GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / fs / btrfs / transaction.c
blob05093f443f1ff918cc6a260af6511f0ee96eb9c7
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
31 #define BTRFS_ROOT_TRANS_TAG 0
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 WARN_ON(transaction->use_count == 0);
36 transaction->use_count--;
37 if (transaction->use_count == 0) {
38 list_del_init(&transaction->list);
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 static noinline void switch_commit_root(struct btrfs_root *root)
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
51 * either allocate a new transaction or hop into the existing one
53 static noinline int join_transaction(struct btrfs_root *root)
55 struct btrfs_transaction *cur_trans;
56 cur_trans = root->fs_info->running_transaction;
57 if (!cur_trans) {
58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 GFP_NOFS);
60 BUG_ON(!cur_trans);
61 root->fs_info->generation++;
62 cur_trans->num_writers = 1;
63 cur_trans->num_joined = 0;
64 cur_trans->transid = root->fs_info->generation;
65 init_waitqueue_head(&cur_trans->writer_wait);
66 init_waitqueue_head(&cur_trans->commit_wait);
67 cur_trans->in_commit = 0;
68 cur_trans->blocked = 0;
69 cur_trans->use_count = 1;
70 cur_trans->commit_done = 0;
71 cur_trans->start_time = get_seconds();
73 cur_trans->delayed_refs.root = RB_ROOT;
74 cur_trans->delayed_refs.num_entries = 0;
75 cur_trans->delayed_refs.num_heads_ready = 0;
76 cur_trans->delayed_refs.num_heads = 0;
77 cur_trans->delayed_refs.flushing = 0;
78 cur_trans->delayed_refs.run_delayed_start = 0;
79 spin_lock_init(&cur_trans->delayed_refs.lock);
81 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 extent_io_tree_init(&cur_trans->dirty_pages,
84 root->fs_info->btree_inode->i_mapping,
85 GFP_NOFS);
86 spin_lock(&root->fs_info->new_trans_lock);
87 root->fs_info->running_transaction = cur_trans;
88 spin_unlock(&root->fs_info->new_trans_lock);
89 } else {
90 cur_trans->num_writers++;
91 cur_trans->num_joined++;
94 return 0;
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root)
106 if (root->ref_cows && root->last_trans < trans->transid) {
107 WARN_ON(root == root->fs_info->extent_root);
108 WARN_ON(root->commit_root != root->node);
110 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 (unsigned long)root->root_key.objectid,
112 BTRFS_ROOT_TRANS_TAG);
113 root->last_trans = trans->transid;
114 btrfs_init_reloc_root(trans, root);
116 return 0;
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 struct btrfs_root *root)
122 if (!root->ref_cows)
123 return 0;
125 mutex_lock(&root->fs_info->trans_mutex);
126 if (root->last_trans == trans->transid) {
127 mutex_unlock(&root->fs_info->trans_mutex);
128 return 0;
131 record_root_in_trans(trans, root);
132 mutex_unlock(&root->fs_info->trans_mutex);
133 return 0;
136 /* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
140 static void wait_current_trans(struct btrfs_root *root)
142 struct btrfs_transaction *cur_trans;
144 cur_trans = root->fs_info->running_transaction;
145 if (cur_trans && cur_trans->blocked) {
146 DEFINE_WAIT(wait);
147 cur_trans->use_count++;
148 while (1) {
149 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 TASK_UNINTERRUPTIBLE);
151 if (!cur_trans->blocked)
152 break;
153 mutex_unlock(&root->fs_info->trans_mutex);
154 schedule();
155 mutex_lock(&root->fs_info->trans_mutex);
157 finish_wait(&root->fs_info->transaction_wait, &wait);
158 put_transaction(cur_trans);
162 enum btrfs_trans_type {
163 TRANS_START,
164 TRANS_JOIN,
165 TRANS_USERSPACE,
168 static int may_wait_transaction(struct btrfs_root *root, int type)
170 if (!root->fs_info->log_root_recovering &&
171 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
172 type == TRANS_USERSPACE))
173 return 1;
174 return 0;
177 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
178 u64 num_items, int type)
180 struct btrfs_trans_handle *h;
181 struct btrfs_transaction *cur_trans;
182 int retries = 0;
183 int ret;
184 again:
185 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
186 if (!h)
187 return ERR_PTR(-ENOMEM);
189 mutex_lock(&root->fs_info->trans_mutex);
190 if (may_wait_transaction(root, type))
191 wait_current_trans(root);
193 ret = join_transaction(root);
194 BUG_ON(ret);
196 cur_trans = root->fs_info->running_transaction;
197 cur_trans->use_count++;
198 mutex_unlock(&root->fs_info->trans_mutex);
200 h->transid = cur_trans->transid;
201 h->transaction = cur_trans;
202 h->blocks_used = 0;
203 h->block_group = 0;
204 h->bytes_reserved = 0;
205 h->delayed_ref_updates = 0;
206 h->block_rsv = NULL;
208 smp_mb();
209 if (cur_trans->blocked && may_wait_transaction(root, type)) {
210 btrfs_commit_transaction(h, root);
211 goto again;
214 if (num_items > 0) {
215 ret = btrfs_trans_reserve_metadata(h, root, num_items,
216 &retries);
217 if (ret == -EAGAIN) {
218 btrfs_commit_transaction(h, root);
219 goto again;
221 if (ret < 0) {
222 btrfs_end_transaction(h, root);
223 return ERR_PTR(ret);
227 mutex_lock(&root->fs_info->trans_mutex);
228 record_root_in_trans(h, root);
229 mutex_unlock(&root->fs_info->trans_mutex);
231 if (!current->journal_info && type != TRANS_USERSPACE)
232 current->journal_info = h;
233 return h;
236 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
237 int num_items)
239 return start_transaction(root, num_items, TRANS_START);
241 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
242 int num_blocks)
244 return start_transaction(root, 0, TRANS_JOIN);
247 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
248 int num_blocks)
250 return start_transaction(r, 0, TRANS_USERSPACE);
253 /* wait for a transaction commit to be fully complete */
254 static noinline int wait_for_commit(struct btrfs_root *root,
255 struct btrfs_transaction *commit)
257 DEFINE_WAIT(wait);
258 mutex_lock(&root->fs_info->trans_mutex);
259 while (!commit->commit_done) {
260 prepare_to_wait(&commit->commit_wait, &wait,
261 TASK_UNINTERRUPTIBLE);
262 if (commit->commit_done)
263 break;
264 mutex_unlock(&root->fs_info->trans_mutex);
265 schedule();
266 mutex_lock(&root->fs_info->trans_mutex);
268 mutex_unlock(&root->fs_info->trans_mutex);
269 finish_wait(&commit->commit_wait, &wait);
270 return 0;
274 void btrfs_throttle(struct btrfs_root *root)
276 mutex_lock(&root->fs_info->trans_mutex);
277 if (!root->fs_info->open_ioctl_trans)
278 wait_current_trans(root);
279 mutex_unlock(&root->fs_info->trans_mutex);
282 static int should_end_transaction(struct btrfs_trans_handle *trans,
283 struct btrfs_root *root)
285 int ret;
286 ret = btrfs_block_rsv_check(trans, root,
287 &root->fs_info->global_block_rsv, 0, 5);
288 return ret ? 1 : 0;
291 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
292 struct btrfs_root *root)
294 struct btrfs_transaction *cur_trans = trans->transaction;
295 int updates;
297 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
298 return 1;
300 updates = trans->delayed_ref_updates;
301 trans->delayed_ref_updates = 0;
302 if (updates)
303 btrfs_run_delayed_refs(trans, root, updates);
305 return should_end_transaction(trans, root);
308 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
309 struct btrfs_root *root, int throttle)
311 struct btrfs_transaction *cur_trans = trans->transaction;
312 struct btrfs_fs_info *info = root->fs_info;
313 int count = 0;
315 while (count < 4) {
316 unsigned long cur = trans->delayed_ref_updates;
317 trans->delayed_ref_updates = 0;
318 if (cur &&
319 trans->transaction->delayed_refs.num_heads_ready > 64) {
320 trans->delayed_ref_updates = 0;
323 * do a full flush if the transaction is trying
324 * to close
326 if (trans->transaction->delayed_refs.flushing)
327 cur = 0;
328 btrfs_run_delayed_refs(trans, root, cur);
329 } else {
330 break;
332 count++;
335 btrfs_trans_release_metadata(trans, root);
337 if (!root->fs_info->open_ioctl_trans &&
338 should_end_transaction(trans, root))
339 trans->transaction->blocked = 1;
341 if (cur_trans->blocked && !cur_trans->in_commit) {
342 if (throttle)
343 return btrfs_commit_transaction(trans, root);
344 else
345 wake_up_process(info->transaction_kthread);
348 mutex_lock(&info->trans_mutex);
349 WARN_ON(cur_trans != info->running_transaction);
350 WARN_ON(cur_trans->num_writers < 1);
351 cur_trans->num_writers--;
353 if (waitqueue_active(&cur_trans->writer_wait))
354 wake_up(&cur_trans->writer_wait);
355 put_transaction(cur_trans);
356 mutex_unlock(&info->trans_mutex);
358 if (current->journal_info == trans)
359 current->journal_info = NULL;
360 memset(trans, 0, sizeof(*trans));
361 kmem_cache_free(btrfs_trans_handle_cachep, trans);
363 if (throttle)
364 btrfs_run_delayed_iputs(root);
366 return 0;
369 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
370 struct btrfs_root *root)
372 return __btrfs_end_transaction(trans, root, 0);
375 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
376 struct btrfs_root *root)
378 return __btrfs_end_transaction(trans, root, 1);
382 * when btree blocks are allocated, they have some corresponding bits set for
383 * them in one of two extent_io trees. This is used to make sure all of
384 * those extents are sent to disk but does not wait on them
386 int btrfs_write_marked_extents(struct btrfs_root *root,
387 struct extent_io_tree *dirty_pages, int mark)
389 int ret;
390 int err = 0;
391 int werr = 0;
392 struct page *page;
393 struct inode *btree_inode = root->fs_info->btree_inode;
394 u64 start = 0;
395 u64 end;
396 unsigned long index;
398 while (1) {
399 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
400 mark);
401 if (ret)
402 break;
403 while (start <= end) {
404 cond_resched();
406 index = start >> PAGE_CACHE_SHIFT;
407 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
408 page = find_get_page(btree_inode->i_mapping, index);
409 if (!page)
410 continue;
412 btree_lock_page_hook(page);
413 if (!page->mapping) {
414 unlock_page(page);
415 page_cache_release(page);
416 continue;
419 if (PageWriteback(page)) {
420 if (PageDirty(page))
421 wait_on_page_writeback(page);
422 else {
423 unlock_page(page);
424 page_cache_release(page);
425 continue;
428 err = write_one_page(page, 0);
429 if (err)
430 werr = err;
431 page_cache_release(page);
434 if (err)
435 werr = err;
436 return werr;
440 * when btree blocks are allocated, they have some corresponding bits set for
441 * them in one of two extent_io trees. This is used to make sure all of
442 * those extents are on disk for transaction or log commit. We wait
443 * on all the pages and clear them from the dirty pages state tree
445 int btrfs_wait_marked_extents(struct btrfs_root *root,
446 struct extent_io_tree *dirty_pages, int mark)
448 int ret;
449 int err = 0;
450 int werr = 0;
451 struct page *page;
452 struct inode *btree_inode = root->fs_info->btree_inode;
453 u64 start = 0;
454 u64 end;
455 unsigned long index;
457 while (1) {
458 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
459 mark);
460 if (ret)
461 break;
463 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
464 while (start <= end) {
465 index = start >> PAGE_CACHE_SHIFT;
466 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
467 page = find_get_page(btree_inode->i_mapping, index);
468 if (!page)
469 continue;
470 if (PageDirty(page)) {
471 btree_lock_page_hook(page);
472 wait_on_page_writeback(page);
473 err = write_one_page(page, 0);
474 if (err)
475 werr = err;
477 wait_on_page_writeback(page);
478 page_cache_release(page);
479 cond_resched();
482 if (err)
483 werr = err;
484 return werr;
488 * when btree blocks are allocated, they have some corresponding bits set for
489 * them in one of two extent_io trees. This is used to make sure all of
490 * those extents are on disk for transaction or log commit
492 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
493 struct extent_io_tree *dirty_pages, int mark)
495 int ret;
496 int ret2;
498 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
499 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
500 return ret || ret2;
503 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
504 struct btrfs_root *root)
506 if (!trans || !trans->transaction) {
507 struct inode *btree_inode;
508 btree_inode = root->fs_info->btree_inode;
509 return filemap_write_and_wait(btree_inode->i_mapping);
511 return btrfs_write_and_wait_marked_extents(root,
512 &trans->transaction->dirty_pages,
513 EXTENT_DIRTY);
517 * this is used to update the root pointer in the tree of tree roots.
519 * But, in the case of the extent allocation tree, updating the root
520 * pointer may allocate blocks which may change the root of the extent
521 * allocation tree.
523 * So, this loops and repeats and makes sure the cowonly root didn't
524 * change while the root pointer was being updated in the metadata.
526 static int update_cowonly_root(struct btrfs_trans_handle *trans,
527 struct btrfs_root *root)
529 int ret;
530 u64 old_root_bytenr;
531 u64 old_root_used;
532 struct btrfs_root *tree_root = root->fs_info->tree_root;
534 old_root_used = btrfs_root_used(&root->root_item);
535 btrfs_write_dirty_block_groups(trans, root);
537 while (1) {
538 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
539 if (old_root_bytenr == root->node->start &&
540 old_root_used == btrfs_root_used(&root->root_item))
541 break;
543 btrfs_set_root_node(&root->root_item, root->node);
544 ret = btrfs_update_root(trans, tree_root,
545 &root->root_key,
546 &root->root_item);
547 BUG_ON(ret);
549 old_root_used = btrfs_root_used(&root->root_item);
550 ret = btrfs_write_dirty_block_groups(trans, root);
551 BUG_ON(ret);
554 if (root != root->fs_info->extent_root)
555 switch_commit_root(root);
557 return 0;
561 * update all the cowonly tree roots on disk
563 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
564 struct btrfs_root *root)
566 struct btrfs_fs_info *fs_info = root->fs_info;
567 struct list_head *next;
568 struct extent_buffer *eb;
569 int ret;
571 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
572 BUG_ON(ret);
574 eb = btrfs_lock_root_node(fs_info->tree_root);
575 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
576 btrfs_tree_unlock(eb);
577 free_extent_buffer(eb);
579 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
580 BUG_ON(ret);
582 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
583 next = fs_info->dirty_cowonly_roots.next;
584 list_del_init(next);
585 root = list_entry(next, struct btrfs_root, dirty_list);
587 update_cowonly_root(trans, root);
590 down_write(&fs_info->extent_commit_sem);
591 switch_commit_root(fs_info->extent_root);
592 up_write(&fs_info->extent_commit_sem);
594 return 0;
598 * dead roots are old snapshots that need to be deleted. This allocates
599 * a dirty root struct and adds it into the list of dead roots that need to
600 * be deleted
602 int btrfs_add_dead_root(struct btrfs_root *root)
604 mutex_lock(&root->fs_info->trans_mutex);
605 list_add(&root->root_list, &root->fs_info->dead_roots);
606 mutex_unlock(&root->fs_info->trans_mutex);
607 return 0;
611 * update all the cowonly tree roots on disk
613 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
614 struct btrfs_root *root)
616 struct btrfs_root *gang[8];
617 struct btrfs_fs_info *fs_info = root->fs_info;
618 int i;
619 int ret;
620 int err = 0;
622 while (1) {
623 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
624 (void **)gang, 0,
625 ARRAY_SIZE(gang),
626 BTRFS_ROOT_TRANS_TAG);
627 if (ret == 0)
628 break;
629 for (i = 0; i < ret; i++) {
630 root = gang[i];
631 radix_tree_tag_clear(&fs_info->fs_roots_radix,
632 (unsigned long)root->root_key.objectid,
633 BTRFS_ROOT_TRANS_TAG);
635 btrfs_free_log(trans, root);
636 btrfs_update_reloc_root(trans, root);
637 btrfs_orphan_commit_root(trans, root);
639 if (root->commit_root != root->node) {
640 switch_commit_root(root);
641 btrfs_set_root_node(&root->root_item,
642 root->node);
645 err = btrfs_update_root(trans, fs_info->tree_root,
646 &root->root_key,
647 &root->root_item);
648 if (err)
649 break;
652 return err;
656 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
657 * otherwise every leaf in the btree is read and defragged.
659 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
661 struct btrfs_fs_info *info = root->fs_info;
662 struct btrfs_trans_handle *trans;
663 int ret;
664 unsigned long nr;
666 if (xchg(&root->defrag_running, 1))
667 return 0;
669 while (1) {
670 trans = btrfs_start_transaction(root, 0);
671 if (IS_ERR(trans))
672 return PTR_ERR(trans);
674 ret = btrfs_defrag_leaves(trans, root, cacheonly);
676 nr = trans->blocks_used;
677 btrfs_end_transaction(trans, root);
678 btrfs_btree_balance_dirty(info->tree_root, nr);
679 cond_resched();
681 if (root->fs_info->closing || ret != -EAGAIN)
682 break;
684 root->defrag_running = 0;
685 return ret;
690 * new snapshots need to be created at a very specific time in the
691 * transaction commit. This does the actual creation
693 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
694 struct btrfs_fs_info *fs_info,
695 struct btrfs_pending_snapshot *pending)
697 struct btrfs_key key;
698 struct btrfs_root_item *new_root_item;
699 struct btrfs_root *tree_root = fs_info->tree_root;
700 struct btrfs_root *root = pending->root;
701 struct btrfs_root *parent_root;
702 struct inode *parent_inode;
703 struct dentry *dentry;
704 struct extent_buffer *tmp;
705 struct extent_buffer *old;
706 int ret;
707 int retries = 0;
708 u64 to_reserve = 0;
709 u64 index = 0;
710 u64 objectid;
712 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
713 if (!new_root_item) {
714 pending->error = -ENOMEM;
715 goto fail;
718 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
719 if (ret) {
720 pending->error = ret;
721 goto fail;
724 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
725 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
727 if (to_reserve > 0) {
728 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
729 to_reserve, &retries);
730 if (ret) {
731 pending->error = ret;
732 goto fail;
736 key.objectid = objectid;
737 key.offset = (u64)-1;
738 key.type = BTRFS_ROOT_ITEM_KEY;
740 trans->block_rsv = &pending->block_rsv;
742 dentry = pending->dentry;
743 parent_inode = dentry->d_parent->d_inode;
744 parent_root = BTRFS_I(parent_inode)->root;
745 record_root_in_trans(trans, parent_root);
748 * insert the directory item
750 ret = btrfs_set_inode_index(parent_inode, &index);
751 BUG_ON(ret);
752 ret = btrfs_insert_dir_item(trans, parent_root,
753 dentry->d_name.name, dentry->d_name.len,
754 parent_inode->i_ino, &key,
755 BTRFS_FT_DIR, index);
756 BUG_ON(ret);
758 btrfs_i_size_write(parent_inode, parent_inode->i_size +
759 dentry->d_name.len * 2);
760 ret = btrfs_update_inode(trans, parent_root, parent_inode);
761 BUG_ON(ret);
763 record_root_in_trans(trans, root);
764 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
765 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
767 old = btrfs_lock_root_node(root);
768 btrfs_cow_block(trans, root, old, NULL, 0, &old);
769 btrfs_set_lock_blocking(old);
771 btrfs_copy_root(trans, root, old, &tmp, objectid);
772 btrfs_tree_unlock(old);
773 free_extent_buffer(old);
775 btrfs_set_root_node(new_root_item, tmp);
776 /* record when the snapshot was created in key.offset */
777 key.offset = trans->transid;
778 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
779 btrfs_tree_unlock(tmp);
780 free_extent_buffer(tmp);
781 BUG_ON(ret);
784 * insert root back/forward references
786 ret = btrfs_add_root_ref(trans, tree_root, objectid,
787 parent_root->root_key.objectid,
788 parent_inode->i_ino, index,
789 dentry->d_name.name, dentry->d_name.len);
790 BUG_ON(ret);
792 key.offset = (u64)-1;
793 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
794 BUG_ON(IS_ERR(pending->snap));
796 btrfs_reloc_post_snapshot(trans, pending);
797 btrfs_orphan_post_snapshot(trans, pending);
798 fail:
799 kfree(new_root_item);
800 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
801 return 0;
805 * create all the snapshots we've scheduled for creation
807 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
808 struct btrfs_fs_info *fs_info)
810 struct btrfs_pending_snapshot *pending;
811 struct list_head *head = &trans->transaction->pending_snapshots;
812 int ret;
814 list_for_each_entry(pending, head, list) {
815 ret = create_pending_snapshot(trans, fs_info, pending);
816 BUG_ON(ret);
818 return 0;
821 static void update_super_roots(struct btrfs_root *root)
823 struct btrfs_root_item *root_item;
824 struct btrfs_super_block *super;
826 super = &root->fs_info->super_copy;
828 root_item = &root->fs_info->chunk_root->root_item;
829 super->chunk_root = root_item->bytenr;
830 super->chunk_root_generation = root_item->generation;
831 super->chunk_root_level = root_item->level;
833 root_item = &root->fs_info->tree_root->root_item;
834 super->root = root_item->bytenr;
835 super->generation = root_item->generation;
836 super->root_level = root_item->level;
839 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
841 int ret = 0;
842 spin_lock(&info->new_trans_lock);
843 if (info->running_transaction)
844 ret = info->running_transaction->in_commit;
845 spin_unlock(&info->new_trans_lock);
846 return ret;
849 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
851 int ret = 0;
852 spin_lock(&info->new_trans_lock);
853 if (info->running_transaction)
854 ret = info->running_transaction->blocked;
855 spin_unlock(&info->new_trans_lock);
856 return ret;
859 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
860 struct btrfs_root *root)
862 unsigned long joined = 0;
863 unsigned long timeout = 1;
864 struct btrfs_transaction *cur_trans;
865 struct btrfs_transaction *prev_trans = NULL;
866 DEFINE_WAIT(wait);
867 int ret;
868 int should_grow = 0;
869 unsigned long now = get_seconds();
870 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
872 btrfs_run_ordered_operations(root, 0);
874 /* make a pass through all the delayed refs we have so far
875 * any runnings procs may add more while we are here
877 ret = btrfs_run_delayed_refs(trans, root, 0);
878 BUG_ON(ret);
880 btrfs_trans_release_metadata(trans, root);
882 cur_trans = trans->transaction;
884 * set the flushing flag so procs in this transaction have to
885 * start sending their work down.
887 cur_trans->delayed_refs.flushing = 1;
889 ret = btrfs_run_delayed_refs(trans, root, 0);
890 BUG_ON(ret);
892 mutex_lock(&root->fs_info->trans_mutex);
893 if (cur_trans->in_commit) {
894 cur_trans->use_count++;
895 mutex_unlock(&root->fs_info->trans_mutex);
896 btrfs_end_transaction(trans, root);
898 ret = wait_for_commit(root, cur_trans);
899 BUG_ON(ret);
901 mutex_lock(&root->fs_info->trans_mutex);
902 put_transaction(cur_trans);
903 mutex_unlock(&root->fs_info->trans_mutex);
905 return 0;
908 trans->transaction->in_commit = 1;
909 trans->transaction->blocked = 1;
910 if (cur_trans->list.prev != &root->fs_info->trans_list) {
911 prev_trans = list_entry(cur_trans->list.prev,
912 struct btrfs_transaction, list);
913 if (!prev_trans->commit_done) {
914 prev_trans->use_count++;
915 mutex_unlock(&root->fs_info->trans_mutex);
917 wait_for_commit(root, prev_trans);
919 mutex_lock(&root->fs_info->trans_mutex);
920 put_transaction(prev_trans);
924 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
925 should_grow = 1;
927 do {
928 int snap_pending = 0;
929 joined = cur_trans->num_joined;
930 if (!list_empty(&trans->transaction->pending_snapshots))
931 snap_pending = 1;
933 WARN_ON(cur_trans != trans->transaction);
934 if (cur_trans->num_writers > 1)
935 timeout = MAX_SCHEDULE_TIMEOUT;
936 else if (should_grow)
937 timeout = 1;
939 mutex_unlock(&root->fs_info->trans_mutex);
941 if (flush_on_commit || snap_pending) {
942 btrfs_start_delalloc_inodes(root, 1);
943 ret = btrfs_wait_ordered_extents(root, 0, 1);
944 BUG_ON(ret);
948 * rename don't use btrfs_join_transaction, so, once we
949 * set the transaction to blocked above, we aren't going
950 * to get any new ordered operations. We can safely run
951 * it here and no for sure that nothing new will be added
952 * to the list
954 btrfs_run_ordered_operations(root, 1);
956 prepare_to_wait(&cur_trans->writer_wait, &wait,
957 TASK_UNINTERRUPTIBLE);
959 smp_mb();
960 if (cur_trans->num_writers > 1 || should_grow)
961 schedule_timeout(timeout);
963 mutex_lock(&root->fs_info->trans_mutex);
964 finish_wait(&cur_trans->writer_wait, &wait);
965 } while (cur_trans->num_writers > 1 ||
966 (should_grow && cur_trans->num_joined != joined));
968 ret = create_pending_snapshots(trans, root->fs_info);
969 BUG_ON(ret);
971 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
972 BUG_ON(ret);
974 WARN_ON(cur_trans != trans->transaction);
976 /* btrfs_commit_tree_roots is responsible for getting the
977 * various roots consistent with each other. Every pointer
978 * in the tree of tree roots has to point to the most up to date
979 * root for every subvolume and other tree. So, we have to keep
980 * the tree logging code from jumping in and changing any
981 * of the trees.
983 * At this point in the commit, there can't be any tree-log
984 * writers, but a little lower down we drop the trans mutex
985 * and let new people in. By holding the tree_log_mutex
986 * from now until after the super is written, we avoid races
987 * with the tree-log code.
989 mutex_lock(&root->fs_info->tree_log_mutex);
991 ret = commit_fs_roots(trans, root);
992 BUG_ON(ret);
994 /* commit_fs_roots gets rid of all the tree log roots, it is now
995 * safe to free the root of tree log roots
997 btrfs_free_log_root_tree(trans, root->fs_info);
999 ret = commit_cowonly_roots(trans, root);
1000 BUG_ON(ret);
1002 btrfs_prepare_extent_commit(trans, root);
1004 cur_trans = root->fs_info->running_transaction;
1005 spin_lock(&root->fs_info->new_trans_lock);
1006 root->fs_info->running_transaction = NULL;
1007 spin_unlock(&root->fs_info->new_trans_lock);
1009 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1010 root->fs_info->tree_root->node);
1011 switch_commit_root(root->fs_info->tree_root);
1013 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1014 root->fs_info->chunk_root->node);
1015 switch_commit_root(root->fs_info->chunk_root);
1017 update_super_roots(root);
1019 if (!root->fs_info->log_root_recovering) {
1020 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1021 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1024 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1025 sizeof(root->fs_info->super_copy));
1027 trans->transaction->blocked = 0;
1029 wake_up(&root->fs_info->transaction_wait);
1031 mutex_unlock(&root->fs_info->trans_mutex);
1032 ret = btrfs_write_and_wait_transaction(trans, root);
1033 BUG_ON(ret);
1034 write_ctree_super(trans, root, 0);
1037 * the super is written, we can safely allow the tree-loggers
1038 * to go about their business
1040 mutex_unlock(&root->fs_info->tree_log_mutex);
1042 btrfs_finish_extent_commit(trans, root);
1044 mutex_lock(&root->fs_info->trans_mutex);
1046 cur_trans->commit_done = 1;
1048 root->fs_info->last_trans_committed = cur_trans->transid;
1050 wake_up(&cur_trans->commit_wait);
1052 put_transaction(cur_trans);
1053 put_transaction(cur_trans);
1055 mutex_unlock(&root->fs_info->trans_mutex);
1057 if (current->journal_info == trans)
1058 current->journal_info = NULL;
1060 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1062 if (current != root->fs_info->transaction_kthread)
1063 btrfs_run_delayed_iputs(root);
1065 return ret;
1069 * interface function to delete all the snapshots we have scheduled for deletion
1071 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1073 LIST_HEAD(list);
1074 struct btrfs_fs_info *fs_info = root->fs_info;
1076 mutex_lock(&fs_info->trans_mutex);
1077 list_splice_init(&fs_info->dead_roots, &list);
1078 mutex_unlock(&fs_info->trans_mutex);
1080 while (!list_empty(&list)) {
1081 root = list_entry(list.next, struct btrfs_root, root_list);
1082 list_del(&root->root_list);
1084 if (btrfs_header_backref_rev(root->node) <
1085 BTRFS_MIXED_BACKREF_REV)
1086 btrfs_drop_snapshot(root, NULL, 0);
1087 else
1088 btrfs_drop_snapshot(root, NULL, 1);
1090 return 0;