously from ext3's journalling
1819 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1820 * much here because ->set_page_dirty is called under VFS locks. The page is
1821 * not necessarily locked.
1823 * We cannot just dirty the page and leave attached buffers clean, because the
1824 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1825 * or jbddirty because all the journalling code will explode.
1827 * So what we do is to mark the page "pending dirty" and next time writepage
1828 * is called, propagate that into the buffers appropriately.
1830 static int ext3_journalled_set_page_dirty(struct page *page)
1832 SetPageChecked(page);
1833 return __set_page_dirty_nobuffers(page);
1836 static const struct address_space_operations ext3_ordered_aops = {
1837 .readpage = ext3_readpage,
1838 .readpages = ext3_readpages,
1839 .writepage = ext3_ordered_writepage,
1840 .sync_page = block_sync_page,
1841 .write_begin = ext3_write_begin,
1842 .write_end = ext3_ordered_write_end,
1843 .bmap = ext3_bmap,
1844 .invalidatepage = ext3_invalidatepage,
1845 .releasepage = ext3_releasepage,
1846 .direct_IO = ext3_direct_IO,
1847 .migratepage = buffer_migrate_page,
1848 .is_partially_uptodate = block_is_partially_uptodate,
1849 .error_remove_page = generic_error_remove_page,
1852 static const struct address_space_operations ext3_writeback_aops = {
1853 .readpage = ext3_readpage,
1854 .readpages = ext3_readpages,
1855 .writepage = ext3_writeback_writepage,
1856 .sync_page = block_sync_page,
1857 .write_begin = ext3_write_begin,
1858 .write_end = ext3_writeback_write_end,
1859 .bmap = ext3_bmap,
1860 .invalidatepage = ext3_invalidatepage,
1861 .releasepage = ext3_releasepage,
1862 .direct_IO = ext3_direct_IO,
1863 .migratepage = buffer_migrate_page,
1864 .is_partially_uptodate = block_is_partially_uptodate,
1865 .error_remove_page = generic_error_remove_page,
1868 static const struct address_space_operations ext3_journalled_aops = {
1869 .readpage = ext3_readpage,
1870 .readpages = ext3_readpages,
1871 .writepage = ext3_journalled_writepage,
1872 .sync_page = block_sync_page,
1873 .write_begin = ext3_write_begin,
1874 .write_end = ext3_journalled_write_end,
1875 .set_page_dirty = ext3_journalled_set_page_dirty,
1876 .bmap = ext3_bmap,
1877 .invalidatepage = ext3_invalidatepage,
1878 .releasepage = ext3_releasepage,
1879 .is_partially_uptodate = block_is_partially_uptodate,
1880 .error_remove_page = generic_error_remove_page,
1883 void ext3_set_aops(struct inode *inode)
1885 if (ext3_should_order_data(inode))
1886 inode->i_mapping->a_ops = &ext3_ordered_aops;
1887 else if (ext3_should_writeback_data(inode))
1888 inode->i_mapping->a_ops = &ext3_writeback_aops;
1889 else
1890 inode->i_mapping->a_ops = &ext3_journalled_aops;
1894 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1895 * up to the end of the block which corresponds to `from'.
1896 * This required during truncate. We need to physically zero the tail end
1897 * of that block so it doesn't yield old data if the file is later grown.
1899 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1900 struct address_space *mapping, loff_t from)
1902 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1903 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1904 unsigned blocksize, iblock, length, pos;
1905 struct inode *inode = mapping->host;
1906 struct buffer_head *bh;
1907 int err = 0;
1909 blocksize = inode->i_sb->s_blocksize;
1910 length = blocksize - (offset & (blocksize - 1));
1911 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1913 if (!page_has_buffers(page))
1914 create_empty_buffers(page, blocksize, 0);
1916 /* Find the buffer that contains "offset" */
1917 bh = page_buffers(page);
1918 pos = blocksize;
1919 while (offset >= pos) {
1920 bh = bh->b_this_page;
1921 iblock++;
1922 pos += blocksize;
1925 err = 0;
1926 if (buffer_freed(bh)) {
1927 BUFFER_TRACE(bh, "freed: skip");
1928 goto unlock;
1931 if (!buffer_mapped(bh)) {
1932 BUFFER_TRACE(bh, "unmapped");
1933 ext3_get_block(inode, iblock, bh, 0);
1934 /* unmapped? It's a hole - nothing to do */
1935 if (!buffer_mapped(bh)) {
1936 BUFFER_TRACE(bh, "still unmapped");
1937 goto unlock;
1941 /* Ok, it's mapped. Make sure it's up-to-date */
1942 if (PageUptodate(page))
1943 set_buffer_uptodate(bh);
1945 if (!buffer_uptodate(bh)) {
1946 err = -EIO;
1947 ll_rw_block(READ, 1, &bh);
1948 wait_on_buffer(bh);
1949 /* Uhhuh. Read error. Complain and punt. */
1950 if (!buffer_uptodate(bh))
1951 goto unlock;
1954 if (ext3_should_journal_data(inode)) {
1955 BUFFER_TRACE(bh, "get write access");
1956 err = ext3_journal_get_write_access(handle, bh);
1957 if (err)
1958 goto unlock;
1961 zero_user(page, offset, length);
1962 BUFFER_TRACE(bh, "zeroed end of block");
1964 err = 0;
1965 if (ext3_should_journal_data(inode)) {
1966 err = ext3_journal_dirty_metadata(handle, bh);
1967 } else {
1968 if (ext3_should_order_data(inode))
1969 err = ext3_journal_dirty_data(handle, bh);
1970 mark_buffer_dirty(bh);
1973 unlock:
1974 unlock_page(page);
1975 page_cache_release(page);
1976 return err;
1980 * Probably it should be a library function... search for first non-zero word
1981 * or memcmp with zero_page, whatever is better for particular architecture.
1982 * Linus?
1984 static inline int all_zeroes(__le32 *p, __le32 *q)
1986 while (p < q)
1987 if (*p++)
1988 return 0;
1989 return 1;
1993 * ext3_find_shared - find the indirect blocks for partial truncation.
1994 * @inode: inode in question
1995 * @depth: depth of the affected branch
1996 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1997 * @chain: place to store the pointers to partial indirect blocks
1998 * @top: place to the (detached) top of branch
2000 * This is a helper function used by ext3_truncate().
2002 * When we do truncate() we may have to clean the ends of several
2003 * indirect blocks but leave the blocks themselves alive. Block is
2004 * partially truncated if some data below the new i_size is refered
2005 * from it (and it is on the path to the first completely truncated
2006 * data block, indeed). We have to free the top of that path along
2007 * with everything to the right of the path. Since no allocation
2008 * past the truncation point is possible until ext3_truncate()
2009 * finishes, we may safely do the latter, but top of branch may
2010 * require special attention - pageout below the truncation point
2011 * might try to populate it.
2013 * We atomically detach the top of branch from the tree, store the
2014 * block number of its root in *@top, pointers to buffer_heads of
2015 * partially truncated blocks - in @chain[].bh and pointers to
2016 * their last elements that should not be removed - in
2017 * @chain[].p. Return value is the pointer to last filled element
2018 * of @chain.
2020 * The work left to caller to do the actual freeing of subtrees:
2021 * a) free the subtree starting from *@top
2022 * b) free the subtrees whose roots are stored in
2023 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2024 * c) free the subtrees growing from the inode past the @chain[0].
2025 * (no partially truncated stuff there). */
2027 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2028 int offsets[4], Indirect chain[4], __le32 *top)
2030 Indirect *partial, *p;
2031 int k, err;
2033 *top = 0;
2034 /* Make k index the deepest non-null offset + 1 */
2035 for (k = depth; k > 1 && !offsets[k-1]; k--)
2037 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2038 /* Writer: pointers */
2039 if (!partial)
2040 partial = chain + k-1;
2042 * If the branch acquired continuation since we've looked at it -
2043 * fine, it should all survive and (new) top doesn't belong to us.
2045 if (!partial->key && *partial->p)
2046 /* Writer: end */
2047 goto no_top;
2048 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2051 * OK, we've found the last block that must survive. The rest of our
2052 * branch should be detached before unlocking. However, if that rest
2053 * of branch is all ours and does not grow immediately from the inode
2054 * it's easier to cheat and just decrement partial->p.
2056 if (p == chain + k - 1 && p > chain) {
2057 p->p--;
2058 } else {
2059 *top = *p->p;
2060 /* Nope, don't do this in ext3. Must leave the tree intact */
2062 /* Writer: end */
2064 while(partial > p) {
2065 brelse(partial->bh);
2066 partial--;
2068 no_top:
2069 return partial;
2073 * Zero a number of block pointers in either an inode or an indirect block.
2074 * If we restart the transaction we must again get write access to the
2075 * indirect block for further modification.
2077 * We release `count' blocks on disk, but (last - first) may be greater
2078 * than `count' because there can be holes in there.
2080 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2081 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2082 unsigned long count, __le32 *first, __le32 *last)
2084 __le32 *p;
2085 if (try_to_extend_transaction(handle, inode)) {
2086 if (bh) {
2087 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2088 ext3_journal_dirty_metadata(handle, bh);
2090 ext3_mark_inode_dirty(handle, inode);
2091 truncate_restart_transaction(handle, inode);
2092 if (bh) {
2093 BUFFER_TRACE(bh, "retaking write access");
2094 ext3_journal_get_write_access(handle, bh);
2099 * Any buffers which are on the journal will be in memory. We find
2100 * them on the hash table so journal_revoke() will run journal_forget()
2101 * on them. We've already detached each block from the file, so
2102 * bforget() in journal_forget() should be safe.
2104 * AKPM: turn on bforget in journal_forget()!!!
2106 for (p = first; p < last; p++) {
2107 u32 nr = le32_to_cpu(*p);
2108 if (nr) {
2109 struct buffer_head *bh;
2111 *p = 0;
2112 bh = sb_find_get_block(inode->i_sb, nr);
2113 ext3_forget(handle, 0, inode, bh, nr);
2117 ext3_free_blocks(handle, inode, block_to_free, count);
2121 * ext3_free_data - free a list of data blocks
2122 * @handle: handle for this transaction
2123 * @inode: inode we are dealing with
2124 * @this_bh: indirect buffer_head which contains *@first and *@last
2125 * @first: array of block numbers
2126 * @last: points immediately past the end of array
2128 * We are freeing all blocks refered from that array (numbers are stored as
2129 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2131 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2132 * blocks are contiguous then releasing them at one time will only affect one
2133 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2134 * actually use a lot of journal space.
2136 * @this_bh will be %NULL if @first and @last point into the inode's direct
2137 * block pointers.
2139 static void ext3_free_data(handle_t *handle, struct inode *inode,
2140 struct buffer_head *this_bh,
2141 __le32 *first, __le32 *last)
2143 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
2144 unsigned long count = 0; /* Number of blocks in the run */
2145 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2146 corresponding to
2147 block_to_free */
2148 ext3_fsblk_t nr; /* Current block # */
2149 __le32 *p; /* Pointer into inode/ind
2150 for current block */
2151 int err;
2153 if (this_bh) { /* For indirect block */
2154 BUFFER_TRACE(this_bh, "get_write_access");
2155 err = ext3_journal_get_write_access(handle, this_bh);
2156 /* Important: if we can't update the indirect pointers
2157 * to the blocks, we can't free them. */
2158 if (err)
2159 return;
2162 for (p = first; p < last; p++) {
2163 nr = le32_to_cpu(*p);
2164 if (nr) {
2165 /* accumulate blocks to free if they're contiguous */
2166 if (count == 0) {
2167 block_to_free = nr;
2168 block_to_free_p = p;
2169 count = 1;
2170 } else if (nr == block_to_free + count) {
2171 count++;
2172 } else {
2173 ext3_clear_blocks(handle, inode, this_bh,
2174 block_to_free,
2175 count, block_to_free_p, p);
2176 block_to_free = nr;
2177 block_to_free_p = p;
2178 count = 1;
2183 if (count > 0)
2184 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2185 count, block_to_free_p, p);
2187 if (this_bh) {
2188 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2191 * The buffer head should have an attached journal head at this
2192 * point. However, if the data is corrupted and an indirect
2193 * block pointed to itself, it would have been detached when
2194 * the block was cleared. Check for this instead of OOPSing.
2196 if (bh2jh(this_bh))
2197 ext3_journal_dirty_metadata(handle, this_bh);
2198 else
2199 ext3_error(inode->i_sb, "ext3_free_data",
2200 "circular indirect block detected, "
2201 "inode=%lu, block=%llu",
2202 inode->i_ino,
2203 (unsigned long long)this_bh->b_blocknr);
2208 * ext3_free_branches - free an array of branches
2209 * @handle: JBD handle for this transaction
2210 * @inode: inode we are dealing with
2211 * @parent_bh: the buffer_head which contains *@first and *@last
2212 * @first: array of block numbers
2213 * @last: pointer immediately past the end of array
2214 * @depth: depth of the branches to free
2216 * We are freeing all blocks refered from these branches (numbers are
2217 * stored as little-endian 32-bit) and updating @inode->i_blocks
2218 * appropriately.
2220 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2221 struct buffer_head *parent_bh,
2222 __le32 *first, __le32 *last, int depth)
2224 ext3_fsblk_t nr;
2225 __le32 *p;
2227 if (is_handle_aborted(handle))
2228 return;
2230 if (depth--) {
2231 struct buffer_head *bh;
2232 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2233 p = last;
2234 while (--p >= first) {
2235 nr = le32_to_cpu(*p);
2236 if (!nr)
2237 continue; /* A hole */
2239 /* Go read the buffer for the next level down */
2240 bh = sb_bread(inode->i_sb, nr);
2243 * A read failure? Report error and clear slot
2244 * (should be rare).
2246 if (!bh) {
2247 ext3_error(inode->i_sb, "ext3_free_branches",
2248 "Read failure, inode=%lu, block="E3FSBLK,
2249 inode->i_ino, nr);
2250 continue;
2253 /* This zaps the entire block. Bottom up. */
2254 BUFFER_TRACE(bh, "free child branches");
2255 ext3_free_branches(handle, inode, bh,
2256 (__le32*)bh->b_data,
2257 (__le32*)bh->b_data + addr_per_block,
2258 depth);
2261 * Everything below this this pointer has been
2262 * released. Now let this top-of-subtree go.
2264 * We want the freeing of this indirect block to be
2265 * atomic in the journal with the updating of the
2266 * bitmap block which owns it. So make some room in
2267 * the journal.
2269 * We zero the parent pointer *after* freeing its
2270 * pointee in the bitmaps, so if extend_transaction()
2271 * for some reason fails to put the bitmap changes and
2272 * the release into the same transaction, recovery
2273 * will merely complain about releasing a free block,
2274 * rather than leaking blocks.
2276 if (is_handle_aborted(handle))
2277 return;
2278 if (try_to_extend_transaction(handle, inode)) {
2279 ext3_mark_inode_dirty(handle, inode);
2280 truncate_restart_transaction(handle, inode);
2284 * We've probably journalled the indirect block several
2285 * times during the truncate. But it's no longer
2286 * needed and we now drop it from the transaction via
2287 * journal_revoke().
2289 * That's easy if it's exclusively part of this
2290 * transaction. But if it's part of the committing
2291 * transaction then journal_forget() will simply
2292 * brelse() it. That means that if the underlying
2293 * block is reallocated in ext3_get_block(),
2294 * unmap_underlying_metadata() will find this block
2295 * and will try to get rid of it. damn, damn. Thus
2296 * we don't allow a block to be reallocated until
2297 * a transaction freeing it has fully committed.
2299 * We also have to make sure journal replay after a
2300 * crash does not overwrite non-journaled data blocks
2301 * with old metadata when the block got reallocated for
2302 * data. Thus we have to store a revoke record for a
2303 * block in the same transaction in which we free the
2304 * block.
2306 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2308 ext3_free_blocks(handle, inode, nr, 1);
2310 if (parent_bh) {
2312 * The block which we have just freed is
2313 * pointed to by an indirect block: journal it
2315 BUFFER_TRACE(parent_bh, "get_write_access");
2316 if (!ext3_journal_get_write_access(handle,
2317 parent_bh)){
2318 *p = 0;
2319 BUFFER_TRACE(parent_bh,
2320 "call ext3_journal_dirty_metadata");
2321 ext3_journal_dirty_metadata(handle,
2322 parent_bh);
2326 } else {
2327 /* We have reached the bottom of the tree. */
2328 BUFFER_TRACE(parent_bh, "free data blocks");
2329 ext3_free_data(handle, inode, parent_bh, first, last);
2333 int ext3_can_truncate(struct inode *inode)
2335 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2336 return 0;
2337 if (S_ISREG(inode->i_mode))
2338 return 1;
2339 if (S_ISDIR(inode->i_mode))
2340 return 1;
2341 if (S_ISLNK(inode->i_mode))
2342 return !ext3_inode_is_fast_symlink(inode);
2343 return 0;
2347 * ext3_truncate()
2349 * We block out ext3_get_block() block instantiations across the entire
2350 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2351 * simultaneously on behalf of the same inode.
2353 * As we work through the truncate and commmit bits of it to the journal there
2354 * is one core, guiding principle: the file's tree must always be consistent on
2355 * disk. We must be able to restart the truncate after a crash.
2357 * The file's tree may be transiently inconsistent in memory (although it
2358 * probably isn't), but whenever we close off and commit a journal transaction,
2359 * the contents of (the filesystem + the journal) must be consistent and
2360 * restartable. It's pretty simple, really: bottom up, right to left (although
2361 * left-to-right works OK too).
2363 * Note that at recovery time, journal replay occurs *before* the restart of
2364 * truncate against the orphan inode list.
2366 * The committed inode has the new, desired i_size (which is the same as
2367 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2368 * that this inode's truncate did not complete and it will again call
2369 * ext3_truncate() to have another go. So there will be instantiated blocks
2370 * to the right of the truncation point in a crashed ext3 filesystem. But
2371 * that's fine - as long as they are linked from the inode, the post-crash
2372 * ext3_truncate() run will find them and release them.
2374 void ext3_truncate(struct inode *inode)
2376 handle_t *handle;
2377 struct ext3_inode_info *ei = EXT3_I(inode);
2378 __le32 *i_data = ei->i_data;
2379 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2380 struct address_space *mapping = inode->i_mapping;
2381 int offsets[4];
2382 Indirect chain[4];
2383 Indirect *partial;
2384 __le32 nr = 0;
2385 int n;
2386 long last_block;
2387 unsigned blocksize = inode->i_sb->s_blocksize;
2388 struct page *page;
2390 if (!ext3_can_truncate(inode))
2391 goto out_notrans;
2393 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2394 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2397 * We have to lock the EOF page here, because lock_page() nests
2398 * outside journal_start().
2400 if ((inode->i_size & (blocksize - 1)) == 0) {
2401 /* Block boundary? Nothing to do */
2402 page = NULL;
2403 } else {
2404 page = grab_cache_page(mapping,
2405 inode->i_size >> PAGE_CACHE_SHIFT);
2406 if (!page)
2407 goto out_notrans;
2410 handle = start_transaction(inode);
2411 if (IS_ERR(handle)) {
2412 if (page) {
2413 clear_highpage(page);
2414 flush_dcache_page(page);
2415 unlock_page(page);
2416 page_cache_release(page);
2418 goto out_notrans;
2421 last_block = (inode->i_size + blocksize-1)
2422 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2424 if (page)
2425 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2427 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2428 if (n == 0)
2429 goto out_stop; /* error */
2432 * OK. This truncate is going to happen. We add the inode to the
2433 * orphan list, so that if this truncate spans multiple transactions,
2434 * and we crash, we will resume the truncate when the filesystem
2435 * recovers. It also marks the inode dirty, to catch the new size.
2437 * Implication: the file must always be in a sane, consistent
2438 * truncatable state while each transaction commits.
2440 if (ext3_orphan_add(handle, inode))
2441 goto out_stop;
2444 * The orphan list entry will now protect us from any crash which
2445 * occurs before the truncate completes, so it is now safe to propagate
2446 * the new, shorter inode size (held for now in i_size) into the
2447 * on-disk inode. We do this via i_disksize, which is the value which
2448 * ext3 *really* writes onto the disk inode.
2450 ei->i_disksize = inode->i_size;
2453 * From here we block out all ext3_get_block() callers who want to
2454 * modify the block allocation tree.
2456 mutex_lock(&ei->truncate_mutex);
2458 if (n == 1) { /* direct blocks */
2459 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2460 i_data + EXT3_NDIR_BLOCKS);
2461 goto do_indirects;
2464 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2465 /* Kill the top of shared branch (not detached) */
2466 if (nr) {
2467 if (partial == chain) {
2468 /* Shared branch grows from the inode */
2469 ext3_free_branches(handle, inode, NULL,
2470 &nr, &nr+1, (chain+n-1) - partial);
2471 *partial->p = 0;
2473 * We mark the inode dirty prior to restart,
2474 * and prior to stop. No need for it here.
2476 } else {
2477 /* Shared branch grows from an indirect block */
2478 BUFFER_TRACE(partial->bh, "get_write_access");
2479 ext3_free_branches(handle, inode, partial->bh,
2480 partial->p,
2481 partial->p+1, (chain+n-1) - partial);
2484 /* Clear the ends of indirect blocks on the shared branch */
2485 while (partial > chain) {
2486 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2487 (__le32*)partial->bh->b_data+addr_per_block,
2488 (chain+n-1) - partial);
2489 BUFFER_TRACE(partial->bh, "call brelse");
2490 brelse (partial->bh);
2491 partial--;
2493 do_indirects:
2494 /* Kill the remaining (whole) subtrees */
2495 switch (offsets[0]) {
2496 default:
2497 nr = i_data[EXT3_IND_BLOCK];
2498 if (nr) {
2499 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2500 i_data[EXT3_IND_BLOCK] = 0;
2502 case EXT3_IND_BLOCK:
2503 nr = i_data[EXT3_DIND_BLOCK];
2504 if (nr) {
2505 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2506 i_data[EXT3_DIND_BLOCK] = 0;
2508 case EXT3_DIND_BLOCK:
2509 nr = i_data[EXT3_TIND_BLOCK];
2510 if (nr) {
2511 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2512 i_data[EXT3_TIND_BLOCK] = 0;
2514 case EXT3_TIND_BLOCK:
2518 ext3_discard_reservation(inode);
2520 mutex_unlock(&ei->truncate_mutex);
2521 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2522 ext3_mark_inode_dirty(handle, inode);
2525 * In a multi-transaction truncate, we only make the final transaction
2526 * synchronous
2528 if (IS_SYNC(inode))
2529 handle->h_sync = 1;
2530 out_stop:
2532 * If this was a simple ftruncate(), and the file will remain alive
2533 * then we need to clear up the orphan record which we created above.
2534 * However, if this was a real unlink then we were called by
2535 * ext3_evict_inode(), and we allow that function to clean up the
2536 * orphan info for us.
2538 if (inode->i_nlink)
2539 ext3_orphan_del(handle, inode);
2541 ext3_journal_stop(handle);
2542 return;
2543 out_notrans:
2545 * Delete the inode from orphan list so that it doesn't stay there
2546 * forever and trigger assertion on umount.
2548 if (inode->i_nlink)
2549 ext3_orphan_del(NULL, inode);
2552 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2553 unsigned long ino, struct ext3_iloc *iloc)
2555 unsigned long block_group;
2556 unsigned long offset;
2557 ext3_fsblk_t block;
2558 struct ext3_group_desc *gdp;
2560 if (!ext3_valid_inum(sb, ino)) {
2562 * This error is already checked for in namei.c unless we are
2563 * looking at an NFS filehandle, in which case no error
2564 * report is needed
2566 return 0;
2569 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2570 gdp = ext3_get_group_desc(sb, block_group, NULL);
2571 if (!gdp)
2572 return 0;
2574 * Figure out the offset within the block group inode table
2576 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2577 EXT3_INODE_SIZE(sb);
2578 block = le32_to_cpu(gdp->bg_inode_table) +
2579 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2581 iloc->block_group = block_group;
2582 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2583 return block;
2587 * ext3_get_inode_loc returns with an extra refcount against the inode's
2588 * underlying buffer_head on success. If 'in_mem' is true, we have all
2589 * data in memory that is needed to recreate the on-disk version of this
2590 * inode.
2592 static int __ext3_get_inode_loc(struct inode *inode,
2593 struct ext3_iloc *iloc, int in_mem)
2595 ext3_fsblk_t block;
2596 struct buffer_head *bh;
2598 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2599 if (!block)
2600 return -EIO;
2602 bh = sb_getblk(inode->i_sb, block);
2603 if (!bh) {
2604 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2605 "unable to read inode block - "
2606 "inode=%lu, block="E3FSBLK,
2607 inode->i_ino, block);
2608 return -EIO;
2610 if (!buffer_uptodate(bh)) {
2611 lock_buffer(bh);
2614 * If the buffer has the write error flag, we have failed
2615 * to write out another inode in the same block. In this
2616 * case, we don't have to read the block because we may
2617 * read the old inode data successfully.
2619 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2620 set_buffer_uptodate(bh);
2622 if (buffer_uptodate(bh)) {
2623 /* someone brought it uptodate while we waited */
2624 unlock_buffer(bh);
2625 goto has_buffer;
2629 * If we have all information of the inode in memory and this
2630 * is the only valid inode in the block, we need not read the
2631 * block.
2633 if (in_mem) {
2634 struct buffer_head *bitmap_bh;
2635 struct ext3_group_desc *desc;
2636 int inodes_per_buffer;
2637 int inode_offset, i;
2638 int block_group;
2639 int start;
2641 block_group = (inode->i_ino - 1) /
2642 EXT3_INODES_PER_GROUP(inode->i_sb);
2643 inodes_per_buffer = bh->b_size /
2644 EXT3_INODE_SIZE(inode->i_sb);
2645 inode_offset = ((inode->i_ino - 1) %
2646 EXT3_INODES_PER_GROUP(inode->i_sb));
2647 start = inode_offset & ~(inodes_per_buffer - 1);
2649 /* Is the inode bitmap in cache? */
2650 desc = ext3_get_group_desc(inode->i_sb,
2651 block_group, NULL);
2652 if (!desc)
2653 goto make_io;
2655 bitmap_bh = sb_getblk(inode->i_sb,
2656 le32_to_cpu(desc->bg_inode_bitmap));
2657 if (!bitmap_bh)
2658 goto make_io;
2661 * If the inode bitmap isn't in cache then the
2662 * optimisation may end up performing two reads instead
2663 * of one, so skip it.
2665 if (!buffer_uptodate(bitmap_bh)) {
2666 brelse(bitmap_bh);
2667 goto make_io;
2669 for (i = start; i < start + inodes_per_buffer; i++) {
2670 if (i == inode_offset)
2671 continue;
2672 if (ext3_test_bit(i, bitmap_bh->b_data))
2673 break;
2675 brelse(bitmap_bh);
2676 if (i == start + inodes_per_buffer) {
2677 /* all other inodes are free, so skip I/O */
2678 memset(bh->b_data, 0, bh->b_size);
2679 set_buffer_uptodate(bh);
2680 unlock_buffer(bh);
2681 goto has_buffer;
2685 make_io:
2687 * There are other valid inodes in the buffer, this inode
2688 * has in-inode xattrs, or we don't have this inode in memory.
2689 * Read the block from disk.
2691 get_bh(bh);
2692 bh->b_end_io = end_buffer_read_sync;
2693 submit_bh(READ_META, bh);
2694 wait_on_buffer(bh);
2695 if (!buffer_uptodate(bh)) {
2696 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2697 "unable to read inode block - "
2698 "inode=%lu, block="E3FSBLK,
2699 inode->i_ino, block);
2700 brelse(bh);
2701 return -EIO;
2704 has_buffer:
2705 iloc->bh = bh;
2706 return 0;
2709 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2711 /* We have all inode data except xattrs in memory here. */
2712 return __ext3_get_inode_loc(inode, iloc,
2713 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2716 void ext3_set_inode_flags(struct inode *inode)
2718 unsigned int flags = EXT3_I(inode)->i_flags;
2720 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2721 if (flags & EXT3_SYNC_FL)
2722 inode->i_flags |= S_SYNC;
2723 if (flags & EXT3_APPEND_FL)
2724 inode->i_flags |= S_APPEND;
2725 if (flags & EXT3_IMMUTABLE_FL)
2726 inode->i_flags |= S_IMMUTABLE;
2727 if (flags & EXT3_NOATIME_FL)
2728 inode->i_flags |= S_NOATIME;
2729 if (flags & EXT3_DIRSYNC_FL)
2730 inode->i_flags |= S_DIRSYNC;
2733 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2734 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2736 unsigned int flags = ei->vfs_inode.i_flags;
2738 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2739 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2740 if (flags & S_SYNC)
2741 ei->i_flags |= EXT3_SYNC_FL;
2742 if (flags & S_APPEND)
2743 ei->i_flags |= EXT3_APPEND_FL;
2744 if (flags & S_IMMUTABLE)
2745 ei->i_flags |= EXT3_IMMUTABLE_FL;
2746 if (flags & S_NOATIME)
2747 ei->i_flags |= EXT3_NOATIME_FL;
2748 if (flags & S_DIRSYNC)
2749 ei->i_flags |= EXT3_DIRSYNC_FL;
2752 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2754 struct ext3_iloc iloc;
2755 struct ext3_inode *raw_inode;
2756 struct ext3_inode_info *ei;
2757 struct buffer_head *bh;
2758 struct inode *inode;
2759 journal_t *journal = EXT3_SB(sb)->s_journal;
2760 transaction_t *transaction;
2761 long ret;
2762 int block;
2764 inode = iget_locked(sb, ino);
2765 if (!inode)
2766 return ERR_PTR(-ENOMEM);
2767 if (!(inode->i_state & I_NEW))
2768 return inode;
2770 ei = EXT3_I(inode);
2771 ei->i_block_alloc_info = NULL;
2773 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2774 if (ret < 0)
2775 goto bad_inode;
2776 bh = iloc.bh;
2777 raw_inode = ext3_raw_inode(&iloc);
2778 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2779 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2780 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2781 if(!(test_opt (inode->i_sb, NO_UID32))) {
2782 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2783 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2785 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2786 inode->i_size = le32_to_cpu(raw_inode->i_size);
2787 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2788 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2789 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2790 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2792 ei->i_state_flags = 0;
2793 ei->i_dir_start_lookup = 0;
2794 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2795 /* We now have enough fields to check if the inode was active or not.
2796 * This is needed because nfsd might try to access dead inodes
2797 * the test is that same one that e2fsck uses
2798 * NeilBrown 1999oct15
2800 if (inode->i_nlink == 0) {
2801 if (inode->i_mode == 0 ||
2802 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2803 /* this inode is deleted */
2804 brelse (bh);
2805 ret = -ESTALE;
2806 goto bad_inode;
2808 /* The only unlinked inodes we let through here have
2809 * valid i_mode and are being read by the orphan
2810 * recovery code: that's fine, we're about to complete
2811 * the process of deleting those. */
2813 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2814 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2815 #ifdef EXT3_FRAGMENTS
2816 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2817 ei->i_frag_no = raw_inode->i_frag;
2818 ei->i_frag_size = raw_inode->i_fsize;
2819 #endif
2820 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2821 if (!S_ISREG(inode->i_mode)) {
2822 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2823 } else {
2824 inode->i_size |=
2825 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2827 ei->i_disksize = inode->i_size;
2828 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2829 ei->i_block_group = iloc.block_group;
2831 * NOTE! The in-memory inode i_data array is in little-endian order
2832 * even on big-endian machines: we do NOT byteswap the block numbers!
2834 for (block = 0; block < EXT3_N_BLOCKS; block++)
2835 ei->i_data[block] = raw_inode->i_block[block];
2836 INIT_LIST_HEAD(&ei->i_orphan);
2839 * Set transaction id's of transactions that have to be committed
2840 * to finish f[data]sync. We set them to currently running transaction
2841 * as we cannot be sure that the inode or some of its metadata isn't
2842 * part of the transaction - the inode could have been reclaimed and
2843 * now it is reread from disk.
2845 if (journal) {
2846 tid_t tid;
2848 spin_lock(&journal->j_state_lock);
2849 if (journal->j_running_transaction)
2850 transaction = journal->j_running_transaction;
2851 else
2852 transaction = journal->j_committing_transaction;
2853 if (transaction)
2854 tid = transaction->t_tid;
2855 else
2856 tid = journal->j_commit_sequence;
2857 spin_unlock(&journal->j_state_lock);
2858 atomic_set(&ei->i_sync_tid, tid);
2859 atomic_set(&ei->i_datasync_tid, tid);
2862 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2863 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2865 * When mke2fs creates big inodes it does not zero out
2866 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2867 * so ignore those first few inodes.
2869 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2870 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2871 EXT3_INODE_SIZE(inode->i_sb)) {
2872 brelse (bh);
2873 ret = -EIO;
2874 goto bad_inode;
2876 if (ei->i_extra_isize == 0) {
2877 /* The extra space is currently unused. Use it. */
2878 ei->i_extra_isize = sizeof(struct ext3_inode) -
2879 EXT3_GOOD_OLD_INODE_SIZE;
2880 } else {
2881 __le32 *magic = (void *)raw_inode +
2882 EXT3_GOOD_OLD_INODE_SIZE +
2883 ei->i_extra_isize;
2884 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2885 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2887 } else
2888 ei->i_extra_isize = 0;
2890 if (S_ISREG(inode->i_mode)) {
2891 inode->i_op = &ext3_file_inode_operations;
2892 inode->i_fop = &ext3_file_operations;
2893 ext3_set_aops(inode);
2894 } else if (S_ISDIR(inode->i_mode)) {
2895 inode->i_op = &ext3_dir_inode_operations;
2896 inode->i_fop = &ext3_dir_operations;
2897 } else if (S_ISLNK(inode->i_mode)) {
2898 if (ext3_inode_is_fast_symlink(inode)) {
2899 inode->i_op = &ext3_fast_symlink_inode_operations;
2900 nd_terminate_link(ei->i_data, inode->i_size,
2901 sizeof(ei->i_data) - 1);
2902 } else {
2903 inode->i_op = &ext3_symlink_inode_operations;
2904 ext3_set_aops(inode);
2906 } else {
2907 inode->i_op = &ext3_special_inode_operations;
2908 if (raw_inode->i_block[0])
2909 init_special_inode(inode, inode->i_mode,
2910 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2911 else
2912 init_special_inode(inode, inode->i_mode,
2913 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2915 brelse (iloc.bh);
2916 ext3_set_inode_flags(inode);
2917 unlock_new_inode(inode);
2918 return inode;
2920 bad_inode:
2921 iget_failed(inode);
2922 return ERR_PTR(ret);
2926 * Post the struct inode info into an on-disk inode location in the
2927 * buffer-cache. This gobbles the caller's reference to the
2928 * buffer_head in the inode location struct.
2930 * The caller must have write access to iloc->bh.
2932 static int ext3_do_update_inode(handle_t *handle,
2933 struct inode *inode,
2934 struct ext3_iloc *iloc)
2936 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2937 struct ext3_inode_info *ei = EXT3_I(inode);
2938 struct buffer_head *bh = iloc->bh;
2939 int err = 0, rc, block;
2941 again:
2942 /* we can't allow multiple procs in here at once, its a bit racey */
2943 lock_buffer(bh);
2945 /* For fields not not tracking in the in-memory inode,
2946 * initialise them to zero for new inodes. */
2947 if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
2948 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2950 ext3_get_inode_flags(ei);
2951 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2952 if(!(test_opt(inode->i_sb, NO_UID32))) {
2953 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2954 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2956 * Fix up interoperability with old kernels. Otherwise, old inodes get
2957 * re-used with the upper 16 bits of the uid/gid intact
2959 if(!ei->i_dtime) {
2960 raw_inode->i_uid_high =
2961 cpu_to_le16(high_16_bits(inode->i_uid));
2962 raw_inode->i_gid_high =
2963 cpu_to_le16(high_16_bits(inode->i_gid));
2964 } else {
2965 raw_inode->i_uid_high = 0;
2966 raw_inode->i_gid_high = 0;
2968 } else {
2969 raw_inode->i_uid_low =
2970 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2971 raw_inode->i_gid_low =
2972 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2973 raw_inode->i_uid_high = 0;
2974 raw_inode->i_gid_high = 0;
2976 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2977 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2978 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2979 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2980 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2981 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2982 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2983 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2984 #ifdef EXT3_FRAGMENTS
2985 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2986 raw_inode->i_frag = ei->i_frag_no;
2987 raw_inode->i_fsize = ei->i_frag_size;
2988 #endif
2989 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2990 if (!S_ISREG(inode->i_mode)) {
2991 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2992 } else {
2993 raw_inode->i_size_high =
2994 cpu_to_le32(ei->i_disksize >> 32);
2995 if (ei->i_disksize > 0x7fffffffULL) {
2996 struct super_block *sb = inode->i_sb;
2997 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2998 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2999 EXT3_SB(sb)->s_es->s_rev_level ==
3000 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3001 /* If this is the first large file
3002 * created, add a flag to the superblock.
3004 unlock_buffer(bh);
3005 err = ext3_journal_get_write_access(handle,
3006 EXT3_SB(sb)->s_sbh);
3007 if (err)
3008 goto out_brelse;
3010 ext3_update_dynamic_rev(sb);
3011 EXT3_SET_RO_COMPAT_FEATURE(sb,
3012 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3013 handle->h_sync = 1;
3014 err = ext3_journal_dirty_metadata(handle,
3015 EXT3_SB(sb)->s_sbh);
3016 /* get our lock and start over */
3017 goto again;
3021 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3022 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3023 if (old_valid_dev(inode->i_rdev)) {
3024 raw_inode->i_block[0] =
3025 cpu_to_le32(old_encode_dev(inode->i_rdev));
3026 raw_inode->i_block[1] = 0;
3027 } else {
3028 raw_inode->i_block[0] = 0;
3029 raw_inode->i_block[1] =
3030 cpu_to_le32(new_encode_dev(inode->i_rdev));
3031 raw_inode->i_block[2] = 0;
3033 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3034 raw_inode->i_block[block] = ei->i_data[block];
3036 if (ei->i_extra_isize)
3037 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3039 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3040 unlock_buffer(bh);
3041 rc = ext3_journal_dirty_metadata(handle, bh);
3042 if (!err)
3043 err = rc;
3044 ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3046 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3047 out_brelse:
3048 brelse (bh);
3049 ext3_std_error(inode->i_sb, err);
3050 return err;
3054 * ext3_write_inode()
3056 * We are called from a few places:
3058 * - Within generic_file_write() for O_SYNC files.
3059 * Here, there will be no transaction running. We wait for any running
3060 * trasnaction to commit.
3062 * - Within sys_sync(), kupdate and such.
3063 * We wait on commit, if tol to.
3065 * - Within prune_icache() (PF_MEMALLOC == true)
3066 * Here we simply return. We can't afford to block kswapd on the
3067 * journal commit.
3069 * In all cases it is actually safe for us to return without doing anything,
3070 * because the inode has been copied into a raw inode buffer in
3071 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3072 * knfsd.
3074 * Note that we are absolutely dependent upon all inode dirtiers doing the
3075 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3076 * which we are interested.
3078 * It would be a bug for them to not do this. The code:
3080 * mark_inode_dirty(inode)
3081 * stuff();
3082 * inode->i_size = expr;
3084 * is in error because a kswapd-driven write_inode() could occur while
3085 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3086 * will no longer be on the superblock's dirty inode list.
3088 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3090 if (current->flags & PF_MEMALLOC)
3091 return 0;
3093 if (ext3_journal_current_handle()) {
3094 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3095 dump_stack();
3096 return -EIO;
3099 if (wbc->sync_mode != WB_SYNC_ALL)
3100 return 0;
3102 return ext3_force_commit(inode->i_sb);
3106 * ext3_setattr()
3108 * Called from notify_change.
3110 * We want to trap VFS attempts to truncate the file as soon as
3111 * possible. In particular, we want to make sure that when the VFS
3112 * shrinks i_size, we put the inode on the orphan list and modify
3113 * i_disksize immediately, so that during the subsequent flushing of
3114 * dirty pages and freeing of disk blocks, we can guarantee that any
3115 * commit will leave the blocks being flushed in an unused state on
3116 * disk. (On recovery, the inode will get truncated and the blocks will
3117 * be freed, so we have a strong guarantee that no future commit will
3118 * leave these blocks visible to the user.)
3120 * Called with inode->sem down.
3122 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3124 struct inode *inode = dentry->d_inode;
3125 int error, rc = 0;
3126 const unsigned int ia_valid = attr->ia_valid;
3128 error = inode_change_ok(inode, attr);
3129 if (error)
3130 return error;
3132 if (is_quota_modification(inode, attr))
3133 dquot_initialize(inode);
3134 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3135 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3136 handle_t *handle;
3138 /* (user+group)*(old+new) structure, inode write (sb,
3139 * inode block, ? - but truncate inode update has it) */
3140 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3141 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3142 if (IS_ERR(handle)) {
3143 error = PTR_ERR(handle);
3144 goto err_out;
3146 error = dquot_transfer(inode, attr);
3147 if (error) {
3148 ext3_journal_stop(handle);
3149 return error;
3151 /* Update corresponding info in inode so that everything is in
3152 * one transaction */
3153 if (attr->ia_valid & ATTR_UID)
3154 inode->i_uid = attr->ia_uid;
3155 if (attr->ia_valid & ATTR_GID)
3156 inode->i_gid = attr->ia_gid;
3157 error = ext3_mark_inode_dirty(handle, inode);
3158 ext3_journal_stop(handle);
3161 if (S_ISREG(inode->i_mode) &&
3162 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3163 handle_t *handle;
3165 handle = ext3_journal_start(inode, 3);
3166 if (IS_ERR(handle)) {
3167 error = PTR_ERR(handle);
3168 goto err_out;
3171 error = ext3_orphan_add(handle, inode);
3172 EXT3_I(inode)->i_disksize = attr->ia_size;
3173 rc = ext3_mark_inode_dirty(handle, inode);
3174 if (!error)
3175 error = rc;
3176 ext3_journal_stop(handle);
3179 if ((attr->ia_valid & ATTR_SIZE) &&
3180 attr->ia_size != i_size_read(inode)) {
3181 rc = vmtruncate(inode, attr->ia_size);
3182 if (rc)
3183 goto err_out;
3186 setattr_copy(inode, attr);
3187 mark_inode_dirty(inode);
3189 if (ia_valid & ATTR_MODE)
3190 rc = ext3_acl_chmod(inode);
3192 err_out:
3193 ext3_std_error(inode->i_sb, error);
3194 if (!error)
3195 error = rc;
3196 return error;
3201 * How many blocks doth make a writepage()?
3203 * With N blocks per page, it may be:
3204 * N data blocks
3205 * 2 indirect block
3206 * 2 dindirect
3207 * 1 tindirect
3208 * N+5 bitmap blocks (from the above)
3209 * N+5 group descriptor summary blocks
3210 * 1 inode block
3211 * 1 superblock.
3212 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3214 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3216 * With ordered or writeback data it's the same, less the N data blocks.
3218 * If the inode's direct blocks can hold an integral number of pages then a
3219 * page cannot straddle two indirect blocks, and we can only touch one indirect
3220 * and dindirect block, and the "5" above becomes "3".
3222 * This still overestimates under most circumstances. If we were to pass the
3223 * start and end offsets in here as well we could do block_to_path() on each
3224 * block and work out the exact number of indirects which are touched. Pah.
3227 static int ext3_writepage_trans_blocks(struct inode *inode)
3229 int bpp = ext3_journal_blocks_per_page(inode);
3230 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3231 int ret;
3233 if (ext3_should_journal_data(inode))
3234 ret = 3 * (bpp + indirects) + 2;
3235 else
3236 ret = 2 * (bpp + indirects) + 2;
3238 #ifdef CONFIG_QUOTA
3239 /* We know that structure was already allocated during dquot_initialize so
3240 * we will be updating only the data blocks + inodes */
3241 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3242 #endif
3244 return ret;
3248 * The caller must have previously called ext3_reserve_inode_write().
3249 * Give this, we know that the caller already has write access to iloc->bh.
3251 int ext3_mark_iloc_dirty(handle_t *handle,
3252 struct inode *inode, struct ext3_iloc *iloc)
3254 int err = 0;
3256 /* the do_update_inode consumes one bh->b_count */
3257 get_bh(iloc->bh);
3259 /* ext3_do_update_inode() does journal_dirty_metadata */
3260 err = ext3_do_update_inode(handle, inode, iloc);
3261 put_bh(iloc->bh);
3262 return err;
3266 * On success, We end up with an outstanding reference count against
3267 * iloc->bh. This _must_ be cleaned up later.
3271 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3272 struct ext3_iloc *iloc)
3274 int err = 0;
3275 if (handle) {
3276 err = ext3_get_inode_loc(inode, iloc);
3277 if (!err) {
3278 BUFFER_TRACE(iloc->bh, "get_write_access");
3279 err = ext3_journal_get_write_access(handle, iloc->bh);
3280 if (err) {
3281 brelse(iloc->bh);
3282 iloc->bh = NULL;
3286 ext3_std_error(inode->i_sb, err);
3287 return err;
3291 * What we do here is to mark the in-core inode as clean with respect to inode
3292 * dirtiness (it may still be data-dirty).
3293 * This means that the in-core inode may be reaped by prune_icache
3294 * without having to perform any I/O. This is a very good thing,
3295 * because *any* task may call prune_icache - even ones which
3296 * have a transaction open against a different journal.
3298 * Is this cheating? Not really. Sure, we haven't written the
3299 * inode out, but prune_icache isn't a user-visible syncing function.
3300 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3301 * we start and wait on commits.
3303 * Is this efficient/effective? Well, we're being nice to the system
3304 * by cleaning up our inodes proactively so they can be reaped
3305 * without I/O. But we are potentially leaving up to five seconds'
3306 * worth of inodes floating about which prune_icache wants us to
3307 * write out. One way to fix that would be to get prune_icache()
3308 * to do a write_super() to free up some memory. It has the desired
3309 * effect.
3311 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3313 struct ext3_iloc iloc;
3314 int err;
3316 might_sleep();
3317 err = ext3_reserve_inode_write(handle, inode, &iloc);
3318 if (!err)
3319 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3320 return err;
3324 * ext3_dirty_inode() is called from __mark_inode_dirty()
3326 * We're really interested in the case where a file is being extended.
3327 * i_size has been changed by generic_commit_write() and we thus need
3328 * to include the updated inode in the current transaction.
3330 * Also, dquot_alloc_space() will always dirty the inode when blocks
3331 * are allocated to the file.
3333 * If the inode is marked synchronous, we don't honour that here - doing
3334 * so would cause a commit on atime updates, which we don't bother doing.
3335 * We handle synchronous inodes at the highest possible level.
3337 void ext3_dirty_inode(struct inode *inode)
3339 handle_t *current_handle = ext3_journal_current_handle();
3340 handle_t *handle;
3342 handle = ext3_journal_start(inode, 2);
3343 if (IS_ERR(handle))
3344 goto out;
3345 if (current_handle &&
3346 current_handle->h_transaction != handle->h_transaction) {
3347 /* This task has a transaction open against a different fs */
3348 printk(KERN_EMERG "%s: transactions do not match!\n",
3349 __func__);
3350 } else {
3351 jbd_debug(5, "marking dirty. outer handle=%p\n",
3352 current_handle);
3353 ext3_mark_inode_dirty(handle, inode);
3355 ext3_journal_stop(handle);
3356 out:
3357 return;
3361 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3363 journal_t *journal;
3364 handle_t *handle;
3365 int err;
3368 * We have to be very careful here: changing a data block's
3369 * journaling status dynamically is dangerous. If we write a
3370 * data block to the journal, change the status and then delete
3371 * that block, we risk forgetting to revoke the old log record
3372 * from the journal and so a subsequent replay can corrupt data.
3373 * So, first we make sure that the journal is empty and that
3374 * nobody is changing anything.
3377 journal = EXT3_JOURNAL(inode);
3378 if (is_journal_aborted(journal))
3379 return -EROFS;
3381 journal_lock_updates(journal);
3382 journal_flush(journal);
3385 * OK, there are no updates running now, and all cached data is
3386 * synced to disk. We are now in a completely consistent state
3387 * which doesn't have anything in the journal, and we know that
3388 * no filesystem updates are running, so it is safe to modify
3389 * the inode's in-core data-journaling state flag now.
3392 if (val)
3393 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3394 else
3395 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3396 ext3_set_aops(inode);
3398 journal_unlock_updates(journal);
3400 /* Finally we can mark the inode as dirty. */
3402 handle = ext3_journal_start(inode, 1);
3403 if (IS_ERR(handle))
3404 return PTR_ERR(handle);
3406 err = ext3_mark_inode_dirty(handle, inode);
3407 handle->h_sync = 1;
3408 ext3_journal_stop(handle);
3409 ext3_std_error(inode->i_sb, err);
3411 return err;