GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / video / intelfb / intelfbhw.c
blob9395400ca03d07669faec6bbf542fa7bb57f4b53
1 /*
2 * intelfb
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
16 * Author: David Dawes
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/delay.h>
28 #include <linux/fb.h>
29 #include <linux/ioport.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/interrupt.h>
36 #include <asm/io.h>
38 #include "intelfb.h"
39 #include "intelfbhw.h"
41 struct pll_min_max {
42 int min_m, max_m, min_m1, max_m1;
43 int min_m2, max_m2, min_n, max_n;
44 int min_p, max_p, min_p1, max_p1;
45 int min_vco, max_vco, p_transition_clk, ref_clk;
46 int p_inc_lo, p_inc_hi;
49 #define PLLS_I8xx 0
50 #define PLLS_I9xx 1
51 #define PLLS_MAX 2
53 static struct pll_min_max plls[PLLS_MAX] = {
54 { 108, 140, 18, 26,
55 6, 16, 3, 16,
56 4, 128, 0, 31,
57 930000, 1400000, 165000, 48000,
58 4, 2 }, /* I8xx */
60 { 75, 120, 10, 20,
61 5, 9, 4, 7,
62 5, 80, 1, 8,
63 1400000, 2800000, 200000, 96000,
64 10, 5 } /* I9xx */
67 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
69 u32 tmp;
70 if (!pdev || !dinfo)
71 return 1;
73 switch (pdev->device) {
74 case PCI_DEVICE_ID_INTEL_830M:
75 dinfo->name = "Intel(R) 830M";
76 dinfo->chipset = INTEL_830M;
77 dinfo->mobile = 1;
78 dinfo->pll_index = PLLS_I8xx;
79 return 0;
80 case PCI_DEVICE_ID_INTEL_845G:
81 dinfo->name = "Intel(R) 845G";
82 dinfo->chipset = INTEL_845G;
83 dinfo->mobile = 0;
84 dinfo->pll_index = PLLS_I8xx;
85 return 0;
86 case PCI_DEVICE_ID_INTEL_854:
87 dinfo->mobile = 1;
88 dinfo->name = "Intel(R) 854";
89 dinfo->chipset = INTEL_854;
90 return 0;
91 case PCI_DEVICE_ID_INTEL_85XGM:
92 tmp = 0;
93 dinfo->mobile = 1;
94 dinfo->pll_index = PLLS_I8xx;
95 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97 INTEL_85X_VARIANT_MASK) {
98 case INTEL_VAR_855GME:
99 dinfo->name = "Intel(R) 855GME";
100 dinfo->chipset = INTEL_855GME;
101 return 0;
102 case INTEL_VAR_855GM:
103 dinfo->name = "Intel(R) 855GM";
104 dinfo->chipset = INTEL_855GM;
105 return 0;
106 case INTEL_VAR_852GME:
107 dinfo->name = "Intel(R) 852GME";
108 dinfo->chipset = INTEL_852GME;
109 return 0;
110 case INTEL_VAR_852GM:
111 dinfo->name = "Intel(R) 852GM";
112 dinfo->chipset = INTEL_852GM;
113 return 0;
114 default:
115 dinfo->name = "Intel(R) 852GM/855GM";
116 dinfo->chipset = INTEL_85XGM;
117 return 0;
119 break;
120 case PCI_DEVICE_ID_INTEL_865G:
121 dinfo->name = "Intel(R) 865G";
122 dinfo->chipset = INTEL_865G;
123 dinfo->mobile = 0;
124 dinfo->pll_index = PLLS_I8xx;
125 return 0;
126 case PCI_DEVICE_ID_INTEL_915G:
127 dinfo->name = "Intel(R) 915G";
128 dinfo->chipset = INTEL_915G;
129 dinfo->mobile = 0;
130 dinfo->pll_index = PLLS_I9xx;
131 return 0;
132 case PCI_DEVICE_ID_INTEL_915GM:
133 dinfo->name = "Intel(R) 915GM";
134 dinfo->chipset = INTEL_915GM;
135 dinfo->mobile = 1;
136 dinfo->pll_index = PLLS_I9xx;
137 return 0;
138 case PCI_DEVICE_ID_INTEL_945G:
139 dinfo->name = "Intel(R) 945G";
140 dinfo->chipset = INTEL_945G;
141 dinfo->mobile = 0;
142 dinfo->pll_index = PLLS_I9xx;
143 return 0;
144 case PCI_DEVICE_ID_INTEL_945GM:
145 dinfo->name = "Intel(R) 945GM";
146 dinfo->chipset = INTEL_945GM;
147 dinfo->mobile = 1;
148 dinfo->pll_index = PLLS_I9xx;
149 return 0;
150 case PCI_DEVICE_ID_INTEL_945GME:
151 dinfo->name = "Intel(R) 945GME";
152 dinfo->chipset = INTEL_945GME;
153 dinfo->mobile = 1;
154 dinfo->pll_index = PLLS_I9xx;
155 return 0;
156 case PCI_DEVICE_ID_INTEL_965G:
157 dinfo->name = "Intel(R) 965G";
158 dinfo->chipset = INTEL_965G;
159 dinfo->mobile = 0;
160 dinfo->pll_index = PLLS_I9xx;
161 return 0;
162 case PCI_DEVICE_ID_INTEL_965GM:
163 dinfo->name = "Intel(R) 965GM";
164 dinfo->chipset = INTEL_965GM;
165 dinfo->mobile = 1;
166 dinfo->pll_index = PLLS_I9xx;
167 return 0;
168 default:
169 return 1;
173 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174 int *stolen_size)
176 struct pci_dev *bridge_dev;
177 u16 tmp;
178 int stolen_overhead;
180 if (!pdev || !aperture_size || !stolen_size)
181 return 1;
183 /* Find the bridge device. It is always 0:0.0 */
184 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
185 ERR_MSG("cannot find bridge device\n");
186 return 1;
189 /* Get the fb aperture size and "stolen" memory amount. */
190 tmp = 0;
191 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
192 pci_dev_put(bridge_dev);
194 switch (pdev->device) {
195 case PCI_DEVICE_ID_INTEL_915G:
196 case PCI_DEVICE_ID_INTEL_915GM:
197 case PCI_DEVICE_ID_INTEL_945G:
198 case PCI_DEVICE_ID_INTEL_945GM:
199 case PCI_DEVICE_ID_INTEL_945GME:
200 case PCI_DEVICE_ID_INTEL_965G:
201 case PCI_DEVICE_ID_INTEL_965GM:
202 /* 915, 945 and 965 chipsets support a 256MB aperture.
203 Aperture size is determined by inspected the
204 base address of the aperture. */
205 if (pci_resource_start(pdev, 2) & 0x08000000)
206 *aperture_size = MB(128);
207 else
208 *aperture_size = MB(256);
209 break;
210 default:
211 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
212 *aperture_size = MB(64);
213 else
214 *aperture_size = MB(128);
215 break;
218 /* Stolen memory size is reduced by the GTT and the popup.
219 GTT is 1K per MB of aperture size, and popup is 4K. */
220 stolen_overhead = (*aperture_size / MB(1)) + 4;
221 switch(pdev->device) {
222 case PCI_DEVICE_ID_INTEL_830M:
223 case PCI_DEVICE_ID_INTEL_845G:
224 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
225 case INTEL_830_GMCH_GMS_STOLEN_512:
226 *stolen_size = KB(512) - KB(stolen_overhead);
227 return 0;
228 case INTEL_830_GMCH_GMS_STOLEN_1024:
229 *stolen_size = MB(1) - KB(stolen_overhead);
230 return 0;
231 case INTEL_830_GMCH_GMS_STOLEN_8192:
232 *stolen_size = MB(8) - KB(stolen_overhead);
233 return 0;
234 case INTEL_830_GMCH_GMS_LOCAL:
235 ERR_MSG("only local memory found\n");
236 return 1;
237 case INTEL_830_GMCH_GMS_DISABLED:
238 ERR_MSG("video memory is disabled\n");
239 return 1;
240 default:
241 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
242 tmp & INTEL_830_GMCH_GMS_MASK);
243 return 1;
245 break;
246 default:
247 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
248 case INTEL_855_GMCH_GMS_STOLEN_1M:
249 *stolen_size = MB(1) - KB(stolen_overhead);
250 return 0;
251 case INTEL_855_GMCH_GMS_STOLEN_4M:
252 *stolen_size = MB(4) - KB(stolen_overhead);
253 return 0;
254 case INTEL_855_GMCH_GMS_STOLEN_8M:
255 *stolen_size = MB(8) - KB(stolen_overhead);
256 return 0;
257 case INTEL_855_GMCH_GMS_STOLEN_16M:
258 *stolen_size = MB(16) - KB(stolen_overhead);
259 return 0;
260 case INTEL_855_GMCH_GMS_STOLEN_32M:
261 *stolen_size = MB(32) - KB(stolen_overhead);
262 return 0;
263 case INTEL_915G_GMCH_GMS_STOLEN_48M:
264 *stolen_size = MB(48) - KB(stolen_overhead);
265 return 0;
266 case INTEL_915G_GMCH_GMS_STOLEN_64M:
267 *stolen_size = MB(64) - KB(stolen_overhead);
268 return 0;
269 case INTEL_855_GMCH_GMS_DISABLED:
270 ERR_MSG("video memory is disabled\n");
271 return 0;
272 default:
273 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
274 tmp & INTEL_855_GMCH_GMS_MASK);
275 return 1;
280 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
282 int dvo = 0;
284 if (INREG(LVDS) & PORT_ENABLE)
285 dvo |= LVDS_PORT;
286 if (INREG(DVOA) & PORT_ENABLE)
287 dvo |= DVOA_PORT;
288 if (INREG(DVOB) & PORT_ENABLE)
289 dvo |= DVOB_PORT;
290 if (INREG(DVOC) & PORT_ENABLE)
291 dvo |= DVOC_PORT;
293 return dvo;
296 const char * intelfbhw_dvo_to_string(int dvo)
298 if (dvo & DVOA_PORT)
299 return "DVO port A";
300 else if (dvo & DVOB_PORT)
301 return "DVO port B";
302 else if (dvo & DVOC_PORT)
303 return "DVO port C";
304 else if (dvo & LVDS_PORT)
305 return "LVDS port";
306 else
307 return NULL;
311 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
312 struct fb_var_screeninfo *var)
314 int bytes_per_pixel;
315 int tmp;
317 #if VERBOSE > 0
318 DBG_MSG("intelfbhw_validate_mode\n");
319 #endif
321 bytes_per_pixel = var->bits_per_pixel / 8;
322 if (bytes_per_pixel == 3)
323 bytes_per_pixel = 4;
325 /* Check if enough video memory. */
326 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
327 if (tmp > dinfo->fb.size) {
328 WRN_MSG("Not enough video ram for mode "
329 "(%d KByte vs %d KByte).\n",
330 BtoKB(tmp), BtoKB(dinfo->fb.size));
331 return 1;
334 /* Check if x/y limits are OK. */
335 if (var->xres - 1 > HACTIVE_MASK) {
336 WRN_MSG("X resolution too large (%d vs %d).\n",
337 var->xres, HACTIVE_MASK + 1);
338 return 1;
340 if (var->yres - 1 > VACTIVE_MASK) {
341 WRN_MSG("Y resolution too large (%d vs %d).\n",
342 var->yres, VACTIVE_MASK + 1);
343 return 1;
345 if (var->xres < 4) {
346 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
347 return 1;
349 if (var->yres < 4) {
350 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
351 return 1;
354 /* Check for doublescan modes. */
355 if (var->vmode & FB_VMODE_DOUBLE) {
356 WRN_MSG("Mode is double-scan.\n");
357 return 1;
360 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
361 WRN_MSG("Odd number of lines in interlaced mode\n");
362 return 1;
365 /* Check if clock is OK. */
366 tmp = 1000000000 / var->pixclock;
367 if (tmp < MIN_CLOCK) {
368 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
369 (tmp + 500) / 1000, MIN_CLOCK / 1000);
370 return 1;
372 if (tmp > MAX_CLOCK) {
373 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
374 (tmp + 500) / 1000, MAX_CLOCK / 1000);
375 return 1;
378 return 0;
381 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
383 struct intelfb_info *dinfo = GET_DINFO(info);
384 u32 offset, xoffset, yoffset;
386 #if VERBOSE > 0
387 DBG_MSG("intelfbhw_pan_display\n");
388 #endif
390 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
391 yoffset = var->yoffset;
393 if ((xoffset + var->xres > var->xres_virtual) ||
394 (yoffset + var->yres > var->yres_virtual))
395 return -EINVAL;
397 offset = (yoffset * dinfo->pitch) +
398 (xoffset * var->bits_per_pixel) / 8;
400 offset += dinfo->fb.offset << 12;
402 dinfo->vsync.pan_offset = offset;
403 if ((var->activate & FB_ACTIVATE_VBL) &&
404 !intelfbhw_enable_irq(dinfo))
405 dinfo->vsync.pan_display = 1;
406 else {
407 dinfo->vsync.pan_display = 0;
408 OUTREG(DSPABASE, offset);
411 return 0;
414 /* Blank the screen. */
415 void intelfbhw_do_blank(int blank, struct fb_info *info)
417 struct intelfb_info *dinfo = GET_DINFO(info);
418 u32 tmp;
420 #if VERBOSE > 0
421 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
422 #endif
424 /* Turn plane A on or off */
425 tmp = INREG(DSPACNTR);
426 if (blank)
427 tmp &= ~DISPPLANE_PLANE_ENABLE;
428 else
429 tmp |= DISPPLANE_PLANE_ENABLE;
430 OUTREG(DSPACNTR, tmp);
431 /* Flush */
432 tmp = INREG(DSPABASE);
433 OUTREG(DSPABASE, tmp);
435 /* Turn off/on the HW cursor */
436 #if VERBOSE > 0
437 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
438 #endif
439 if (dinfo->cursor_on) {
440 if (blank)
441 intelfbhw_cursor_hide(dinfo);
442 else
443 intelfbhw_cursor_show(dinfo);
444 dinfo->cursor_on = 1;
446 dinfo->cursor_blanked = blank;
448 /* Set DPMS level */
449 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
450 switch (blank) {
451 case FB_BLANK_UNBLANK:
452 case FB_BLANK_NORMAL:
453 tmp |= ADPA_DPMS_D0;
454 break;
455 case FB_BLANK_VSYNC_SUSPEND:
456 tmp |= ADPA_DPMS_D1;
457 break;
458 case FB_BLANK_HSYNC_SUSPEND:
459 tmp |= ADPA_DPMS_D2;
460 break;
461 case FB_BLANK_POWERDOWN:
462 tmp |= ADPA_DPMS_D3;
463 break;
465 OUTREG(ADPA, tmp);
467 return;
471 /* Check which pipe is connected to an active display plane. */
472 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
474 int pipe = -1;
476 /* keep old default behaviour - prefer PIPE_A */
477 if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
478 pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
479 pipe &= PIPE_MASK;
480 if (unlikely(pipe == PIPE_A))
481 return PIPE_A;
483 if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
484 pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
485 pipe &= PIPE_MASK;
486 if (likely(pipe == PIPE_A))
487 return PIPE_A;
489 /* Impossible that no pipe is selected - return PIPE_A */
490 WARN_ON(pipe == -1);
491 if (unlikely(pipe == -1))
492 pipe = PIPE_A;
494 return pipe;
497 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
498 unsigned red, unsigned green, unsigned blue,
499 unsigned transp)
501 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
502 PALETTE_A : PALETTE_B;
504 #if VERBOSE > 0
505 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
506 regno, red, green, blue);
507 #endif
509 OUTREG(palette_reg + (regno << 2),
510 (red << PALETTE_8_RED_SHIFT) |
511 (green << PALETTE_8_GREEN_SHIFT) |
512 (blue << PALETTE_8_BLUE_SHIFT));
516 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
517 struct intelfb_hwstate *hw, int flag)
519 int i;
521 #if VERBOSE > 0
522 DBG_MSG("intelfbhw_read_hw_state\n");
523 #endif
525 if (!hw || !dinfo)
526 return -1;
528 /* Read in as much of the HW state as possible. */
529 hw->vga0_divisor = INREG(VGA0_DIVISOR);
530 hw->vga1_divisor = INREG(VGA1_DIVISOR);
531 hw->vga_pd = INREG(VGAPD);
532 hw->dpll_a = INREG(DPLL_A);
533 hw->dpll_b = INREG(DPLL_B);
534 hw->fpa0 = INREG(FPA0);
535 hw->fpa1 = INREG(FPA1);
536 hw->fpb0 = INREG(FPB0);
537 hw->fpb1 = INREG(FPB1);
539 if (flag == 1)
540 return flag;
543 if (flag == 2)
544 return flag;
546 hw->htotal_a = INREG(HTOTAL_A);
547 hw->hblank_a = INREG(HBLANK_A);
548 hw->hsync_a = INREG(HSYNC_A);
549 hw->vtotal_a = INREG(VTOTAL_A);
550 hw->vblank_a = INREG(VBLANK_A);
551 hw->vsync_a = INREG(VSYNC_A);
552 hw->src_size_a = INREG(SRC_SIZE_A);
553 hw->bclrpat_a = INREG(BCLRPAT_A);
554 hw->htotal_b = INREG(HTOTAL_B);
555 hw->hblank_b = INREG(HBLANK_B);
556 hw->hsync_b = INREG(HSYNC_B);
557 hw->vtotal_b = INREG(VTOTAL_B);
558 hw->vblank_b = INREG(VBLANK_B);
559 hw->vsync_b = INREG(VSYNC_B);
560 hw->src_size_b = INREG(SRC_SIZE_B);
561 hw->bclrpat_b = INREG(BCLRPAT_B);
563 if (flag == 3)
564 return flag;
566 hw->adpa = INREG(ADPA);
567 hw->dvoa = INREG(DVOA);
568 hw->dvob = INREG(DVOB);
569 hw->dvoc = INREG(DVOC);
570 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
571 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
572 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
573 hw->lvds = INREG(LVDS);
575 if (flag == 4)
576 return flag;
578 hw->pipe_a_conf = INREG(PIPEACONF);
579 hw->pipe_b_conf = INREG(PIPEBCONF);
580 hw->disp_arb = INREG(DISPARB);
582 if (flag == 5)
583 return flag;
585 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
586 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
587 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
588 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
590 if (flag == 6)
591 return flag;
593 for (i = 0; i < 4; i++) {
594 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
595 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
598 if (flag == 7)
599 return flag;
601 hw->cursor_size = INREG(CURSOR_SIZE);
603 if (flag == 8)
604 return flag;
606 hw->disp_a_ctrl = INREG(DSPACNTR);
607 hw->disp_b_ctrl = INREG(DSPBCNTR);
608 hw->disp_a_base = INREG(DSPABASE);
609 hw->disp_b_base = INREG(DSPBBASE);
610 hw->disp_a_stride = INREG(DSPASTRIDE);
611 hw->disp_b_stride = INREG(DSPBSTRIDE);
613 if (flag == 9)
614 return flag;
616 hw->vgacntrl = INREG(VGACNTRL);
618 if (flag == 10)
619 return flag;
621 hw->add_id = INREG(ADD_ID);
623 if (flag == 11)
624 return flag;
626 for (i = 0; i < 7; i++) {
627 hw->swf0x[i] = INREG(SWF00 + (i << 2));
628 hw->swf1x[i] = INREG(SWF10 + (i << 2));
629 if (i < 3)
630 hw->swf3x[i] = INREG(SWF30 + (i << 2));
633 for (i = 0; i < 8; i++)
634 hw->fence[i] = INREG(FENCE + (i << 2));
636 hw->instpm = INREG(INSTPM);
637 hw->mem_mode = INREG(MEM_MODE);
638 hw->fw_blc_0 = INREG(FW_BLC_0);
639 hw->fw_blc_1 = INREG(FW_BLC_1);
641 hw->hwstam = INREG16(HWSTAM);
642 hw->ier = INREG16(IER);
643 hw->iir = INREG16(IIR);
644 hw->imr = INREG16(IMR);
646 return 0;
650 static int calc_vclock3(int index, int m, int n, int p)
652 if (p == 0 || n == 0)
653 return 0;
654 return plls[index].ref_clk * m / n / p;
657 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
658 int lvds)
660 struct pll_min_max *pll = &plls[index];
661 u32 m, vco, p;
663 m = (5 * (m1 + 2)) + (m2 + 2);
664 n += 2;
665 vco = pll->ref_clk * m / n;
667 if (index == PLLS_I8xx)
668 p = ((p1 + 2) * (1 << (p2 + 1)));
669 else
670 p = ((p1) * (p2 ? 5 : 10));
671 return vco / p;
674 #if REGDUMP
675 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
676 int *o_p1, int *o_p2)
678 int p1, p2;
680 if (IS_I9XX(dinfo)) {
681 if (dpll & DPLL_P1_FORCE_DIV2)
682 p1 = 1;
683 else
684 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
686 p1 = ffs(p1);
688 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
689 } else {
690 if (dpll & DPLL_P1_FORCE_DIV2)
691 p1 = 0;
692 else
693 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
694 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
697 *o_p1 = p1;
698 *o_p2 = p2;
700 #endif
703 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
704 struct intelfb_hwstate *hw)
706 #if REGDUMP
707 int i, m1, m2, n, p1, p2;
708 int index = dinfo->pll_index;
709 DBG_MSG("intelfbhw_print_hw_state\n");
711 if (!hw)
712 return;
713 /* Read in as much of the HW state as possible. */
714 printk("hw state dump start\n");
715 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
716 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
717 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
718 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
719 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
720 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
722 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
724 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
725 m1, m2, n, p1, p2);
726 printk(" VGA0: clock is %d\n",
727 calc_vclock(index, m1, m2, n, p1, p2, 0));
729 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
730 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
731 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
733 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
734 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
735 m1, m2, n, p1, p2);
736 printk(" VGA1: clock is %d\n",
737 calc_vclock(index, m1, m2, n, p1, p2, 0));
739 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
740 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
741 printk(" FPA0: 0x%08x\n", hw->fpa0);
742 printk(" FPA1: 0x%08x\n", hw->fpa1);
743 printk(" FPB0: 0x%08x\n", hw->fpb0);
744 printk(" FPB1: 0x%08x\n", hw->fpb1);
746 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
747 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
748 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
750 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
752 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
753 m1, m2, n, p1, p2);
754 printk(" PLLA0: clock is %d\n",
755 calc_vclock(index, m1, m2, n, p1, p2, 0));
757 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
758 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
759 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
761 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
763 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
764 m1, m2, n, p1, p2);
765 printk(" PLLA1: clock is %d\n",
766 calc_vclock(index, m1, m2, n, p1, p2, 0));
769 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
770 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
771 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
772 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
773 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
774 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
775 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
776 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
777 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
778 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
779 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
780 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
781 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
782 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
783 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
784 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
786 printk(" ADPA: 0x%08x\n", hw->adpa);
787 printk(" DVOA: 0x%08x\n", hw->dvoa);
788 printk(" DVOB: 0x%08x\n", hw->dvob);
789 printk(" DVOC: 0x%08x\n", hw->dvoc);
790 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
791 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
792 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
793 printk(" LVDS: 0x%08x\n", hw->lvds);
795 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
796 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
797 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
799 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
800 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
801 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
802 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
804 printk(" CURSOR_A_PALETTE: ");
805 for (i = 0; i < 4; i++) {
806 printk("0x%08x", hw->cursor_a_palette[i]);
807 if (i < 3)
808 printk(", ");
810 printk("\n");
811 printk(" CURSOR_B_PALETTE: ");
812 for (i = 0; i < 4; i++) {
813 printk("0x%08x", hw->cursor_b_palette[i]);
814 if (i < 3)
815 printk(", ");
817 printk("\n");
819 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
821 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
822 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
823 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
824 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
825 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
826 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
828 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
829 printk(" ADD_ID: 0x%08x\n", hw->add_id);
831 for (i = 0; i < 7; i++) {
832 printk(" SWF0%d 0x%08x\n", i,
833 hw->swf0x[i]);
835 for (i = 0; i < 7; i++) {
836 printk(" SWF1%d 0x%08x\n", i,
837 hw->swf1x[i]);
839 for (i = 0; i < 3; i++) {
840 printk(" SWF3%d 0x%08x\n", i,
841 hw->swf3x[i]);
843 for (i = 0; i < 8; i++)
844 printk(" FENCE%d 0x%08x\n", i,
845 hw->fence[i]);
847 printk(" INSTPM 0x%08x\n", hw->instpm);
848 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
849 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
850 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
852 printk(" HWSTAM 0x%04x\n", hw->hwstam);
853 printk(" IER 0x%04x\n", hw->ier);
854 printk(" IIR 0x%04x\n", hw->iir);
855 printk(" IMR 0x%04x\n", hw->imr);
856 printk("hw state dump end\n");
857 #endif
862 /* Split the M parameter into M1 and M2. */
863 static int splitm(int index, unsigned int m, unsigned int *retm1,
864 unsigned int *retm2)
866 int m1, m2;
867 int testm;
868 struct pll_min_max *pll = &plls[index];
870 /* no point optimising too much - brute force m */
871 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
872 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
873 testm = (5 * (m1 + 2)) + (m2 + 2);
874 if (testm == m) {
875 *retm1 = (unsigned int)m1;
876 *retm2 = (unsigned int)m2;
877 return 0;
881 return 1;
884 /* Split the P parameter into P1 and P2. */
885 static int splitp(int index, unsigned int p, unsigned int *retp1,
886 unsigned int *retp2)
888 int p1, p2;
889 struct pll_min_max *pll = &plls[index];
891 if (index == PLLS_I9xx) {
892 p2 = (p % 10) ? 1 : 0;
894 p1 = p / (p2 ? 5 : 10);
896 *retp1 = (unsigned int)p1;
897 *retp2 = (unsigned int)p2;
898 return 0;
901 if (p % 4 == 0)
902 p2 = 1;
903 else
904 p2 = 0;
905 p1 = (p / (1 << (p2 + 1))) - 2;
906 if (p % 4 == 0 && p1 < pll->min_p1) {
907 p2 = 0;
908 p1 = (p / (1 << (p2 + 1))) - 2;
910 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
911 (p1 + 2) * (1 << (p2 + 1)) != p) {
912 return 1;
913 } else {
914 *retp1 = (unsigned int)p1;
915 *retp2 = (unsigned int)p2;
916 return 0;
920 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
921 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
923 u32 m1, m2, n, p1, p2, n1, testm;
924 u32 f_vco, p, p_best = 0, m, f_out = 0;
925 u32 err_max, err_target, err_best = 10000000;
926 u32 n_best = 0, m_best = 0, f_best, f_err;
927 u32 p_min, p_max, p_inc, div_max;
928 struct pll_min_max *pll = &plls[index];
930 /* Accept 0.5% difference, but aim for 0.1% */
931 err_max = 5 * clock / 1000;
932 err_target = clock / 1000;
934 DBG_MSG("Clock is %d\n", clock);
936 div_max = pll->max_vco / clock;
938 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
939 p_min = p_inc;
940 p_max = ROUND_DOWN_TO(div_max, p_inc);
941 if (p_min < pll->min_p)
942 p_min = pll->min_p;
943 if (p_max > pll->max_p)
944 p_max = pll->max_p;
946 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
948 p = p_min;
949 do {
950 if (splitp(index, p, &p1, &p2)) {
951 WRN_MSG("cannot split p = %d\n", p);
952 p += p_inc;
953 continue;
955 n = pll->min_n;
956 f_vco = clock * p;
958 do {
959 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
960 if (m < pll->min_m)
961 m = pll->min_m + 1;
962 if (m > pll->max_m)
963 m = pll->max_m - 1;
964 for (testm = m - 1; testm <= m; testm++) {
965 f_out = calc_vclock3(index, testm, n, p);
966 if (splitm(index, testm, &m1, &m2)) {
967 WRN_MSG("cannot split m = %d\n",
968 testm);
969 continue;
971 if (clock > f_out)
972 f_err = clock - f_out;
973 else/* slightly bias the error for bigger clocks */
974 f_err = f_out - clock + 1;
976 if (f_err < err_best) {
977 m_best = testm;
978 n_best = n;
979 p_best = p;
980 f_best = f_out;
981 err_best = f_err;
984 n++;
985 } while ((n <= pll->max_n) && (f_out >= clock));
986 p += p_inc;
987 } while ((p <= p_max));
989 if (!m_best) {
990 WRN_MSG("cannot find parameters for clock %d\n", clock);
991 return 1;
993 m = m_best;
994 n = n_best;
995 p = p_best;
996 splitm(index, m, &m1, &m2);
997 splitp(index, p, &p1, &p2);
998 n1 = n - 2;
1000 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1001 "f: %d (%d), VCO: %d\n",
1002 m, m1, m2, n, n1, p, p1, p2,
1003 calc_vclock3(index, m, n, p),
1004 calc_vclock(index, m1, m2, n1, p1, p2, 0),
1005 calc_vclock3(index, m, n, p) * p);
1006 *retm1 = m1;
1007 *retm2 = m2;
1008 *retn = n1;
1009 *retp1 = p1;
1010 *retp2 = p2;
1011 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1013 return 0;
1016 static __inline__ int check_overflow(u32 value, u32 limit,
1017 const char *description)
1019 if (value > limit) {
1020 WRN_MSG("%s value %d exceeds limit %d\n",
1021 description, value, limit);
1022 return 1;
1024 return 0;
1027 /* It is assumed that hw is filled in with the initial state information. */
1028 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1029 struct intelfb_hwstate *hw,
1030 struct fb_var_screeninfo *var)
1032 int pipe = intelfbhw_active_pipe(hw);
1033 u32 *dpll, *fp0, *fp1;
1034 u32 m1, m2, n, p1, p2, clock_target, clock;
1035 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1036 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1037 u32 vsync_pol, hsync_pol;
1038 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1039 u32 stride_alignment;
1041 DBG_MSG("intelfbhw_mode_to_hw\n");
1043 /* Disable VGA */
1044 hw->vgacntrl |= VGA_DISABLE;
1046 /* Set which pipe's registers will be set. */
1047 if (pipe == PIPE_B) {
1048 dpll = &hw->dpll_b;
1049 fp0 = &hw->fpb0;
1050 fp1 = &hw->fpb1;
1051 hs = &hw->hsync_b;
1052 hb = &hw->hblank_b;
1053 ht = &hw->htotal_b;
1054 vs = &hw->vsync_b;
1055 vb = &hw->vblank_b;
1056 vt = &hw->vtotal_b;
1057 ss = &hw->src_size_b;
1058 pipe_conf = &hw->pipe_b_conf;
1059 } else {
1060 dpll = &hw->dpll_a;
1061 fp0 = &hw->fpa0;
1062 fp1 = &hw->fpa1;
1063 hs = &hw->hsync_a;
1064 hb = &hw->hblank_a;
1065 ht = &hw->htotal_a;
1066 vs = &hw->vsync_a;
1067 vb = &hw->vblank_a;
1068 vt = &hw->vtotal_a;
1069 ss = &hw->src_size_a;
1070 pipe_conf = &hw->pipe_a_conf;
1073 /* Use ADPA register for sync control. */
1074 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1076 /* sync polarity */
1077 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1078 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1079 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1080 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1081 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1082 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1083 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1084 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1086 /* Connect correct pipe to the analog port DAC */
1087 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1088 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1090 /* Set DPMS state to D0 (on) */
1091 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1092 hw->adpa |= ADPA_DPMS_D0;
1094 hw->adpa |= ADPA_DAC_ENABLE;
1096 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1097 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1098 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1100 /* Desired clock in kHz */
1101 clock_target = 1000000000 / var->pixclock;
1103 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1104 &n, &p1, &p2, &clock)) {
1105 WRN_MSG("calc_pll_params failed\n");
1106 return 1;
1109 /* Check for overflow. */
1110 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1111 return 1;
1112 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1113 return 1;
1114 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1115 return 1;
1116 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1117 return 1;
1118 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1119 return 1;
1121 *dpll &= ~DPLL_P1_FORCE_DIV2;
1122 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1123 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1125 if (IS_I9XX(dinfo)) {
1126 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1127 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1128 } else
1129 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1131 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1132 (m1 << FP_M1_DIVISOR_SHIFT) |
1133 (m2 << FP_M2_DIVISOR_SHIFT);
1134 *fp1 = *fp0;
1136 hw->dvob &= ~PORT_ENABLE;
1137 hw->dvoc &= ~PORT_ENABLE;
1139 /* Use display plane A. */
1140 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1141 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1142 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1143 switch (intelfb_var_to_depth(var)) {
1144 case 8:
1145 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1146 break;
1147 case 15:
1148 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1149 break;
1150 case 16:
1151 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1152 break;
1153 case 24:
1154 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1155 break;
1157 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1158 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1160 /* Set CRTC registers. */
1161 hactive = var->xres;
1162 hsync_start = hactive + var->right_margin;
1163 hsync_end = hsync_start + var->hsync_len;
1164 htotal = hsync_end + var->left_margin;
1165 hblank_start = hactive;
1166 hblank_end = htotal;
1168 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1169 hactive, hsync_start, hsync_end, htotal, hblank_start,
1170 hblank_end);
1172 vactive = var->yres;
1173 if (var->vmode & FB_VMODE_INTERLACED)
1174 vactive--; /* the chip adds 2 halflines automatically */
1175 vsync_start = vactive + var->lower_margin;
1176 vsync_end = vsync_start + var->vsync_len;
1177 vtotal = vsync_end + var->upper_margin;
1178 vblank_start = vactive;
1179 vblank_end = vtotal;
1180 vblank_end = vsync_end + 1;
1182 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1183 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1184 vblank_end);
1186 /* Adjust for register values, and check for overflow. */
1187 hactive--;
1188 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1189 return 1;
1190 hsync_start--;
1191 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1192 return 1;
1193 hsync_end--;
1194 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1195 return 1;
1196 htotal--;
1197 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1198 return 1;
1199 hblank_start--;
1200 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1201 return 1;
1202 hblank_end--;
1203 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1204 return 1;
1206 vactive--;
1207 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1208 return 1;
1209 vsync_start--;
1210 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1211 return 1;
1212 vsync_end--;
1213 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1214 return 1;
1215 vtotal--;
1216 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1217 return 1;
1218 vblank_start--;
1219 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1220 return 1;
1221 vblank_end--;
1222 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1223 return 1;
1225 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1226 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1227 (hblank_end << HSYNCEND_SHIFT);
1228 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1230 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1231 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1232 (vblank_end << VSYNCEND_SHIFT);
1233 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1234 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1235 (vactive << SRC_SIZE_VERT_SHIFT);
1237 hw->disp_a_stride = dinfo->pitch;
1238 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1240 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1241 var->xoffset * var->bits_per_pixel / 8;
1243 hw->disp_a_base += dinfo->fb.offset << 12;
1245 /* Check stride alignment. */
1246 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1247 STRIDE_ALIGNMENT;
1248 if (hw->disp_a_stride % stride_alignment != 0) {
1249 WRN_MSG("display stride %d has bad alignment %d\n",
1250 hw->disp_a_stride, stride_alignment);
1251 return 1;
1254 /* Set the palette to 8-bit mode. */
1255 *pipe_conf &= ~PIPECONF_GAMMA;
1257 if (var->vmode & FB_VMODE_INTERLACED)
1258 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1259 else
1260 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1262 return 0;
1265 /* Program a (non-VGA) video mode. */
1266 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1267 const struct intelfb_hwstate *hw, int blank)
1269 u32 tmp;
1270 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1271 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1272 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1273 u32 hsync_reg, htotal_reg, hblank_reg;
1274 u32 vsync_reg, vtotal_reg, vblank_reg;
1275 u32 src_size_reg;
1276 u32 count, tmp_val[3];
1278 /* Assume single pipe */
1280 #if VERBOSE > 0
1281 DBG_MSG("intelfbhw_program_mode\n");
1282 #endif
1284 /* Disable VGA */
1285 tmp = INREG(VGACNTRL);
1286 tmp |= VGA_DISABLE;
1287 OUTREG(VGACNTRL, tmp);
1289 dinfo->pipe = intelfbhw_active_pipe(hw);
1291 if (dinfo->pipe == PIPE_B) {
1292 dpll = &hw->dpll_b;
1293 fp0 = &hw->fpb0;
1294 fp1 = &hw->fpb1;
1295 pipe_conf = &hw->pipe_b_conf;
1296 hs = &hw->hsync_b;
1297 hb = &hw->hblank_b;
1298 ht = &hw->htotal_b;
1299 vs = &hw->vsync_b;
1300 vb = &hw->vblank_b;
1301 vt = &hw->vtotal_b;
1302 ss = &hw->src_size_b;
1303 dpll_reg = DPLL_B;
1304 fp0_reg = FPB0;
1305 fp1_reg = FPB1;
1306 pipe_conf_reg = PIPEBCONF;
1307 pipe_stat_reg = PIPEBSTAT;
1308 hsync_reg = HSYNC_B;
1309 htotal_reg = HTOTAL_B;
1310 hblank_reg = HBLANK_B;
1311 vsync_reg = VSYNC_B;
1312 vtotal_reg = VTOTAL_B;
1313 vblank_reg = VBLANK_B;
1314 src_size_reg = SRC_SIZE_B;
1315 } else {
1316 dpll = &hw->dpll_a;
1317 fp0 = &hw->fpa0;
1318 fp1 = &hw->fpa1;
1319 pipe_conf = &hw->pipe_a_conf;
1320 hs = &hw->hsync_a;
1321 hb = &hw->hblank_a;
1322 ht = &hw->htotal_a;
1323 vs = &hw->vsync_a;
1324 vb = &hw->vblank_a;
1325 vt = &hw->vtotal_a;
1326 ss = &hw->src_size_a;
1327 dpll_reg = DPLL_A;
1328 fp0_reg = FPA0;
1329 fp1_reg = FPA1;
1330 pipe_conf_reg = PIPEACONF;
1331 pipe_stat_reg = PIPEASTAT;
1332 hsync_reg = HSYNC_A;
1333 htotal_reg = HTOTAL_A;
1334 hblank_reg = HBLANK_A;
1335 vsync_reg = VSYNC_A;
1336 vtotal_reg = VTOTAL_A;
1337 vblank_reg = VBLANK_A;
1338 src_size_reg = SRC_SIZE_A;
1341 /* turn off pipe */
1342 tmp = INREG(pipe_conf_reg);
1343 tmp &= ~PIPECONF_ENABLE;
1344 OUTREG(pipe_conf_reg, tmp);
1346 count = 0;
1347 do {
1348 tmp_val[count % 3] = INREG(PIPEA_DSL);
1349 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1350 break;
1351 count++;
1352 udelay(1);
1353 if (count % 200 == 0) {
1354 tmp = INREG(pipe_conf_reg);
1355 tmp &= ~PIPECONF_ENABLE;
1356 OUTREG(pipe_conf_reg, tmp);
1358 } while (count < 2000);
1360 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1362 /* Disable planes A and B. */
1363 tmp = INREG(DSPACNTR);
1364 tmp &= ~DISPPLANE_PLANE_ENABLE;
1365 OUTREG(DSPACNTR, tmp);
1366 tmp = INREG(DSPBCNTR);
1367 tmp &= ~DISPPLANE_PLANE_ENABLE;
1368 OUTREG(DSPBCNTR, tmp);
1370 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1371 mdelay(20);
1373 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1374 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1375 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1377 /* Disable Sync */
1378 tmp = INREG(ADPA);
1379 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1380 tmp |= ADPA_DPMS_D3;
1381 OUTREG(ADPA, tmp);
1383 /* do some funky magic - xyzzy */
1384 OUTREG(0x61204, 0xabcd0000);
1386 /* turn off PLL */
1387 tmp = INREG(dpll_reg);
1388 tmp &= ~DPLL_VCO_ENABLE;
1389 OUTREG(dpll_reg, tmp);
1391 /* Set PLL parameters */
1392 OUTREG(fp0_reg, *fp0);
1393 OUTREG(fp1_reg, *fp1);
1395 /* Enable PLL */
1396 OUTREG(dpll_reg, *dpll);
1398 /* Set DVOs B/C */
1399 OUTREG(DVOB, hw->dvob);
1400 OUTREG(DVOC, hw->dvoc);
1402 /* undo funky magic */
1403 OUTREG(0x61204, 0x00000000);
1405 /* Set ADPA */
1406 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1407 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1409 /* Set pipe parameters */
1410 OUTREG(hsync_reg, *hs);
1411 OUTREG(hblank_reg, *hb);
1412 OUTREG(htotal_reg, *ht);
1413 OUTREG(vsync_reg, *vs);
1414 OUTREG(vblank_reg, *vb);
1415 OUTREG(vtotal_reg, *vt);
1416 OUTREG(src_size_reg, *ss);
1418 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1419 FB_VMODE_ODD_FLD_FIRST)) {
1420 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1421 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1422 break;
1423 case FB_VMODE_INTERLACED: /* even lines first */
1424 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1425 break;
1426 default: /* non-interlaced */
1427 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1429 /* Enable pipe */
1430 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1432 /* Enable sync */
1433 tmp = INREG(ADPA);
1434 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1435 tmp |= ADPA_DPMS_D0;
1436 OUTREG(ADPA, tmp);
1438 /* setup display plane */
1439 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1441 * i830M errata: the display plane must be enabled
1442 * to allow writes to the other bits in the plane
1443 * control register.
1445 tmp = INREG(DSPACNTR);
1446 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1447 tmp |= DISPPLANE_PLANE_ENABLE;
1448 OUTREG(DSPACNTR, tmp);
1449 OUTREG(DSPACNTR,
1450 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1451 mdelay(1);
1455 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1456 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1457 OUTREG(DSPABASE, hw->disp_a_base);
1459 /* Enable plane */
1460 if (!blank) {
1461 tmp = INREG(DSPACNTR);
1462 tmp |= DISPPLANE_PLANE_ENABLE;
1463 OUTREG(DSPACNTR, tmp);
1464 OUTREG(DSPABASE, hw->disp_a_base);
1467 return 0;
1470 /* forward declarations */
1471 static void refresh_ring(struct intelfb_info *dinfo);
1472 static void reset_state(struct intelfb_info *dinfo);
1473 static void do_flush(struct intelfb_info *dinfo);
1475 static u32 get_ring_space(struct intelfb_info *dinfo)
1477 u32 ring_space;
1479 if (dinfo->ring_tail >= dinfo->ring_head)
1480 ring_space = dinfo->ring.size -
1481 (dinfo->ring_tail - dinfo->ring_head);
1482 else
1483 ring_space = dinfo->ring_head - dinfo->ring_tail;
1485 if (ring_space > RING_MIN_FREE)
1486 ring_space -= RING_MIN_FREE;
1487 else
1488 ring_space = 0;
1490 return ring_space;
1493 static int wait_ring(struct intelfb_info *dinfo, int n)
1495 int i = 0;
1496 unsigned long end;
1497 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1499 #if VERBOSE > 0
1500 DBG_MSG("wait_ring: %d\n", n);
1501 #endif
1503 end = jiffies + (HZ * 3);
1504 while (dinfo->ring_space < n) {
1505 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1506 dinfo->ring_space = get_ring_space(dinfo);
1508 if (dinfo->ring_head != last_head) {
1509 end = jiffies + (HZ * 3);
1510 last_head = dinfo->ring_head;
1512 i++;
1513 if (time_before(end, jiffies)) {
1514 if (!i) {
1515 /* Try again */
1516 reset_state(dinfo);
1517 refresh_ring(dinfo);
1518 do_flush(dinfo);
1519 end = jiffies + (HZ * 3);
1520 i = 1;
1521 } else {
1522 WRN_MSG("ring buffer : space: %d wanted %d\n",
1523 dinfo->ring_space, n);
1524 WRN_MSG("lockup - turning off hardware "
1525 "acceleration\n");
1526 dinfo->ring_lockup = 1;
1527 break;
1530 udelay(1);
1532 return i;
1535 static void do_flush(struct intelfb_info *dinfo)
1537 START_RING(2);
1538 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1539 OUT_RING(MI_NOOP);
1540 ADVANCE_RING();
1543 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1545 #if VERBOSE > 0
1546 DBG_MSG("intelfbhw_do_sync\n");
1547 #endif
1549 if (!dinfo->accel)
1550 return;
1553 * Send a flush, then wait until the ring is empty. This is what
1554 * the XFree86 driver does, and actually it doesn't seem a lot worse
1555 * than the recommended method (both have problems).
1557 do_flush(dinfo);
1558 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1559 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1562 static void refresh_ring(struct intelfb_info *dinfo)
1564 #if VERBOSE > 0
1565 DBG_MSG("refresh_ring\n");
1566 #endif
1568 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1569 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1570 dinfo->ring_space = get_ring_space(dinfo);
1573 static void reset_state(struct intelfb_info *dinfo)
1575 int i;
1576 u32 tmp;
1578 #if VERBOSE > 0
1579 DBG_MSG("reset_state\n");
1580 #endif
1582 for (i = 0; i < FENCE_NUM; i++)
1583 OUTREG(FENCE + (i << 2), 0);
1585 /* Flush the ring buffer if it's enabled. */
1586 tmp = INREG(PRI_RING_LENGTH);
1587 if (tmp & RING_ENABLE) {
1588 #if VERBOSE > 0
1589 DBG_MSG("reset_state: ring was enabled\n");
1590 #endif
1591 refresh_ring(dinfo);
1592 intelfbhw_do_sync(dinfo);
1593 DO_RING_IDLE();
1596 OUTREG(PRI_RING_LENGTH, 0);
1597 OUTREG(PRI_RING_HEAD, 0);
1598 OUTREG(PRI_RING_TAIL, 0);
1599 OUTREG(PRI_RING_START, 0);
1602 /* Stop the 2D engine, and turn off the ring buffer. */
1603 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1605 #if VERBOSE > 0
1606 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1607 dinfo->accel, dinfo->ring_active);
1608 #endif
1610 if (!dinfo->accel)
1611 return;
1613 dinfo->ring_active = 0;
1614 reset_state(dinfo);
1618 * Enable the ring buffer, and initialise the 2D engine.
1619 * It is assumed that the graphics engine has been stopped by previously
1620 * calling intelfb_2d_stop().
1622 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1624 #if VERBOSE > 0
1625 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1626 dinfo->accel, dinfo->ring_active);
1627 #endif
1629 if (!dinfo->accel)
1630 return;
1632 /* Initialise the primary ring buffer. */
1633 OUTREG(PRI_RING_LENGTH, 0);
1634 OUTREG(PRI_RING_TAIL, 0);
1635 OUTREG(PRI_RING_HEAD, 0);
1637 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1638 OUTREG(PRI_RING_LENGTH,
1639 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1640 RING_NO_REPORT | RING_ENABLE);
1641 refresh_ring(dinfo);
1642 dinfo->ring_active = 1;
1645 /* 2D fillrect (solid fill or invert) */
1646 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1647 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1649 u32 br00, br09, br13, br14, br16;
1651 #if VERBOSE > 0
1652 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1653 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1654 #endif
1656 br00 = COLOR_BLT_CMD;
1657 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1658 br13 = (rop << ROP_SHIFT) | pitch;
1659 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1660 br16 = color;
1662 switch (bpp) {
1663 case 8:
1664 br13 |= COLOR_DEPTH_8;
1665 break;
1666 case 16:
1667 br13 |= COLOR_DEPTH_16;
1668 break;
1669 case 32:
1670 br13 |= COLOR_DEPTH_32;
1671 br00 |= WRITE_ALPHA | WRITE_RGB;
1672 break;
1675 START_RING(6);
1676 OUT_RING(br00);
1677 OUT_RING(br13);
1678 OUT_RING(br14);
1679 OUT_RING(br09);
1680 OUT_RING(br16);
1681 OUT_RING(MI_NOOP);
1682 ADVANCE_RING();
1684 #if VERBOSE > 0
1685 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1686 dinfo->ring_tail, dinfo->ring_space);
1687 #endif
1690 void
1691 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1692 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1694 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1696 #if VERBOSE > 0
1697 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1698 curx, cury, dstx, dsty, w, h, pitch, bpp);
1699 #endif
1701 br00 = XY_SRC_COPY_BLT_CMD;
1702 br09 = dinfo->fb_start;
1703 br11 = (pitch << PITCH_SHIFT);
1704 br12 = dinfo->fb_start;
1705 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1706 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1707 br23 = ((dstx + w) << WIDTH_SHIFT) |
1708 ((dsty + h) << HEIGHT_SHIFT);
1709 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1711 switch (bpp) {
1712 case 8:
1713 br13 |= COLOR_DEPTH_8;
1714 break;
1715 case 16:
1716 br13 |= COLOR_DEPTH_16;
1717 break;
1718 case 32:
1719 br13 |= COLOR_DEPTH_32;
1720 br00 |= WRITE_ALPHA | WRITE_RGB;
1721 break;
1724 START_RING(8);
1725 OUT_RING(br00);
1726 OUT_RING(br13);
1727 OUT_RING(br22);
1728 OUT_RING(br23);
1729 OUT_RING(br09);
1730 OUT_RING(br26);
1731 OUT_RING(br11);
1732 OUT_RING(br12);
1733 ADVANCE_RING();
1736 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1737 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1738 u32 bpp)
1740 int nbytes, ndwords, pad, tmp;
1741 u32 br00, br09, br13, br18, br19, br22, br23;
1742 int dat, ix, iy, iw;
1743 int i, j;
1745 #if VERBOSE > 0
1746 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1747 #endif
1749 /* size in bytes of a padded scanline */
1750 nbytes = ROUND_UP_TO(w, 16) / 8;
1752 /* Total bytes of padded scanline data to write out. */
1753 nbytes = nbytes * h;
1756 * Check if the glyph data exceeds the immediate mode limit.
1757 * It would take a large font (1K pixels) to hit this limit.
1759 if (nbytes > MAX_MONO_IMM_SIZE)
1760 return 0;
1762 /* Src data is packaged a dword (32-bit) at a time. */
1763 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1766 * Ring has to be padded to a quad word. But because the command starts
1767 with 7 bytes, pad only if there is an even number of ndwords
1769 pad = !(ndwords % 2);
1771 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1772 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1773 br09 = dinfo->fb_start;
1774 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1775 br18 = bg;
1776 br19 = fg;
1777 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1778 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1780 switch (bpp) {
1781 case 8:
1782 br13 |= COLOR_DEPTH_8;
1783 break;
1784 case 16:
1785 br13 |= COLOR_DEPTH_16;
1786 break;
1787 case 32:
1788 br13 |= COLOR_DEPTH_32;
1789 br00 |= WRITE_ALPHA | WRITE_RGB;
1790 break;
1793 START_RING(8 + ndwords);
1794 OUT_RING(br00);
1795 OUT_RING(br13);
1796 OUT_RING(br22);
1797 OUT_RING(br23);
1798 OUT_RING(br09);
1799 OUT_RING(br18);
1800 OUT_RING(br19);
1801 ix = iy = 0;
1802 iw = ROUND_UP_TO(w, 8) / 8;
1803 while (ndwords--) {
1804 dat = 0;
1805 for (j = 0; j < 2; ++j) {
1806 for (i = 0; i < 2; ++i) {
1807 if (ix != iw || i == 0)
1808 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1810 if (ix == iw && iy != (h-1)) {
1811 ix = 0;
1812 ++iy;
1815 OUT_RING(dat);
1817 if (pad)
1818 OUT_RING(MI_NOOP);
1819 ADVANCE_RING();
1821 return 1;
1824 /* HW cursor functions. */
1825 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1827 u32 tmp;
1829 #if VERBOSE > 0
1830 DBG_MSG("intelfbhw_cursor_init\n");
1831 #endif
1833 if (dinfo->mobile || IS_I9XX(dinfo)) {
1834 if (!dinfo->cursor.physical)
1835 return;
1836 tmp = INREG(CURSOR_A_CONTROL);
1837 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1838 CURSOR_MEM_TYPE_LOCAL |
1839 (1 << CURSOR_PIPE_SELECT_SHIFT));
1840 tmp |= CURSOR_MODE_DISABLE;
1841 OUTREG(CURSOR_A_CONTROL, tmp);
1842 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1843 } else {
1844 tmp = INREG(CURSOR_CONTROL);
1845 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1846 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1847 tmp = CURSOR_FORMAT_3C;
1848 OUTREG(CURSOR_CONTROL, tmp);
1849 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1850 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1851 (64 << CURSOR_SIZE_V_SHIFT);
1852 OUTREG(CURSOR_SIZE, tmp);
1856 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1858 u32 tmp;
1860 #if VERBOSE > 0
1861 DBG_MSG("intelfbhw_cursor_hide\n");
1862 #endif
1864 dinfo->cursor_on = 0;
1865 if (dinfo->mobile || IS_I9XX(dinfo)) {
1866 if (!dinfo->cursor.physical)
1867 return;
1868 tmp = INREG(CURSOR_A_CONTROL);
1869 tmp &= ~CURSOR_MODE_MASK;
1870 tmp |= CURSOR_MODE_DISABLE;
1871 OUTREG(CURSOR_A_CONTROL, tmp);
1872 /* Flush changes */
1873 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1874 } else {
1875 tmp = INREG(CURSOR_CONTROL);
1876 tmp &= ~CURSOR_ENABLE;
1877 OUTREG(CURSOR_CONTROL, tmp);
1881 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1883 u32 tmp;
1885 #if VERBOSE > 0
1886 DBG_MSG("intelfbhw_cursor_show\n");
1887 #endif
1889 dinfo->cursor_on = 1;
1891 if (dinfo->cursor_blanked)
1892 return;
1894 if (dinfo->mobile || IS_I9XX(dinfo)) {
1895 if (!dinfo->cursor.physical)
1896 return;
1897 tmp = INREG(CURSOR_A_CONTROL);
1898 tmp &= ~CURSOR_MODE_MASK;
1899 tmp |= CURSOR_MODE_64_4C_AX;
1900 OUTREG(CURSOR_A_CONTROL, tmp);
1901 /* Flush changes */
1902 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1903 } else {
1904 tmp = INREG(CURSOR_CONTROL);
1905 tmp |= CURSOR_ENABLE;
1906 OUTREG(CURSOR_CONTROL, tmp);
1910 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1912 u32 tmp;
1914 #if VERBOSE > 0
1915 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1916 #endif
1919 * Sets the position. The coordinates are assumed to already
1920 * have any offset adjusted. Assume that the cursor is never
1921 * completely off-screen, and that x, y are always >= 0.
1924 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1925 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1926 OUTREG(CURSOR_A_POSITION, tmp);
1928 if (IS_I9XX(dinfo))
1929 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1932 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1934 #if VERBOSE > 0
1935 DBG_MSG("intelfbhw_cursor_setcolor\n");
1936 #endif
1938 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1939 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1940 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1941 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1944 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1945 u8 *data)
1947 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1948 int i, j, w = width / 8;
1949 int mod = width % 8, t_mask, d_mask;
1951 #if VERBOSE > 0
1952 DBG_MSG("intelfbhw_cursor_load\n");
1953 #endif
1955 if (!dinfo->cursor.virtual)
1956 return;
1958 t_mask = 0xff >> mod;
1959 d_mask = ~(0xff >> mod);
1960 for (i = height; i--; ) {
1961 for (j = 0; j < w; j++) {
1962 writeb(0x00, addr + j);
1963 writeb(*(data++), addr + j+8);
1965 if (mod) {
1966 writeb(t_mask, addr + j);
1967 writeb(*(data++) & d_mask, addr + j+8);
1969 addr += 16;
1973 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1975 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1976 int i, j;
1978 #if VERBOSE > 0
1979 DBG_MSG("intelfbhw_cursor_reset\n");
1980 #endif
1982 if (!dinfo->cursor.virtual)
1983 return;
1985 for (i = 64; i--; ) {
1986 for (j = 0; j < 8; j++) {
1987 writeb(0xff, addr + j+0);
1988 writeb(0x00, addr + j+8);
1990 addr += 16;
1994 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1996 u16 tmp;
1997 struct intelfb_info *dinfo = dev_id;
1999 spin_lock(&dinfo->int_lock);
2001 tmp = INREG16(IIR);
2002 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2003 tmp &= PIPE_A_EVENT_INTERRUPT;
2004 else
2005 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2007 if (tmp == 0) {
2008 spin_unlock(&dinfo->int_lock);
2009 return IRQ_RETVAL(0); /* not us */
2012 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2013 OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2015 OUTREG16(IIR, tmp);
2016 if (dinfo->vsync.pan_display) {
2017 dinfo->vsync.pan_display = 0;
2018 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2021 dinfo->vsync.count++;
2022 wake_up_interruptible(&dinfo->vsync.wait);
2024 spin_unlock(&dinfo->int_lock);
2026 return IRQ_RETVAL(1);
2029 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2031 u16 tmp;
2032 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2033 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2034 "intelfb", dinfo)) {
2035 clear_bit(0, &dinfo->irq_flags);
2036 return -EINVAL;
2039 spin_lock_irq(&dinfo->int_lock);
2040 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2041 OUTREG16(IMR, 0);
2042 } else
2043 spin_lock_irq(&dinfo->int_lock);
2045 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2046 tmp = PIPE_A_EVENT_INTERRUPT;
2047 else
2048 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2049 if (tmp != INREG16(IER)) {
2050 DBG_MSG("changing IER to 0x%X\n", tmp);
2051 OUTREG16(IER, tmp);
2054 spin_unlock_irq(&dinfo->int_lock);
2055 return 0;
2058 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2060 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2061 if (dinfo->vsync.pan_display) {
2062 dinfo->vsync.pan_display = 0;
2063 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2065 spin_lock_irq(&dinfo->int_lock);
2066 OUTREG16(HWSTAM, 0xffff);
2067 OUTREG16(IMR, 0xffff);
2068 OUTREG16(IER, 0x0);
2070 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2071 spin_unlock_irq(&dinfo->int_lock);
2073 free_irq(dinfo->pdev->irq, dinfo);
2077 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2079 struct intelfb_vsync *vsync;
2080 unsigned int count;
2081 int ret;
2083 switch (pipe) {
2084 case 0:
2085 vsync = &dinfo->vsync;
2086 break;
2087 default:
2088 return -ENODEV;
2091 ret = intelfbhw_enable_irq(dinfo);
2092 if (ret)
2093 return ret;
2095 count = vsync->count;
2096 ret = wait_event_interruptible_timeout(vsync->wait,
2097 count != vsync->count, HZ / 10);
2098 if (ret < 0)
2099 return ret;
2100 if (ret == 0) {
2101 DBG_MSG("wait_for_vsync timed out!\n");
2102 return -ETIMEDOUT;
2105 return 0;