GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / usb / host / xhci.c
blobf9f16d05119f8177800e80442d4e1b78fc6753f5
1 /* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2 /*
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/pci.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
31 #include "xhci.h"
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
41 /* a workaround for Seagate or WD USB 3.0 HDD */
42 int usb2mode;
43 module_param(usb2mode, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(usb2mode, "set this to enable USB2");
46 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 * handshake - spin reading hc until handshake completes or fails
49 * @ptr: address of hc register to be read
50 * @mask: bits to look at in result of read
51 * @done: value of those bits when handshake succeeds
52 * @usec: timeout in microseconds
54 * Returns negative errno, or zero on success
56 * Success happens when the "mask" bits have the specified value (hardware
57 * handshake done). There are two failure modes: "usec" have passed (major
58 * hardware flakeout), or the register reads as all-ones (hardware removed).
60 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
61 u32 mask, u32 done, int usec)
63 u32 result;
65 do {
66 result = xhci_readl(xhci, ptr);
67 if (result == ~(u32)0) /* card removed */
68 return -ENODEV;
69 result &= mask;
70 if (result == done)
71 return 0;
72 udelay(1);
73 usec--;
74 } while (usec > 0);
75 return -ETIMEDOUT;
79 * Disable interrupts and begin the xHCI halting process.
81 void xhci_quiesce(struct xhci_hcd *xhci)
83 u32 halted;
84 u32 cmd;
85 u32 mask;
87 mask = ~(XHCI_IRQS);
88 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
89 if (!halted)
90 mask &= ~CMD_RUN;
92 cmd = xhci_readl(xhci, &xhci->op_regs->command);
93 cmd &= mask;
94 xhci_writel(xhci, cmd, &xhci->op_regs->command);
97 int xhci_halt(struct xhci_hcd *xhci)
99 xhci_dbg(xhci, "// Halt the HC\n");
100 xhci_quiesce(xhci);
102 return handshake(xhci, &xhci->op_regs->status,
103 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 #ifdef CONFIG_BCM47XX
107 int xhci_fake_doorbell(struct xhci_hcd *xhci, int slot_id)
109 unsigned int temp1, ret;
111 /* alloc a virt device for slot */
112 if (!xhci_alloc_virt_device(xhci, slot_id, 0, GFP_NOIO)) {
113 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
114 return 1;
117 /* ring fake doorbell for slot_id ep 0 */
118 xhci_ring_ep_doorbell(xhci, slot_id, 0, 0);
119 mdelay(1);
121 /* read the status register to check if HSE is set or not? */
122 temp1 = xhci_readl(xhci, &xhci->op_regs->status);
123 xhci_dbg(xhci, "op reg status = %x\n",temp1);
125 /* clear HSE if set */
126 if(temp1 & STS_FATAL) {
127 xhci_dbg(xhci, "HSE problem detected\n");
128 temp1 &= ~(0x1fff);
129 temp1 |= STS_FATAL;
130 xhci_dbg(xhci, "temp1=%x\n",temp1);
131 xhci_writel(xhci, temp1, &xhci->op_regs->status);
132 mdelay(1);
133 temp1 = xhci_readl(xhci, &xhci->op_regs->status);
134 xhci_dbg(xhci, "After clear op reg status=%x\n", temp1);
137 /* Free virt device */
138 xhci_free_virt_device(xhci, slot_id);
140 /* Run the controller if needed */
141 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
142 if (temp1 & CMD_RUN)
143 return 0;
144 temp1 |= (CMD_RUN);
146 xhci_writel(xhci, temp1, &xhci->op_regs->command);
148 * Wait for the HCHalted Status bit to be 0 to indicate the host is running.
150 ret = handshake(xhci, &xhci->op_regs->status,
151 STS_HALT, 0, XHCI_MAX_HALT_USEC);
153 if (ret == -ETIMEDOUT) {
154 xhci_err(xhci, "Host took too long to start, "
155 "waited %u microseconds.\n",
156 XHCI_MAX_HALT_USEC);
157 return 1;
160 return 0;
162 #endif /* CONFIG_BCM47XX */
165 * Set the run bit and wait for the host to be running.
167 int xhci_start(struct xhci_hcd *xhci)
169 u32 temp;
170 int ret;
172 temp = xhci_readl(xhci, &xhci->op_regs->command);
173 temp |= (CMD_RUN);
174 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
175 temp);
176 xhci_writel(xhci, temp, &xhci->op_regs->command);
179 * Wait for the HCHalted Status bit to be 0 to indicate the host is
180 * running.
182 ret = handshake(xhci, &xhci->op_regs->status,
183 STS_HALT, 0, XHCI_MAX_HALT_USEC);
184 if (ret == -ETIMEDOUT)
185 xhci_err(xhci, "Host took too long to start, "
186 "waited %u microseconds.\n",
187 XHCI_MAX_HALT_USEC);
189 #ifdef CONFIG_BCM47XX
190 xhci_fake_doorbell(xhci, 1);
191 #endif /* CONFIG_BCM47XX */
193 return ret;
197 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
199 * This resets pipelines, timers, counters, state machines, etc.
200 * Transactions will be terminated immediately, and operational registers
201 * will be set to their defaults.
203 int xhci_reset(struct xhci_hcd *xhci)
205 u32 command;
206 u32 state;
207 int ret;
209 state = xhci_readl(xhci, &xhci->op_regs->status);
210 if ((state & STS_HALT) == 0) {
211 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
212 return 0;
215 xhci_dbg(xhci, "// Reset the HC\n");
216 command = xhci_readl(xhci, &xhci->op_regs->command);
217 command |= CMD_RESET;
218 xhci_writel(xhci, command, &xhci->op_regs->command);
219 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
221 ret = handshake(xhci, &xhci->op_regs->command,
222 CMD_RESET, 0, 250 * 1000);
223 if (ret)
224 return ret;
226 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
228 * xHCI cannot write to any doorbells or operational registers other
229 * than status until the "Controller Not Ready" flag is cleared.
231 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
235 * Free IRQs
236 * free all IRQs request
238 static void xhci_free_irq(struct xhci_hcd *xhci)
240 int i;
241 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243 /* return if using legacy interrupt */
244 if (xhci_to_hcd(xhci)->irq >= 0)
245 return;
247 if (xhci->msix_entries) {
248 for (i = 0; i < xhci->msix_count; i++)
249 if (xhci->msix_entries[i].vector)
250 free_irq(xhci->msix_entries[i].vector,
251 xhci_to_hcd(xhci));
252 } else if (pdev->irq >= 0)
253 free_irq(pdev->irq, xhci_to_hcd(xhci));
255 return;
259 * Set up MSI
261 static int xhci_setup_msi(struct xhci_hcd *xhci)
263 int ret;
264 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
266 ret = pci_enable_msi(pdev);
267 if (ret) {
268 xhci_err(xhci, "failed to allocate MSI entry\n");
269 return ret;
272 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
273 0, "xhci_hcd", xhci_to_hcd(xhci));
274 if (ret) {
275 xhci_err(xhci, "disable MSI interrupt\n");
276 pci_disable_msi(pdev);
279 return ret;
283 * Set up MSI-X
285 static int xhci_setup_msix(struct xhci_hcd *xhci)
287 int i, ret = 0;
288 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
291 * calculate number of msi-x vectors supported.
292 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
293 * with max number of interrupters based on the xhci HCSPARAMS1.
294 * - num_online_cpus: maximum msi-x vectors per CPUs core.
295 * Add additional 1 vector to ensure always available interrupt.
297 xhci->msix_count = min(num_online_cpus() + 1,
298 HCS_MAX_INTRS(xhci->hcs_params1));
300 xhci->msix_entries =
301 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
302 GFP_KERNEL);
303 if (!xhci->msix_entries) {
304 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
305 return -ENOMEM;
308 for (i = 0; i < xhci->msix_count; i++) {
309 xhci->msix_entries[i].entry = i;
310 xhci->msix_entries[i].vector = 0;
313 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
314 if (ret) {
315 xhci_err(xhci, "Failed to enable MSI-X\n");
316 goto free_entries;
319 for (i = 0; i < xhci->msix_count; i++) {
320 ret = request_irq(xhci->msix_entries[i].vector,
321 (irq_handler_t)xhci_msi_irq,
322 0, "xhci_hcd", xhci_to_hcd(xhci));
323 if (ret)
324 goto disable_msix;
327 return ret;
329 disable_msix:
330 xhci_err(xhci, "disable MSI-X interrupt\n");
331 xhci_free_irq(xhci);
332 pci_disable_msix(pdev);
333 free_entries:
334 kfree(xhci->msix_entries);
335 xhci->msix_entries = NULL;
336 return ret;
339 /* Free any IRQs and disable MSI-X */
340 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344 xhci_free_irq(xhci);
346 if (xhci->msix_entries) {
347 pci_disable_msix(pdev);
348 kfree(xhci->msix_entries);
349 xhci->msix_entries = NULL;
350 } else {
351 pci_disable_msi(pdev);
354 return;
358 * Initialize memory for HCD and xHC (one-time init).
360 * Program the PAGESIZE register, initialize the device context array, create
361 * device contexts (?), set up a command ring segment (or two?), create event
362 * ring (one for now).
364 int xhci_init(struct usb_hcd *hcd)
366 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
367 int retval = 0;
369 xhci_dbg(xhci, "xhci_init\n");
370 spin_lock_init(&xhci->lock);
371 if (link_quirk) {
372 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
373 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
374 } else {
375 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
377 retval = xhci_mem_init(xhci, GFP_KERNEL);
378 xhci_dbg(xhci, "Finished xhci_init\n");
380 return retval;
383 /*-------------------------------------------------------------------------*/
386 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
387 void xhci_event_ring_work(unsigned long arg)
389 unsigned long flags;
390 int temp;
391 u64 temp_64;
392 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
393 int i, j;
395 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
397 spin_lock_irqsave(&xhci->lock, flags);
398 temp = xhci_readl(xhci, &xhci->op_regs->status);
399 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
400 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
401 xhci_dbg(xhci, "HW died, polling stopped.\n");
402 spin_unlock_irqrestore(&xhci->lock, flags);
403 return;
406 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
407 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
408 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
409 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
410 xhci->error_bitmask = 0;
411 xhci_dbg(xhci, "Event ring:\n");
412 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
413 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
414 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
415 temp_64 &= ~ERST_PTR_MASK;
416 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
417 xhci_dbg(xhci, "Command ring:\n");
418 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
419 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
420 xhci_dbg_cmd_ptrs(xhci);
421 for (i = 0; i < MAX_HC_SLOTS; ++i) {
422 if (!xhci->devs[i])
423 continue;
424 for (j = 0; j < 31; ++j) {
425 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
429 if (xhci->noops_submitted != NUM_TEST_NOOPS)
430 if (xhci_setup_one_noop(xhci))
431 xhci_ring_cmd_db(xhci);
432 spin_unlock_irqrestore(&xhci->lock, flags);
434 if (!xhci->zombie)
435 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
436 else
437 xhci_dbg(xhci, "Quit polling the event ring.\n");
439 #endif
442 * Start the HC after it was halted.
444 * This function is called by the USB core when the HC driver is added.
445 * Its opposite is xhci_stop().
447 * xhci_init() must be called once before this function can be called.
448 * Reset the HC, enable device slot contexts, program DCBAAP, and
449 * set command ring pointer and event ring pointer.
451 * Setup MSI-X vectors and enable interrupts.
453 int xhci_run(struct usb_hcd *hcd)
455 u32 temp;
456 u64 temp_64;
457 u32 ret;
458 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
459 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
460 void (*doorbell)(struct xhci_hcd *) = NULL;
462 hcd->uses_new_polling = 1;
464 xhci_dbg(xhci, "xhci_run\n");
465 /* unregister the legacy interrupt */
466 if (hcd->irq)
467 free_irq(hcd->irq, hcd);
468 hcd->irq = -1;
470 ret = xhci_setup_msix(xhci);
471 if (ret)
472 /* fall back to msi*/
473 ret = xhci_setup_msi(xhci);
475 if (ret) {
476 /* fall back to legacy interrupt*/
477 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
478 hcd->irq_descr, hcd);
479 if (ret) {
480 xhci_err(xhci, "request interrupt %d failed\n",
481 pdev->irq);
482 return ret;
484 hcd->irq = pdev->irq;
487 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
488 init_timer(&xhci->event_ring_timer);
489 xhci->event_ring_timer.data = (unsigned long) xhci;
490 xhci->event_ring_timer.function = xhci_event_ring_work;
491 /* Poll the event ring */
492 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
493 xhci->zombie = 0;
494 xhci_dbg(xhci, "Setting event ring polling timer\n");
495 add_timer(&xhci->event_ring_timer);
496 #endif
498 xhci_dbg(xhci, "Command ring memory map follows:\n");
499 xhci_debug_ring(xhci, xhci->cmd_ring);
500 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
501 xhci_dbg_cmd_ptrs(xhci);
503 xhci_dbg(xhci, "ERST memory map follows:\n");
504 xhci_dbg_erst(xhci, &xhci->erst);
505 xhci_dbg(xhci, "Event ring:\n");
506 xhci_debug_ring(xhci, xhci->event_ring);
507 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
508 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
509 temp_64 &= ~ERST_PTR_MASK;
510 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
512 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
513 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
514 temp &= ~ER_IRQ_INTERVAL_MASK;
515 temp |= (u32) 160;
516 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
518 /* Set the HCD state before we enable the irqs */
519 hcd->state = HC_STATE_RUNNING;
520 temp = xhci_readl(xhci, &xhci->op_regs->command);
521 temp |= (CMD_EIE);
522 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
523 temp);
524 xhci_writel(xhci, temp, &xhci->op_regs->command);
526 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
527 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
528 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
529 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
530 &xhci->ir_set->irq_pending);
531 xhci_print_ir_set(xhci, xhci->ir_set, 0);
533 if (NUM_TEST_NOOPS > 0)
534 doorbell = xhci_setup_one_noop(xhci);
535 if (xhci->quirks & XHCI_NEC_HOST)
536 xhci_queue_vendor_command(xhci, 0, 0, 0,
537 TRB_TYPE(TRB_NEC_GET_FW));
539 if (xhci_start(xhci)) {
540 xhci_halt(xhci);
541 return -ENODEV;
544 if (doorbell)
545 (*doorbell)(xhci);
546 if (xhci->quirks & XHCI_NEC_HOST)
547 xhci_ring_cmd_db(xhci);
549 xhci_dbg(xhci, "Finished xhci_run\n");
550 return 0;
554 * Stop xHCI driver.
556 * This function is called by the USB core when the HC driver is removed.
557 * Its opposite is xhci_run().
559 * Disable device contexts, disable IRQs, and quiesce the HC.
560 * Reset the HC, finish any completed transactions, and cleanup memory.
562 void xhci_stop(struct usb_hcd *hcd)
564 u32 temp;
565 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
567 spin_lock_irq(&xhci->lock);
568 xhci_halt(xhci);
569 xhci_reset(xhci);
570 spin_unlock_irq(&xhci->lock);
572 xhci_cleanup_msix(xhci);
574 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
575 /* Tell the event ring poll function not to reschedule */
576 xhci->zombie = 1;
577 del_timer_sync(&xhci->event_ring_timer);
578 #endif
580 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
581 temp = xhci_readl(xhci, &xhci->op_regs->status);
582 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
583 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
584 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
585 &xhci->ir_set->irq_pending);
586 xhci_print_ir_set(xhci, xhci->ir_set, 0);
588 xhci_dbg(xhci, "cleaning up memory\n");
589 xhci_mem_cleanup(xhci);
590 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
591 xhci_readl(xhci, &xhci->op_regs->status));
595 * Shutdown HC (not bus-specific)
597 * This is called when the machine is rebooting or halting. We assume that the
598 * machine will be powered off, and the HC's internal state will be reset.
599 * Don't bother to free memory.
601 void xhci_shutdown(struct usb_hcd *hcd)
603 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
605 spin_lock_irq(&xhci->lock);
606 xhci_halt(xhci);
607 spin_unlock_irq(&xhci->lock);
609 xhci_cleanup_msix(xhci);
611 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
612 xhci_readl(xhci, &xhci->op_regs->status));
615 /*-------------------------------------------------------------------------*/
618 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
619 * HCDs. Find the index for an endpoint given its descriptor. Use the return
620 * value to right shift 1 for the bitmask.
622 * Index = (epnum * 2) + direction - 1,
623 * where direction = 0 for OUT, 1 for IN.
624 * For control endpoints, the IN index is used (OUT index is unused), so
625 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
627 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
629 unsigned int index;
630 if (usb_endpoint_xfer_control(desc))
631 index = (unsigned int) (usb_endpoint_num(desc)*2);
632 else
633 index = (unsigned int) (usb_endpoint_num(desc)*2) +
634 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
635 return index;
638 /* Find the flag for this endpoint (for use in the control context). Use the
639 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
640 * bit 1, etc.
642 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
644 return 1 << (xhci_get_endpoint_index(desc) + 1);
647 /* Find the flag for this endpoint (for use in the control context). Use the
648 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
649 * bit 1, etc.
651 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
653 return 1 << (ep_index + 1);
656 /* Compute the last valid endpoint context index. Basically, this is the
657 * endpoint index plus one. For slot contexts with more than valid endpoint,
658 * we find the most significant bit set in the added contexts flags.
659 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
660 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
662 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
664 return fls(added_ctxs) - 1;
667 /* Returns 1 if the arguments are OK;
668 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
670 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
671 struct usb_host_endpoint *ep, int check_ep, const char *func) {
672 if (!hcd || (check_ep && !ep) || !udev) {
673 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
674 func);
675 return -EINVAL;
677 if (!udev->parent) {
678 printk(KERN_DEBUG "xHCI %s called for root hub\n",
679 func);
680 return 0;
682 if (!udev->slot_id) {
683 printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
684 func);
685 return -EINVAL;
687 return 1;
690 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
691 struct usb_device *udev, struct xhci_command *command,
692 bool ctx_change, bool must_succeed);
695 * Full speed devices may have a max packet size greater than 8 bytes, but the
696 * USB core doesn't know that until it reads the first 8 bytes of the
697 * descriptor. If the usb_device's max packet size changes after that point,
698 * we need to issue an evaluate context command and wait on it.
700 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
701 unsigned int ep_index, struct urb *urb)
703 struct xhci_container_ctx *in_ctx;
704 struct xhci_container_ctx *out_ctx;
705 struct xhci_input_control_ctx *ctrl_ctx;
706 struct xhci_ep_ctx *ep_ctx;
707 int max_packet_size;
708 int hw_max_packet_size;
709 int ret = 0;
711 out_ctx = xhci->devs[slot_id]->out_ctx;
712 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
713 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
714 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
715 if (hw_max_packet_size != max_packet_size) {
716 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
717 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
718 max_packet_size);
719 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
720 hw_max_packet_size);
721 xhci_dbg(xhci, "Issuing evaluate context command.\n");
723 /* Set up the modified control endpoint 0 */
724 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
725 xhci->devs[slot_id]->out_ctx, ep_index);
726 in_ctx = xhci->devs[slot_id]->in_ctx;
727 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
728 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
729 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
731 /* Set up the input context flags for the command */
732 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
733 ctrl_ctx->add_flags = EP0_FLAG;
734 ctrl_ctx->drop_flags = 0;
736 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
737 xhci_dbg_ctx(xhci, in_ctx, ep_index);
738 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
739 xhci_dbg_ctx(xhci, out_ctx, ep_index);
741 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
742 true, false);
744 /* Clean up the input context for later use by bandwidth
745 * functions.
747 ctrl_ctx->add_flags = SLOT_FLAG;
749 return ret;
753 * non-error returns are a promise to giveback() the urb later
754 * we drop ownership so next owner (or urb unlink) can get it
756 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
758 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
759 unsigned long flags;
760 int ret = 0;
761 unsigned int slot_id, ep_index;
762 struct urb_priv *urb_priv;
763 int size, i;
765 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
766 return -EINVAL;
768 slot_id = urb->dev->slot_id;
769 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
771 if (!xhci->devs || !xhci->devs[slot_id]) {
772 if (!in_interrupt())
773 dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
774 ret = -EINVAL;
775 goto exit;
777 if (!HCD_HW_ACCESSIBLE(hcd)) {
778 if (!in_interrupt())
779 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
780 ret = -ESHUTDOWN;
781 goto exit;
784 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
785 size = urb->number_of_packets;
786 else
787 size = 1;
789 urb_priv = kzalloc(sizeof(struct urb_priv) +
790 size * sizeof(struct xhci_td *), mem_flags);
791 if (!urb_priv)
792 return -ENOMEM;
794 for (i = 0; i < size; i++) {
795 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
796 if (!urb_priv->td[i]) {
797 urb_priv->length = i;
798 xhci_urb_free_priv(xhci, urb_priv);
799 return -ENOMEM;
803 urb_priv->length = size;
804 urb_priv->td_cnt = 0;
805 urb->hcpriv = urb_priv;
807 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
808 /* Check to see if the max packet size for the default control
809 * endpoint changed during FS device enumeration
811 if (urb->dev->speed == USB_SPEED_FULL) {
812 ret = xhci_check_maxpacket(xhci, slot_id,
813 ep_index, urb);
814 if (ret < 0)
815 return ret;
818 /* We have a spinlock and interrupts disabled, so we must pass
819 * atomic context to this function, which may allocate memory.
821 spin_lock_irqsave(&xhci->lock, flags);
822 if (xhci->xhc_state & XHCI_STATE_DYING)
823 goto dying;
824 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
825 slot_id, ep_index);
826 spin_unlock_irqrestore(&xhci->lock, flags);
827 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
828 spin_lock_irqsave(&xhci->lock, flags);
829 if (xhci->xhc_state & XHCI_STATE_DYING)
830 goto dying;
831 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
832 EP_GETTING_STREAMS) {
833 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
834 "is transitioning to using streams.\n");
835 ret = -EINVAL;
836 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
837 EP_GETTING_NO_STREAMS) {
838 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
839 "is transitioning to "
840 "not having streams.\n");
841 ret = -EINVAL;
842 } else {
843 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
844 slot_id, ep_index);
846 spin_unlock_irqrestore(&xhci->lock, flags);
847 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
848 spin_lock_irqsave(&xhci->lock, flags);
849 if (xhci->xhc_state & XHCI_STATE_DYING)
850 goto dying;
851 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
852 slot_id, ep_index);
853 spin_unlock_irqrestore(&xhci->lock, flags);
854 } else {
855 spin_lock_irqsave(&xhci->lock, flags);
856 if (xhci->xhc_state & XHCI_STATE_DYING)
857 goto dying;
858 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
859 slot_id, ep_index);
860 spin_unlock_irqrestore(&xhci->lock, flags);
862 exit:
863 return ret;
864 dying:
865 xhci_urb_free_priv(xhci, urb_priv);
866 urb->hcpriv = NULL;
867 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
868 "non-responsive xHCI host.\n",
869 urb->ep->desc.bEndpointAddress, urb);
870 spin_unlock_irqrestore(&xhci->lock, flags);
871 return -ESHUTDOWN;
874 /* Get the right ring for the given URB.
875 * If the endpoint supports streams, boundary check the URB's stream ID.
876 * If the endpoint doesn't support streams, return the singular endpoint ring.
878 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
879 struct urb *urb)
881 unsigned int slot_id;
882 unsigned int ep_index;
883 unsigned int stream_id;
884 struct xhci_virt_ep *ep;
886 slot_id = urb->dev->slot_id;
887 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
888 stream_id = urb->stream_id;
889 ep = &xhci->devs[slot_id]->eps[ep_index];
890 /* Common case: no streams */
891 if (!(ep->ep_state & EP_HAS_STREAMS))
892 return ep->ring;
894 if (stream_id == 0) {
895 xhci_warn(xhci,
896 "WARN: Slot ID %u, ep index %u has streams, "
897 "but URB has no stream ID.\n",
898 slot_id, ep_index);
899 return NULL;
902 if (stream_id < ep->stream_info->num_streams)
903 return ep->stream_info->stream_rings[stream_id];
905 xhci_warn(xhci,
906 "WARN: Slot ID %u, ep index %u has "
907 "stream IDs 1 to %u allocated, "
908 "but stream ID %u is requested.\n",
909 slot_id, ep_index,
910 ep->stream_info->num_streams - 1,
911 stream_id);
912 return NULL;
916 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
917 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
918 * should pick up where it left off in the TD, unless a Set Transfer Ring
919 * Dequeue Pointer is issued.
921 * The TRBs that make up the buffers for the canceled URB will be "removed" from
922 * the ring. Since the ring is a contiguous structure, they can't be physically
923 * removed. Instead, there are two options:
925 * 1) If the HC is in the middle of processing the URB to be canceled, we
926 * simply move the ring's dequeue pointer past those TRBs using the Set
927 * Transfer Ring Dequeue Pointer command. This will be the common case,
928 * when drivers timeout on the last submitted URB and attempt to cancel.
930 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
931 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
932 * HC will need to invalidate the any TRBs it has cached after the stop
933 * endpoint command, as noted in the xHCI 0.95 errata.
935 * 3) The TD may have completed by the time the Stop Endpoint Command
936 * completes, so software needs to handle that case too.
938 * This function should protect against the TD enqueueing code ringing the
939 * doorbell while this code is waiting for a Stop Endpoint command to complete.
940 * It also needs to account for multiple cancellations on happening at the same
941 * time for the same endpoint.
943 * Note that this function can be called in any context, or so says
944 * usb_hcd_unlink_urb()
946 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
948 unsigned long flags;
949 int ret, i;
950 u32 temp;
951 struct xhci_hcd *xhci;
952 struct urb_priv *urb_priv;
953 struct xhci_td *td;
954 unsigned int ep_index;
955 struct xhci_ring *ep_ring;
956 struct xhci_virt_ep *ep;
958 xhci = hcd_to_xhci(hcd);
959 spin_lock_irqsave(&xhci->lock, flags);
960 /* Make sure the URB hasn't completed or been unlinked already */
961 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
962 if (ret || !urb->hcpriv)
963 goto done;
964 temp = xhci_readl(xhci, &xhci->op_regs->status);
965 if (temp == 0xffffffff) {
966 xhci_dbg(xhci, "HW died, freeing TD.\n");
967 urb_priv = urb->hcpriv;
969 usb_hcd_unlink_urb_from_ep(hcd, urb);
970 spin_unlock_irqrestore(&xhci->lock, flags);
971 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN);
972 xhci_urb_free_priv(xhci, urb_priv);
973 return ret;
975 if (xhci->xhc_state & XHCI_STATE_DYING) {
976 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
977 "non-responsive xHCI host.\n",
978 urb->ep->desc.bEndpointAddress, urb);
979 /* Let the stop endpoint command watchdog timer (which set this
980 * state) finish cleaning up the endpoint TD lists. We must
981 * have caught it in the middle of dropping a lock and giving
982 * back an URB.
984 goto done;
987 xhci_dbg(xhci, "Cancel URB %p\n", urb);
988 xhci_dbg(xhci, "Event ring:\n");
989 xhci_debug_ring(xhci, xhci->event_ring);
990 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
991 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
992 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
993 if (!ep_ring) {
994 ret = -EINVAL;
995 goto done;
998 xhci_dbg(xhci, "Endpoint ring:\n");
999 xhci_debug_ring(xhci, ep_ring);
1001 urb_priv = urb->hcpriv;
1003 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1004 td = urb_priv->td[i];
1005 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1008 /* Queue a stop endpoint command, but only if this is
1009 * the first cancellation to be handled.
1011 if (!(ep->ep_state & EP_HALT_PENDING)) {
1012 ep->ep_state |= EP_HALT_PENDING;
1013 ep->stop_cmds_pending++;
1014 ep->stop_cmd_timer.expires = jiffies +
1015 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1016 add_timer(&ep->stop_cmd_timer);
1017 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
1018 xhci_ring_cmd_db(xhci);
1020 done:
1021 spin_unlock_irqrestore(&xhci->lock, flags);
1022 return ret;
1025 /* Drop an endpoint from a new bandwidth configuration for this device.
1026 * Only one call to this function is allowed per endpoint before
1027 * check_bandwidth() or reset_bandwidth() must be called.
1028 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1029 * add the endpoint to the schedule with possibly new parameters denoted by a
1030 * different endpoint descriptor in usb_host_endpoint.
1031 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1032 * not allowed.
1034 * The USB core will not allow URBs to be queued to an endpoint that is being
1035 * disabled, so there's no need for mutual exclusion to protect
1036 * the xhci->devs[slot_id] structure.
1038 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1039 struct usb_host_endpoint *ep)
1041 struct xhci_hcd *xhci;
1042 struct xhci_container_ctx *in_ctx, *out_ctx;
1043 struct xhci_input_control_ctx *ctrl_ctx;
1044 struct xhci_slot_ctx *slot_ctx;
1045 unsigned int last_ctx;
1046 unsigned int ep_index;
1047 struct xhci_ep_ctx *ep_ctx;
1048 u32 drop_flag;
1049 u32 new_add_flags, new_drop_flags, new_slot_info;
1050 int ret;
1052 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
1053 if (ret <= 0)
1054 return ret;
1055 xhci = hcd_to_xhci(hcd);
1056 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1058 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1059 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1060 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1061 __func__, drop_flag);
1062 return 0;
1065 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1066 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1067 __func__);
1068 return -EINVAL;
1071 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1072 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1073 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1074 ep_index = xhci_get_endpoint_index(&ep->desc);
1075 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1076 /* If the HC already knows the endpoint is disabled,
1077 * or the HCD has noted it is disabled, ignore this request
1079 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
1080 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
1081 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1082 __func__, ep);
1083 return 0;
1086 ctrl_ctx->drop_flags |= drop_flag;
1087 new_drop_flags = ctrl_ctx->drop_flags;
1089 ctrl_ctx->add_flags &= ~drop_flag;
1090 new_add_flags = ctrl_ctx->add_flags;
1092 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
1093 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1094 /* Update the last valid endpoint context, if we deleted the last one */
1095 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
1096 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1097 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1099 new_slot_info = slot_ctx->dev_info;
1101 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1103 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1104 (unsigned int) ep->desc.bEndpointAddress,
1105 udev->slot_id,
1106 (unsigned int) new_drop_flags,
1107 (unsigned int) new_add_flags,
1108 (unsigned int) new_slot_info);
1109 return 0;
1112 /* Add an endpoint to a new possible bandwidth configuration for this device.
1113 * Only one call to this function is allowed per endpoint before
1114 * check_bandwidth() or reset_bandwidth() must be called.
1115 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1116 * add the endpoint to the schedule with possibly new parameters denoted by a
1117 * different endpoint descriptor in usb_host_endpoint.
1118 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1119 * not allowed.
1121 * The USB core will not allow URBs to be queued to an endpoint until the
1122 * configuration or alt setting is installed in the device, so there's no need
1123 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1125 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1126 struct usb_host_endpoint *ep)
1128 struct xhci_hcd *xhci;
1129 struct xhci_container_ctx *in_ctx, *out_ctx;
1130 unsigned int ep_index;
1131 struct xhci_ep_ctx *ep_ctx;
1132 struct xhci_slot_ctx *slot_ctx;
1133 struct xhci_input_control_ctx *ctrl_ctx;
1134 u32 added_ctxs;
1135 unsigned int last_ctx;
1136 u32 new_add_flags, new_drop_flags, new_slot_info;
1137 int ret = 0;
1139 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
1140 if (ret <= 0) {
1141 /* So we won't queue a reset ep command for a root hub */
1142 ep->hcpriv = NULL;
1143 return ret;
1145 xhci = hcd_to_xhci(hcd);
1147 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1148 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1149 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1150 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1151 __func__, added_ctxs);
1152 return 0;
1155 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1156 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1157 __func__);
1158 return -EINVAL;
1161 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1162 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1163 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1164 ep_index = xhci_get_endpoint_index(&ep->desc);
1165 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1166 /* If the HCD has already noted the endpoint is enabled,
1167 * ignore this request.
1169 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
1170 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1171 __func__, ep);
1172 return 0;
1176 * Configuration and alternate setting changes must be done in
1177 * process context, not interrupt context (or so documenation
1178 * for usb_set_interface() and usb_set_configuration() claim).
1180 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1181 udev, ep, GFP_NOIO) < 0) {
1182 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1183 __func__, ep->desc.bEndpointAddress);
1184 return -ENOMEM;
1187 ctrl_ctx->add_flags |= added_ctxs;
1188 new_add_flags = ctrl_ctx->add_flags;
1190 /* If xhci_endpoint_disable() was called for this endpoint, but the
1191 * xHC hasn't been notified yet through the check_bandwidth() call,
1192 * this re-adds a new state for the endpoint from the new endpoint
1193 * descriptors. We must drop and re-add this endpoint, so we leave the
1194 * drop flags alone.
1196 new_drop_flags = ctrl_ctx->drop_flags;
1198 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1199 /* Update the last valid endpoint context, if we just added one past */
1200 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1201 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1202 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1204 new_slot_info = slot_ctx->dev_info;
1206 /* Store the usb_device pointer for later use */
1207 ep->hcpriv = udev;
1209 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1210 (unsigned int) ep->desc.bEndpointAddress,
1211 udev->slot_id,
1212 (unsigned int) new_drop_flags,
1213 (unsigned int) new_add_flags,
1214 (unsigned int) new_slot_info);
1215 return 0;
1218 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1220 struct xhci_input_control_ctx *ctrl_ctx;
1221 struct xhci_ep_ctx *ep_ctx;
1222 struct xhci_slot_ctx *slot_ctx;
1223 int i;
1225 /* When a device's add flag and drop flag are zero, any subsequent
1226 * configure endpoint command will leave that endpoint's state
1227 * untouched. Make sure we don't leave any old state in the input
1228 * endpoint contexts.
1230 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1231 ctrl_ctx->drop_flags = 0;
1232 ctrl_ctx->add_flags = 0;
1233 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1234 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1235 /* Endpoint 0 is always valid */
1236 slot_ctx->dev_info |= LAST_CTX(1);
1237 for (i = 1; i < 31; ++i) {
1238 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1239 ep_ctx->ep_info = 0;
1240 ep_ctx->ep_info2 = 0;
1241 ep_ctx->deq = 0;
1242 ep_ctx->tx_info = 0;
1246 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1247 struct usb_device *udev, int *cmd_status)
1249 int ret;
1251 switch (*cmd_status) {
1252 case COMP_ENOMEM:
1253 dev_warn(&udev->dev, "Not enough host controller resources "
1254 "for new device state.\n");
1255 ret = -ENOMEM;
1256 break;
1257 case COMP_BW_ERR:
1258 dev_warn(&udev->dev, "Not enough bandwidth "
1259 "for new device state.\n");
1260 ret = -ENOSPC;
1261 break;
1262 case COMP_TRB_ERR:
1263 /* the HCD set up something wrong */
1264 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1265 "add flag = 1, "
1266 "and endpoint is not disabled.\n");
1267 ret = -EINVAL;
1268 break;
1269 case COMP_SUCCESS:
1270 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1271 ret = 0;
1272 break;
1273 default:
1274 xhci_err(xhci, "ERROR: unexpected command completion "
1275 "code 0x%x.\n", *cmd_status);
1276 ret = -EINVAL;
1277 break;
1279 return ret;
1282 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1283 struct usb_device *udev, int *cmd_status)
1285 int ret;
1286 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1288 switch (*cmd_status) {
1289 case COMP_EINVAL:
1290 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1291 "context command.\n");
1292 ret = -EINVAL;
1293 break;
1294 case COMP_EBADSLT:
1295 dev_warn(&udev->dev, "WARN: slot not enabled for"
1296 "evaluate context command.\n");
1297 case COMP_CTX_STATE:
1298 dev_warn(&udev->dev, "WARN: invalid context state for "
1299 "evaluate context command.\n");
1300 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1301 ret = -EINVAL;
1302 break;
1303 case COMP_SUCCESS:
1304 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1305 ret = 0;
1306 break;
1307 default:
1308 xhci_err(xhci, "ERROR: unexpected command completion "
1309 "code 0x%x.\n", *cmd_status);
1310 ret = -EINVAL;
1311 break;
1313 return ret;
1316 /* Issue a configure endpoint command or evaluate context command
1317 * and wait for it to finish.
1319 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1320 struct usb_device *udev,
1321 struct xhci_command *command,
1322 bool ctx_change, bool must_succeed)
1324 int ret;
1325 int timeleft;
1326 unsigned long flags;
1327 struct xhci_container_ctx *in_ctx;
1328 struct completion *cmd_completion;
1329 int *cmd_status;
1330 struct xhci_virt_device *virt_dev;
1332 spin_lock_irqsave(&xhci->lock, flags);
1333 virt_dev = xhci->devs[udev->slot_id];
1334 if (command) {
1335 in_ctx = command->in_ctx;
1336 cmd_completion = command->completion;
1337 cmd_status = &command->status;
1338 command->command_trb = xhci->cmd_ring->enqueue;
1340 /* Enqueue pointer can be left pointing to the link TRB,
1341 * we must handle that
1343 if ((command->command_trb->link.control & TRB_TYPE_BITMASK)
1344 == TRB_TYPE(TRB_LINK))
1345 command->command_trb =
1346 xhci->cmd_ring->enq_seg->next->trbs;
1348 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1349 } else {
1350 in_ctx = virt_dev->in_ctx;
1351 cmd_completion = &virt_dev->cmd_completion;
1352 cmd_status = &virt_dev->cmd_status;
1354 init_completion(cmd_completion);
1356 if (!ctx_change)
1357 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1358 udev->slot_id, must_succeed);
1359 else
1360 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1361 udev->slot_id);
1362 if (ret < 0) {
1363 if (command)
1364 list_del(&command->cmd_list);
1365 spin_unlock_irqrestore(&xhci->lock, flags);
1366 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1367 return -ENOMEM;
1369 xhci_ring_cmd_db(xhci);
1370 spin_unlock_irqrestore(&xhci->lock, flags);
1372 /* Wait for the configure endpoint command to complete */
1373 timeleft = wait_for_completion_interruptible_timeout(
1374 cmd_completion,
1375 USB_CTRL_SET_TIMEOUT);
1376 if (timeleft <= 0) {
1377 xhci_warn(xhci, "%s while waiting for %s command\n",
1378 timeleft == 0 ? "Timeout" : "Signal",
1379 ctx_change == 0 ?
1380 "configure endpoint" :
1381 "evaluate context");
1382 return -ETIME;
1385 if (!ctx_change)
1386 return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1387 return xhci_evaluate_context_result(xhci, udev, cmd_status);
1390 /* Called after one or more calls to xhci_add_endpoint() or
1391 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1392 * to call xhci_reset_bandwidth().
1394 * Since we are in the middle of changing either configuration or
1395 * installing a new alt setting, the USB core won't allow URBs to be
1396 * enqueued for any endpoint on the old config or interface. Nothing
1397 * else should be touching the xhci->devs[slot_id] structure, so we
1398 * don't need to take the xhci->lock for manipulating that.
1400 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1402 int i;
1403 int ret = 0;
1404 struct xhci_hcd *xhci;
1405 struct xhci_virt_device *virt_dev;
1406 struct xhci_input_control_ctx *ctrl_ctx;
1407 struct xhci_slot_ctx *slot_ctx;
1409 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1410 if (ret <= 0)
1411 return ret;
1412 xhci = hcd_to_xhci(hcd);
1414 if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
1415 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1416 __func__);
1417 return -EINVAL;
1419 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1420 virt_dev = xhci->devs[udev->slot_id];
1422 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1423 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1424 ctrl_ctx->add_flags |= SLOT_FLAG;
1425 ctrl_ctx->add_flags &= ~EP0_FLAG;
1426 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1427 ctrl_ctx->drop_flags &= ~EP0_FLAG;
1428 xhci_dbg(xhci, "New Input Control Context:\n");
1429 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1430 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1431 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1433 ret = xhci_configure_endpoint(xhci, udev, NULL,
1434 false, false);
1435 if (ret) {
1436 /* Callee should call reset_bandwidth() */
1437 return ret;
1440 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1441 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1442 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1444 xhci_zero_in_ctx(xhci, virt_dev);
1445 /* Install new rings and free or cache any old rings */
1446 for (i = 1; i < 31; ++i) {
1447 if (!virt_dev->eps[i].new_ring)
1448 continue;
1449 /* Only cache or free the old ring if it exists.
1450 * It may not if this is the first add of an endpoint.
1452 if (virt_dev->eps[i].ring) {
1453 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1455 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1456 virt_dev->eps[i].new_ring = NULL;
1459 return ret;
1462 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1464 struct xhci_hcd *xhci;
1465 struct xhci_virt_device *virt_dev;
1466 int i, ret;
1468 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1469 if (ret <= 0)
1470 return;
1471 xhci = hcd_to_xhci(hcd);
1473 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1474 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1475 __func__);
1476 return;
1478 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1479 virt_dev = xhci->devs[udev->slot_id];
1480 /* Free any rings allocated for added endpoints */
1481 for (i = 0; i < 31; ++i) {
1482 if (virt_dev->eps[i].new_ring) {
1483 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1484 virt_dev->eps[i].new_ring = NULL;
1487 xhci_zero_in_ctx(xhci, virt_dev);
1490 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1491 struct xhci_container_ctx *in_ctx,
1492 struct xhci_container_ctx *out_ctx,
1493 u32 add_flags, u32 drop_flags)
1495 struct xhci_input_control_ctx *ctrl_ctx;
1496 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1497 ctrl_ctx->add_flags = add_flags;
1498 ctrl_ctx->drop_flags = drop_flags;
1499 xhci_slot_copy(xhci, in_ctx, out_ctx);
1500 ctrl_ctx->add_flags |= SLOT_FLAG;
1502 xhci_dbg(xhci, "Input Context:\n");
1503 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1506 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1507 unsigned int slot_id, unsigned int ep_index,
1508 struct xhci_dequeue_state *deq_state)
1510 struct xhci_container_ctx *in_ctx;
1511 struct xhci_ep_ctx *ep_ctx;
1512 u32 added_ctxs;
1513 dma_addr_t addr;
1515 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1516 xhci->devs[slot_id]->out_ctx, ep_index);
1517 in_ctx = xhci->devs[slot_id]->in_ctx;
1518 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1519 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1520 deq_state->new_deq_ptr);
1521 if (addr == 0) {
1522 xhci_warn(xhci, "WARN Cannot submit config ep after "
1523 "reset ep command\n");
1524 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1525 deq_state->new_deq_seg,
1526 deq_state->new_deq_ptr);
1527 return;
1529 ep_ctx->deq = addr | deq_state->new_cycle_state;
1531 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1532 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1533 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1536 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1537 struct usb_device *udev, unsigned int ep_index)
1539 struct xhci_dequeue_state deq_state;
1540 struct xhci_virt_ep *ep;
1542 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1543 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1544 /* We need to move the HW's dequeue pointer past this TD,
1545 * or it will attempt to resend it on the next doorbell ring.
1547 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1548 ep_index, ep->stopped_stream, ep->stopped_td,
1549 &deq_state);
1551 /* HW with the reset endpoint quirk will use the saved dequeue state to
1552 * issue a configure endpoint command later.
1554 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1555 xhci_dbg(xhci, "Queueing new dequeue state\n");
1556 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1557 ep_index, ep->stopped_stream, &deq_state);
1558 } else {
1559 xhci_dbg(xhci, "Setting up input context for "
1560 "configure endpoint command\n");
1561 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1562 ep_index, &deq_state);
1566 /* Deal with stalled endpoints. The core should have sent the control message
1567 * to clear the halt condition. However, we need to make the xHCI hardware
1568 * reset its sequence number, since a device will expect a sequence number of
1569 * zero after the halt condition is cleared.
1570 * Context: in_interrupt
1572 void xhci_endpoint_reset(struct usb_hcd *hcd,
1573 struct usb_host_endpoint *ep)
1575 struct xhci_hcd *xhci;
1576 struct usb_device *udev;
1577 unsigned int ep_index;
1578 unsigned long flags;
1579 int ret;
1580 struct xhci_virt_ep *virt_ep;
1582 xhci = hcd_to_xhci(hcd);
1583 udev = (struct usb_device *) ep->hcpriv;
1584 /* Called with a root hub endpoint (or an endpoint that wasn't added
1585 * with xhci_add_endpoint()
1587 if (!ep->hcpriv)
1588 return;
1589 ep_index = xhci_get_endpoint_index(&ep->desc);
1590 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1591 if (!virt_ep->stopped_td) {
1592 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1593 ep->desc.bEndpointAddress);
1594 return;
1596 if (usb_endpoint_xfer_control(&ep->desc)) {
1597 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1598 return;
1601 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1602 spin_lock_irqsave(&xhci->lock, flags);
1603 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1605 * Can't change the ring dequeue pointer until it's transitioned to the
1606 * stopped state, which is only upon a successful reset endpoint
1607 * command. Better hope that last command worked!
1609 if (!ret) {
1610 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1611 kfree(virt_ep->stopped_td);
1612 xhci_ring_cmd_db(xhci);
1614 virt_ep->stopped_td = NULL;
1615 virt_ep->stopped_trb = NULL;
1616 virt_ep->stopped_stream = 0;
1617 spin_unlock_irqrestore(&xhci->lock, flags);
1619 if (ret)
1620 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1623 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
1624 struct usb_device *udev, struct usb_host_endpoint *ep,
1625 unsigned int slot_id)
1627 int ret;
1628 unsigned int ep_index;
1629 unsigned int ep_state;
1631 if (!ep)
1632 return -EINVAL;
1633 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, __func__);
1634 if (ret <= 0)
1635 return -EINVAL;
1636 if (ep->ss_ep_comp.bmAttributes == 0) {
1637 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
1638 " descriptor for ep 0x%x does not support streams\n",
1639 ep->desc.bEndpointAddress);
1640 return -EINVAL;
1643 ep_index = xhci_get_endpoint_index(&ep->desc);
1644 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1645 if (ep_state & EP_HAS_STREAMS ||
1646 ep_state & EP_GETTING_STREAMS) {
1647 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
1648 "already has streams set up.\n",
1649 ep->desc.bEndpointAddress);
1650 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
1651 "dynamic stream context array reallocation.\n");
1652 return -EINVAL;
1654 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
1655 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
1656 "endpoint 0x%x; URBs are pending.\n",
1657 ep->desc.bEndpointAddress);
1658 return -EINVAL;
1660 return 0;
1663 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
1664 unsigned int *num_streams, unsigned int *num_stream_ctxs)
1666 unsigned int max_streams;
1668 /* The stream context array size must be a power of two */
1669 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
1671 * Find out how many primary stream array entries the host controller
1672 * supports. Later we may use secondary stream arrays (similar to 2nd
1673 * level page entries), but that's an optional feature for xHCI host
1674 * controllers. xHCs must support at least 4 stream IDs.
1676 max_streams = HCC_MAX_PSA(xhci->hcc_params);
1677 if (*num_stream_ctxs > max_streams) {
1678 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
1679 max_streams);
1680 *num_stream_ctxs = max_streams;
1681 *num_streams = max_streams;
1685 /* Returns an error code if one of the endpoint already has streams.
1686 * This does not change any data structures, it only checks and gathers
1687 * information.
1689 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
1690 struct usb_device *udev,
1691 struct usb_host_endpoint **eps, unsigned int num_eps,
1692 unsigned int *num_streams, u32 *changed_ep_bitmask)
1694 unsigned int max_streams;
1695 unsigned int endpoint_flag;
1696 int i;
1697 int ret;
1699 for (i = 0; i < num_eps; i++) {
1700 ret = xhci_check_streams_endpoint(xhci, udev,
1701 eps[i], udev->slot_id);
1702 if (ret < 0)
1703 return ret;
1705 max_streams = USB_SS_MAX_STREAMS(
1706 eps[i]->ss_ep_comp.bmAttributes);
1707 if (max_streams < (*num_streams - 1)) {
1708 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
1709 eps[i]->desc.bEndpointAddress,
1710 max_streams);
1711 *num_streams = max_streams+1;
1714 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
1715 if (*changed_ep_bitmask & endpoint_flag)
1716 return -EINVAL;
1717 *changed_ep_bitmask |= endpoint_flag;
1719 return 0;
1722 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
1723 struct usb_device *udev,
1724 struct usb_host_endpoint **eps, unsigned int num_eps)
1726 u32 changed_ep_bitmask = 0;
1727 unsigned int slot_id;
1728 unsigned int ep_index;
1729 unsigned int ep_state;
1730 int i;
1732 slot_id = udev->slot_id;
1733 if (!xhci->devs[slot_id])
1734 return 0;
1736 for (i = 0; i < num_eps; i++) {
1737 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1738 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1739 /* Are streams already being freed for the endpoint? */
1740 if (ep_state & EP_GETTING_NO_STREAMS) {
1741 xhci_warn(xhci, "WARN Can't disable streams for "
1742 "endpoint 0x%x\n, "
1743 "streams are being disabled already.",
1744 eps[i]->desc.bEndpointAddress);
1745 return 0;
1747 /* Are there actually any streams to free? */
1748 if (!(ep_state & EP_HAS_STREAMS) &&
1749 !(ep_state & EP_GETTING_STREAMS)) {
1750 xhci_warn(xhci, "WARN Can't disable streams for "
1751 "endpoint 0x%x\n, "
1752 "streams are already disabled!",
1753 eps[i]->desc.bEndpointAddress);
1754 xhci_warn(xhci, "WARN xhci_free_streams() called "
1755 "with non-streams endpoint\n");
1756 return 0;
1758 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
1760 return changed_ep_bitmask;
1764 * The USB device drivers use this function (though the HCD interface in USB
1765 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
1766 * coordinate mass storage command queueing across multiple endpoints (basically
1767 * a stream ID == a task ID).
1769 * Setting up streams involves allocating the same size stream context array
1770 * for each endpoint and issuing a configure endpoint command for all endpoints.
1772 * Don't allow the call to succeed if one endpoint only supports one stream
1773 * (which means it doesn't support streams at all).
1775 * Drivers may get less stream IDs than they asked for, if the host controller
1776 * hardware or endpoints claim they can't support the number of requested
1777 * stream IDs.
1779 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
1780 struct usb_host_endpoint **eps, unsigned int num_eps,
1781 unsigned int num_streams, gfp_t mem_flags)
1783 int i, ret;
1784 struct xhci_hcd *xhci;
1785 struct xhci_virt_device *vdev;
1786 struct xhci_command *config_cmd;
1787 unsigned int ep_index;
1788 unsigned int num_stream_ctxs;
1789 unsigned long flags;
1790 u32 changed_ep_bitmask = 0;
1792 if (!eps)
1793 return -EINVAL;
1795 /* Add one to the number of streams requested to account for
1796 * stream 0 that is reserved for xHCI usage.
1798 num_streams += 1;
1799 xhci = hcd_to_xhci(hcd);
1800 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
1801 num_streams);
1803 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
1804 if (!config_cmd) {
1805 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
1806 return -ENOMEM;
1809 /* Check to make sure all endpoints are not already configured for
1810 * streams. While we're at it, find the maximum number of streams that
1811 * all the endpoints will support and check for duplicate endpoints.
1813 spin_lock_irqsave(&xhci->lock, flags);
1814 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
1815 num_eps, &num_streams, &changed_ep_bitmask);
1816 if (ret < 0) {
1817 xhci_free_command(xhci, config_cmd);
1818 spin_unlock_irqrestore(&xhci->lock, flags);
1819 return ret;
1821 if (num_streams <= 1) {
1822 xhci_warn(xhci, "WARN: endpoints can't handle "
1823 "more than one stream.\n");
1824 xhci_free_command(xhci, config_cmd);
1825 spin_unlock_irqrestore(&xhci->lock, flags);
1826 return -EINVAL;
1828 vdev = xhci->devs[udev->slot_id];
1829 /* Mark each endpoint as being in transistion, so
1830 * xhci_urb_enqueue() will reject all URBs.
1832 for (i = 0; i < num_eps; i++) {
1833 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1834 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
1836 spin_unlock_irqrestore(&xhci->lock, flags);
1838 /* Setup internal data structures and allocate HW data structures for
1839 * streams (but don't install the HW structures in the input context
1840 * until we're sure all memory allocation succeeded).
1842 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
1843 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
1844 num_stream_ctxs, num_streams);
1846 for (i = 0; i < num_eps; i++) {
1847 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1848 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
1849 num_stream_ctxs,
1850 num_streams, mem_flags);
1851 if (!vdev->eps[ep_index].stream_info)
1852 goto cleanup;
1855 /* Set up the input context for a configure endpoint command. */
1856 for (i = 0; i < num_eps; i++) {
1857 struct xhci_ep_ctx *ep_ctx;
1859 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1860 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
1862 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
1863 vdev->out_ctx, ep_index);
1864 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
1865 vdev->eps[ep_index].stream_info);
1867 /* Tell the HW to drop its old copy of the endpoint context info
1868 * and add the updated copy from the input context.
1870 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
1871 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
1873 /* Issue and wait for the configure endpoint command */
1874 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
1875 false, false);
1877 /* xHC rejected the configure endpoint command for some reason, so we
1878 * leave the old ring intact and free our internal streams data
1879 * structure.
1881 if (ret < 0)
1882 goto cleanup;
1884 spin_lock_irqsave(&xhci->lock, flags);
1885 for (i = 0; i < num_eps; i++) {
1886 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1887 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
1888 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
1889 udev->slot_id, ep_index);
1890 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
1892 xhci_free_command(xhci, config_cmd);
1893 spin_unlock_irqrestore(&xhci->lock, flags);
1895 /* Subtract 1 for stream 0, which drivers can't use */
1896 return num_streams - 1;
1898 cleanup:
1899 /* If it didn't work, free the streams! */
1900 for (i = 0; i < num_eps; i++) {
1901 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1902 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
1903 vdev->eps[ep_index].stream_info = NULL;
1904 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
1905 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
1906 xhci_endpoint_zero(xhci, vdev, eps[i]);
1908 xhci_free_command(xhci, config_cmd);
1909 return -ENOMEM;
1912 /* Transition the endpoint from using streams to being a "normal" endpoint
1913 * without streams.
1915 * Modify the endpoint context state, submit a configure endpoint command,
1916 * and free all endpoint rings for streams if that completes successfully.
1918 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
1919 struct usb_host_endpoint **eps, unsigned int num_eps,
1920 gfp_t mem_flags)
1922 int i, ret;
1923 struct xhci_hcd *xhci;
1924 struct xhci_virt_device *vdev;
1925 struct xhci_command *command;
1926 unsigned int ep_index;
1927 unsigned long flags;
1928 u32 changed_ep_bitmask;
1930 xhci = hcd_to_xhci(hcd);
1931 vdev = xhci->devs[udev->slot_id];
1933 /* Set up a configure endpoint command to remove the streams rings */
1934 spin_lock_irqsave(&xhci->lock, flags);
1935 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
1936 udev, eps, num_eps);
1937 if (changed_ep_bitmask == 0) {
1938 spin_unlock_irqrestore(&xhci->lock, flags);
1939 return -EINVAL;
1942 /* Use the xhci_command structure from the first endpoint. We may have
1943 * allocated too many, but the driver may call xhci_free_streams() for
1944 * each endpoint it grouped into one call to xhci_alloc_streams().
1946 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
1947 command = vdev->eps[ep_index].stream_info->free_streams_command;
1948 for (i = 0; i < num_eps; i++) {
1949 struct xhci_ep_ctx *ep_ctx;
1951 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1952 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1953 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
1954 EP_GETTING_NO_STREAMS;
1956 xhci_endpoint_copy(xhci, command->in_ctx,
1957 vdev->out_ctx, ep_index);
1958 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
1959 &vdev->eps[ep_index]);
1961 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
1962 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
1963 spin_unlock_irqrestore(&xhci->lock, flags);
1965 /* Issue and wait for the configure endpoint command,
1966 * which must succeed.
1968 ret = xhci_configure_endpoint(xhci, udev, command,
1969 false, true);
1971 /* xHC rejected the configure endpoint command for some reason, so we
1972 * leave the streams rings intact.
1974 if (ret < 0)
1975 return ret;
1977 spin_lock_irqsave(&xhci->lock, flags);
1978 for (i = 0; i < num_eps; i++) {
1979 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1980 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
1981 vdev->eps[ep_index].stream_info = NULL;
1982 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
1983 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
1985 spin_unlock_irqrestore(&xhci->lock, flags);
1987 return 0;
1991 * This submits a Reset Device Command, which will set the device state to 0,
1992 * set the device address to 0, and disable all the endpoints except the default
1993 * control endpoint. The USB core should come back and call
1994 * xhci_address_device(), and then re-set up the configuration. If this is
1995 * called because of a usb_reset_and_verify_device(), then the old alternate
1996 * settings will be re-installed through the normal bandwidth allocation
1997 * functions.
1999 * Wait for the Reset Device command to finish. Remove all structures
2000 * associated with the endpoints that were disabled. Clear the input device
2001 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
2003 int xhci_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2005 int ret, i;
2006 unsigned long flags;
2007 struct xhci_hcd *xhci;
2008 unsigned int slot_id;
2009 struct xhci_virt_device *virt_dev;
2010 struct xhci_command *reset_device_cmd;
2011 int timeleft;
2012 int last_freed_endpoint;
2014 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
2015 if (ret <= 0)
2016 return ret;
2017 xhci = hcd_to_xhci(hcd);
2018 slot_id = udev->slot_id;
2019 virt_dev = xhci->devs[slot_id];
2020 if (!virt_dev) {
2021 xhci_dbg(xhci, "%s called with invalid slot ID %u\n",
2022 __func__, slot_id);
2023 return -EINVAL;
2026 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2027 /* Allocate the command structure that holds the struct completion.
2028 * Assume we're in process context, since the normal device reset
2029 * process has to wait for the device anyway. Storage devices are
2030 * reset as part of error handling, so use GFP_NOIO instead of
2031 * GFP_KERNEL.
2033 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2034 if (!reset_device_cmd) {
2035 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2036 return -ENOMEM;
2039 /* Attempt to submit the Reset Device command to the command ring */
2040 spin_lock_irqsave(&xhci->lock, flags);
2041 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2043 /* Enqueue pointer can be left pointing to the link TRB,
2044 * we must handle that
2046 if ((reset_device_cmd->command_trb->link.control & TRB_TYPE_BITMASK)
2047 == TRB_TYPE(TRB_LINK))
2048 reset_device_cmd->command_trb =
2049 xhci->cmd_ring->enq_seg->next->trbs;
2051 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2052 ret = xhci_queue_reset_device(xhci, slot_id);
2053 if (ret) {
2054 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2055 list_del(&reset_device_cmd->cmd_list);
2056 spin_unlock_irqrestore(&xhci->lock, flags);
2057 goto command_cleanup;
2059 xhci_ring_cmd_db(xhci);
2060 spin_unlock_irqrestore(&xhci->lock, flags);
2062 /* Wait for the Reset Device command to finish */
2063 timeleft = wait_for_completion_interruptible_timeout(
2064 reset_device_cmd->completion,
2065 USB_CTRL_SET_TIMEOUT);
2066 if (timeleft <= 0) {
2067 xhci_warn(xhci, "%s while waiting for reset device command\n",
2068 timeleft == 0 ? "Timeout" : "Signal");
2069 spin_lock_irqsave(&xhci->lock, flags);
2070 /* The timeout might have raced with the event ring handler, so
2071 * only delete from the list if the item isn't poisoned.
2073 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2074 list_del(&reset_device_cmd->cmd_list);
2075 spin_unlock_irqrestore(&xhci->lock, flags);
2076 ret = -ETIME;
2077 goto command_cleanup;
2080 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2081 * unless we tried to reset a slot ID that wasn't enabled,
2082 * or the device wasn't in the addressed or configured state.
2084 ret = reset_device_cmd->status;
2085 switch (ret) {
2086 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2087 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2088 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2089 slot_id,
2090 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2091 xhci_info(xhci, "Not freeing device rings.\n");
2092 /* Don't treat this as an error. May change my mind later. */
2093 ret = 0;
2094 goto command_cleanup;
2095 case COMP_SUCCESS:
2096 xhci_dbg(xhci, "Successful reset device command.\n");
2097 break;
2098 default:
2099 if (xhci_is_vendor_info_code(xhci, ret))
2100 break;
2101 xhci_warn(xhci, "Unknown completion code %u for "
2102 "reset device command.\n", ret);
2103 ret = -EINVAL;
2104 goto command_cleanup;
2107 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2108 last_freed_endpoint = 1;
2109 for (i = 1; i < 31; ++i) {
2110 if (!virt_dev->eps[i].ring)
2111 continue;
2112 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2113 last_freed_endpoint = i;
2115 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2116 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2117 ret = 0;
2119 command_cleanup:
2120 xhci_free_command(xhci, reset_device_cmd);
2121 return ret;
2125 * At this point, the struct usb_device is about to go away, the device has
2126 * disconnected, and all traffic has been stopped and the endpoints have been
2127 * disabled. Free any HC data structures associated with that device.
2129 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2131 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2132 struct xhci_virt_device *virt_dev;
2133 unsigned long flags;
2134 u32 state;
2135 int i;
2137 if (udev->slot_id == 0)
2138 return;
2139 virt_dev = xhci->devs[udev->slot_id];
2140 if (!virt_dev)
2141 return;
2143 /* Stop any wayward timer functions (which may grab the lock) */
2144 for (i = 0; i < 31; ++i) {
2145 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2146 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2149 spin_lock_irqsave(&xhci->lock, flags);
2150 /* Don't disable the slot if the host controller is dead. */
2151 state = xhci_readl(xhci, &xhci->op_regs->status);
2152 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2153 xhci_free_virt_device(xhci, udev->slot_id);
2154 spin_unlock_irqrestore(&xhci->lock, flags);
2155 return;
2158 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2159 spin_unlock_irqrestore(&xhci->lock, flags);
2160 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2161 return;
2163 xhci_ring_cmd_db(xhci);
2164 spin_unlock_irqrestore(&xhci->lock, flags);
2168 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2169 * timed out, or allocating memory failed. Returns 1 on success.
2171 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2173 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2174 unsigned long flags;
2175 int timeleft;
2176 int ret;
2178 spin_lock_irqsave(&xhci->lock, flags);
2179 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2180 if (ret) {
2181 spin_unlock_irqrestore(&xhci->lock, flags);
2182 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2183 return 0;
2185 xhci_ring_cmd_db(xhci);
2186 spin_unlock_irqrestore(&xhci->lock, flags);
2188 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2189 USB_CTRL_SET_TIMEOUT);
2190 if (timeleft <= 0) {
2191 xhci_warn(xhci, "%s while waiting for a slot\n",
2192 timeleft == 0 ? "Timeout" : "Signal");
2193 return 0;
2196 if (!xhci->slot_id) {
2197 xhci_err(xhci, "Error while assigning device slot ID\n");
2198 return 0;
2200 /* xhci_alloc_virt_device() does not touch rings; no need to lock.
2201 * Use GFP_NOIO, since this function can be called from
2202 * xhci_discover_or_reset_device(), which may be called as part of
2203 * mass storage driver error handling.
2205 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2206 /* Disable slot, if we can do it without mem alloc */
2207 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2208 spin_lock_irqsave(&xhci->lock, flags);
2209 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2210 xhci_ring_cmd_db(xhci);
2211 spin_unlock_irqrestore(&xhci->lock, flags);
2212 return 0;
2214 udev->slot_id = xhci->slot_id;
2215 /* Is this a LS or FS device under a HS hub? */
2216 /* Hub or peripherial? */
2217 return 1;
2221 * Issue an Address Device command (which will issue a SetAddress request to
2222 * the device).
2223 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2224 * we should only issue and wait on one address command at the same time.
2226 * We add one to the device address issued by the hardware because the USB core
2227 * uses address 1 for the root hubs (even though they're not really devices).
2229 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2231 unsigned long flags;
2232 int timeleft;
2233 struct xhci_virt_device *virt_dev;
2234 int ret = 0;
2235 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2236 struct xhci_slot_ctx *slot_ctx;
2237 struct xhci_input_control_ctx *ctrl_ctx;
2238 u64 temp_64;
2240 if (!udev->slot_id) {
2241 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2242 return -EINVAL;
2245 virt_dev = xhci->devs[udev->slot_id];
2247 /* If this is a Set Address to an unconfigured device, setup ep 0 */
2248 if (!udev->config)
2249 xhci_setup_addressable_virt_dev(xhci, udev);
2250 else
2251 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2252 /* Otherwise, assume the core has the device configured how it wants */
2253 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2254 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2256 spin_lock_irqsave(&xhci->lock, flags);
2257 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2258 udev->slot_id);
2259 if (ret) {
2260 spin_unlock_irqrestore(&xhci->lock, flags);
2261 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2262 return ret;
2264 xhci_ring_cmd_db(xhci);
2265 spin_unlock_irqrestore(&xhci->lock, flags);
2267 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2268 USB_CTRL_SET_TIMEOUT);
2269 if (timeleft <= 0) {
2270 xhci_warn(xhci, "%s while waiting for a slot\n",
2271 timeleft == 0 ? "Timeout" : "Signal");
2272 return -ETIME;
2275 switch (virt_dev->cmd_status) {
2276 case COMP_CTX_STATE:
2277 case COMP_EBADSLT:
2278 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2279 udev->slot_id);
2280 ret = -EINVAL;
2281 break;
2282 case COMP_TX_ERR:
2283 dev_warn(&udev->dev, "Device not responding to set address.\n");
2284 ret = -EPROTO;
2285 break;
2286 case COMP_SUCCESS:
2287 xhci_dbg(xhci, "Successful Address Device command\n");
2288 break;
2289 default:
2290 xhci_err(xhci, "ERROR: unexpected command completion "
2291 "code 0x%x.\n", virt_dev->cmd_status);
2292 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2293 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2294 ret = -EINVAL;
2295 break;
2297 if (ret) {
2298 return ret;
2300 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2301 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2302 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2303 udev->slot_id,
2304 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2305 (unsigned long long)
2306 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
2307 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2308 (unsigned long long)virt_dev->out_ctx->dma);
2309 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2310 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2311 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2312 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2314 * USB core uses address 1 for the roothubs, so we add one to the
2315 * address given back to us by the HC.
2317 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2318 udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
2319 /* Zero the input context control for later use */
2320 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2321 ctrl_ctx->add_flags = 0;
2322 ctrl_ctx->drop_flags = 0;
2324 xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
2325 set_bit(udev->devnum, udev->bus->devmap.devicemap);
2327 return 0;
2330 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2331 * internal data structures for the device.
2333 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2334 struct usb_tt *tt, gfp_t mem_flags)
2336 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2337 struct xhci_virt_device *vdev;
2338 struct xhci_command *config_cmd;
2339 struct xhci_input_control_ctx *ctrl_ctx;
2340 struct xhci_slot_ctx *slot_ctx;
2341 unsigned long flags;
2342 unsigned think_time;
2343 int ret;
2345 /* Ignore root hubs */
2346 if (!hdev->parent)
2347 return 0;
2349 vdev = xhci->devs[hdev->slot_id];
2350 if (!vdev) {
2351 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2352 return -EINVAL;
2354 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2355 if (!config_cmd) {
2356 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2357 return -ENOMEM;
2360 spin_lock_irqsave(&xhci->lock, flags);
2361 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2362 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2363 ctrl_ctx->add_flags |= SLOT_FLAG;
2364 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2365 slot_ctx->dev_info |= DEV_HUB;
2366 if (tt->multi)
2367 slot_ctx->dev_info |= DEV_MTT;
2368 if (xhci->hci_version > 0x95) {
2369 xhci_dbg(xhci, "xHCI version %x needs hub "
2370 "TT think time and number of ports\n",
2371 (unsigned int) xhci->hci_version);
2372 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
2373 /* Set TT think time - convert from ns to FS bit times.
2374 * 0 = 8 FS bit times, 1 = 16 FS bit times,
2375 * 2 = 24 FS bit times, 3 = 32 FS bit times.
2377 think_time = tt->think_time;
2378 if (think_time != 0)
2379 think_time = (think_time / 666) - 1;
2380 slot_ctx->tt_info |= TT_THINK_TIME(think_time);
2381 } else {
2382 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2383 "TT think time or number of ports\n",
2384 (unsigned int) xhci->hci_version);
2386 slot_ctx->dev_state = 0;
2387 spin_unlock_irqrestore(&xhci->lock, flags);
2389 xhci_dbg(xhci, "Set up %s for hub device.\n",
2390 (xhci->hci_version > 0x95) ?
2391 "configure endpoint" : "evaluate context");
2392 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
2393 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
2395 /* Issue and wait for the configure endpoint or
2396 * evaluate context command.
2398 if (xhci->hci_version > 0x95)
2399 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2400 false, false);
2401 else
2402 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2403 true, false);
2405 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
2406 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
2408 xhci_free_command(xhci, config_cmd);
2409 return ret;
2412 int xhci_get_frame(struct usb_hcd *hcd)
2414 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2415 /* EHCI mods by the periodic size. Why? */
2416 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
2419 MODULE_DESCRIPTION(DRIVER_DESC);
2420 MODULE_AUTHOR(DRIVER_AUTHOR);
2421 MODULE_LICENSE("GPL");
2423 static int __init xhci_hcd_init(void)
2425 #ifdef CONFIG_PCI
2426 int retval = 0;
2428 retval = xhci_register_pci();
2430 if (retval < 0) {
2431 printk(KERN_DEBUG "Problem registering PCI driver.");
2432 return retval;
2434 #endif
2436 * Check the compiler generated sizes of structures that must be laid
2437 * out in specific ways for hardware access.
2439 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2440 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
2441 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
2442 /* xhci_device_control has eight fields, and also
2443 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
2445 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
2446 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
2447 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
2448 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
2449 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
2450 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
2451 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
2452 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2453 return 0;
2455 module_init(xhci_hcd_init);
2457 static void __exit xhci_hcd_cleanup(void)
2459 #ifdef CONFIG_PCI
2460 xhci_unregister_pci();
2461 #endif
2463 module_exit(xhci_hcd_cleanup);