GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / scsi / aacraid / commsup.c
blob5e18e364b9f8b1f5d5c8505714582b839922d548
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commsup.c
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <linux/semaphore.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_host.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_cmnd.h>
50 #include "aacraid.h"
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev *dev)
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
81 void aac_fib_map_free(struct aac_dev *dev)
83 pci_free_consistent(dev->pdev,
84 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85 dev->hw_fib_va, dev->hw_fib_pa);
86 dev->hw_fib_va = NULL;
87 dev->hw_fib_pa = 0;
90 /**
91 * aac_fib_setup - setup the fibs
92 * @dev: Adapter to set up
94 * Allocate the PCI space for the fibs, map it and then intialise the
95 * fib area, the unmapped fib data and also the free list
98 int aac_fib_setup(struct aac_dev * dev)
100 struct fib *fibptr;
101 struct hw_fib *hw_fib;
102 dma_addr_t hw_fib_pa;
103 int i;
105 while (((i = fib_map_alloc(dev)) == -ENOMEM)
106 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
110 if (i<0)
111 return -ENOMEM;
113 hw_fib = dev->hw_fib_va;
114 hw_fib_pa = dev->hw_fib_pa;
115 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
117 * Initialise the fibs
119 for (i = 0, fibptr = &dev->fibs[i];
120 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
121 i++, fibptr++)
123 fibptr->dev = dev;
124 fibptr->hw_fib_va = hw_fib;
125 fibptr->data = (void *) fibptr->hw_fib_va->data;
126 fibptr->next = fibptr+1; /* Forward chain the fibs */
127 init_MUTEX_LOCKED(&fibptr->event_wait);
128 spin_lock_init(&fibptr->event_lock);
129 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
130 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
131 fibptr->hw_fib_pa = hw_fib_pa;
132 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
133 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
136 * Add the fib chain to the free list
138 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
140 * Enable this to debug out of queue space
142 dev->free_fib = &dev->fibs[0];
143 return 0;
147 * aac_fib_alloc - allocate a fib
148 * @dev: Adapter to allocate the fib for
150 * Allocate a fib from the adapter fib pool. If the pool is empty we
151 * return NULL.
154 struct fib *aac_fib_alloc(struct aac_dev *dev)
156 struct fib * fibptr;
157 unsigned long flags;
158 spin_lock_irqsave(&dev->fib_lock, flags);
159 fibptr = dev->free_fib;
160 if(!fibptr){
161 spin_unlock_irqrestore(&dev->fib_lock, flags);
162 return fibptr;
164 dev->free_fib = fibptr->next;
165 spin_unlock_irqrestore(&dev->fib_lock, flags);
167 * Set the proper node type code and node byte size
169 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
170 fibptr->size = sizeof(struct fib);
172 * Null out fields that depend on being zero at the start of
173 * each I/O
175 fibptr->hw_fib_va->header.XferState = 0;
176 fibptr->flags = 0;
177 fibptr->callback = NULL;
178 fibptr->callback_data = NULL;
180 return fibptr;
184 * aac_fib_free - free a fib
185 * @fibptr: fib to free up
187 * Frees up a fib and places it on the appropriate queue
190 void aac_fib_free(struct fib *fibptr)
192 unsigned long flags, flagsv;
194 spin_lock_irqsave(&fibptr->event_lock, flagsv);
195 if (fibptr->done == 2) {
196 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
197 return;
199 spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
201 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
202 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
203 aac_config.fib_timeouts++;
204 if (fibptr->hw_fib_va->header.XferState != 0) {
205 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
206 (void*)fibptr,
207 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
209 fibptr->next = fibptr->dev->free_fib;
210 fibptr->dev->free_fib = fibptr;
211 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
215 * aac_fib_init - initialise a fib
216 * @fibptr: The fib to initialize
218 * Set up the generic fib fields ready for use
221 void aac_fib_init(struct fib *fibptr)
223 struct hw_fib *hw_fib = fibptr->hw_fib_va;
225 hw_fib->header.StructType = FIB_MAGIC;
226 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
227 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
228 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
229 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
230 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
234 * fib_deallocate - deallocate a fib
235 * @fibptr: fib to deallocate
237 * Will deallocate and return to the free pool the FIB pointed to by the
238 * caller.
241 static void fib_dealloc(struct fib * fibptr)
243 struct hw_fib *hw_fib = fibptr->hw_fib_va;
244 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
245 hw_fib->header.XferState = 0;
249 * Commuication primitives define and support the queuing method we use to
250 * support host to adapter commuication. All queue accesses happen through
251 * these routines and are the only routines which have a knowledge of the
252 * how these queues are implemented.
256 * aac_get_entry - get a queue entry
257 * @dev: Adapter
258 * @qid: Queue Number
259 * @entry: Entry return
260 * @index: Index return
261 * @nonotify: notification control
263 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
264 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
265 * returned.
268 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
270 struct aac_queue * q;
271 unsigned long idx;
274 * All of the queues wrap when they reach the end, so we check
275 * to see if they have reached the end and if they have we just
276 * set the index back to zero. This is a wrap. You could or off
277 * the high bits in all updates but this is a bit faster I think.
280 q = &dev->queues->queue[qid];
282 idx = *index = le32_to_cpu(*(q->headers.producer));
283 /* Interrupt Moderation, only interrupt for first two entries */
284 if (idx != le32_to_cpu(*(q->headers.consumer))) {
285 if (--idx == 0) {
286 if (qid == AdapNormCmdQueue)
287 idx = ADAP_NORM_CMD_ENTRIES;
288 else
289 idx = ADAP_NORM_RESP_ENTRIES;
291 if (idx != le32_to_cpu(*(q->headers.consumer)))
292 *nonotify = 1;
295 if (qid == AdapNormCmdQueue) {
296 if (*index >= ADAP_NORM_CMD_ENTRIES)
297 *index = 0; /* Wrap to front of the Producer Queue. */
298 } else {
299 if (*index >= ADAP_NORM_RESP_ENTRIES)
300 *index = 0; /* Wrap to front of the Producer Queue. */
303 /* Queue is full */
304 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
305 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
306 qid, q->numpending);
307 return 0;
308 } else {
309 *entry = q->base + *index;
310 return 1;
315 * aac_queue_get - get the next free QE
316 * @dev: Adapter
317 * @index: Returned index
318 * @priority: Priority of fib
319 * @fib: Fib to associate with the queue entry
320 * @wait: Wait if queue full
321 * @fibptr: Driver fib object to go with fib
322 * @nonotify: Don't notify the adapter
324 * Gets the next free QE off the requested priorty adapter command
325 * queue and associates the Fib with the QE. The QE represented by
326 * index is ready to insert on the queue when this routine returns
327 * success.
330 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
332 struct aac_entry * entry = NULL;
333 int map = 0;
335 if (qid == AdapNormCmdQueue) {
336 /* if no entries wait for some if caller wants to */
337 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
338 printk(KERN_ERR "GetEntries failed\n");
341 * Setup queue entry with a command, status and fib mapped
343 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
344 map = 1;
345 } else {
346 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
347 /* if no entries wait for some if caller wants to */
350 * Setup queue entry with command, status and fib mapped
352 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
353 entry->addr = hw_fib->header.SenderFibAddress;
354 /* Restore adapters pointer to the FIB */
355 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
356 map = 0;
359 * If MapFib is true than we need to map the Fib and put pointers
360 * in the queue entry.
362 if (map)
363 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
364 return 0;
368 * Define the highest level of host to adapter communication routines.
369 * These routines will support host to adapter FS commuication. These
370 * routines have no knowledge of the commuication method used. This level
371 * sends and receives FIBs. This level has no knowledge of how these FIBs
372 * get passed back and forth.
376 * aac_fib_send - send a fib to the adapter
377 * @command: Command to send
378 * @fibptr: The fib
379 * @size: Size of fib data area
380 * @priority: Priority of Fib
381 * @wait: Async/sync select
382 * @reply: True if a reply is wanted
383 * @callback: Called with reply
384 * @callback_data: Passed to callback
386 * Sends the requested FIB to the adapter and optionally will wait for a
387 * response FIB. If the caller does not wish to wait for a response than
388 * an event to wait on must be supplied. This event will be set when a
389 * response FIB is received from the adapter.
392 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
393 int priority, int wait, int reply, fib_callback callback,
394 void *callback_data)
396 struct aac_dev * dev = fibptr->dev;
397 struct hw_fib * hw_fib = fibptr->hw_fib_va;
398 unsigned long flags = 0;
399 unsigned long qflags;
400 unsigned long mflags = 0;
403 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
404 return -EBUSY;
406 * There are 5 cases with the wait and reponse requested flags.
407 * The only invalid cases are if the caller requests to wait and
408 * does not request a response and if the caller does not want a
409 * response and the Fib is not allocated from pool. If a response
410 * is not requesed the Fib will just be deallocaed by the DPC
411 * routine when the response comes back from the adapter. No
412 * further processing will be done besides deleting the Fib. We
413 * will have a debug mode where the adapter can notify the host
414 * it had a problem and the host can log that fact.
416 fibptr->flags = 0;
417 if (wait && !reply) {
418 return -EINVAL;
419 } else if (!wait && reply) {
420 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
421 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
422 } else if (!wait && !reply) {
423 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
424 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
425 } else if (wait && reply) {
426 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
427 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
430 * Map the fib into 32bits by using the fib number
433 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
434 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
436 * Set FIB state to indicate where it came from and if we want a
437 * response from the adapter. Also load the command from the
438 * caller.
440 * Map the hw fib pointer as a 32bit value
442 hw_fib->header.Command = cpu_to_le16(command);
443 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
444 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/
446 * Set the size of the Fib we want to send to the adapter
448 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
449 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
450 return -EMSGSIZE;
453 * Get a queue entry connect the FIB to it and send an notify
454 * the adapter a command is ready.
456 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
459 * Fill in the Callback and CallbackContext if we are not
460 * going to wait.
462 if (!wait) {
463 fibptr->callback = callback;
464 fibptr->callback_data = callback_data;
465 fibptr->flags = FIB_CONTEXT_FLAG;
468 fibptr->done = 0;
470 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
472 dprintk((KERN_DEBUG "Fib contents:.\n"));
473 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
474 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
475 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
476 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
477 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
478 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
480 if (!dev->queues)
481 return -EBUSY;
483 if (wait) {
485 spin_lock_irqsave(&dev->manage_lock, mflags);
486 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
487 printk(KERN_INFO "No management Fibs Available:%d\n",
488 dev->management_fib_count);
489 spin_unlock_irqrestore(&dev->manage_lock, mflags);
490 return -EBUSY;
492 dev->management_fib_count++;
493 spin_unlock_irqrestore(&dev->manage_lock, mflags);
494 spin_lock_irqsave(&fibptr->event_lock, flags);
497 if (aac_adapter_deliver(fibptr) != 0) {
498 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
499 if (wait) {
500 spin_unlock_irqrestore(&fibptr->event_lock, flags);
501 spin_lock_irqsave(&dev->manage_lock, mflags);
502 dev->management_fib_count--;
503 spin_unlock_irqrestore(&dev->manage_lock, mflags);
505 return -EBUSY;
510 * If the caller wanted us to wait for response wait now.
513 if (wait) {
514 spin_unlock_irqrestore(&fibptr->event_lock, flags);
515 /* Only set for first known interruptable command */
516 if (wait < 0) {
518 * *VERY* Dangerous to time out a command, the
519 * assumption is made that we have no hope of
520 * functioning because an interrupt routing or other
521 * hardware failure has occurred.
523 unsigned long count = 36000000L; /* 3 minutes */
524 while (down_trylock(&fibptr->event_wait)) {
525 int blink;
526 if (--count == 0) {
527 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
528 spin_lock_irqsave(q->lock, qflags);
529 q->numpending--;
530 spin_unlock_irqrestore(q->lock, qflags);
531 if (wait == -1) {
532 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
533 "Usually a result of a PCI interrupt routing problem;\n"
534 "update mother board BIOS or consider utilizing one of\n"
535 "the SAFE mode kernel options (acpi, apic etc)\n");
537 return -ETIMEDOUT;
539 if ((blink = aac_adapter_check_health(dev)) > 0) {
540 if (wait == -1) {
541 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
542 "Usually a result of a serious unrecoverable hardware problem\n",
543 blink);
545 return -EFAULT;
547 udelay(5);
549 } else if (down_interruptible(&fibptr->event_wait)) {
550 /* Do nothing ... satisfy
551 * down_interruptible must_check */
554 spin_lock_irqsave(&fibptr->event_lock, flags);
555 if (fibptr->done == 0) {
556 fibptr->done = 2; /* Tell interrupt we aborted */
557 spin_unlock_irqrestore(&fibptr->event_lock, flags);
558 return -ERESTARTSYS;
560 spin_unlock_irqrestore(&fibptr->event_lock, flags);
561 BUG_ON(fibptr->done == 0);
563 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
564 return -ETIMEDOUT;
565 return 0;
568 * If the user does not want a response than return success otherwise
569 * return pending
571 if (reply)
572 return -EINPROGRESS;
573 else
574 return 0;
578 * aac_consumer_get - get the top of the queue
579 * @dev: Adapter
580 * @q: Queue
581 * @entry: Return entry
583 * Will return a pointer to the entry on the top of the queue requested that
584 * we are a consumer of, and return the address of the queue entry. It does
585 * not change the state of the queue.
588 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
590 u32 index;
591 int status;
592 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
593 status = 0;
594 } else {
596 * The consumer index must be wrapped if we have reached
597 * the end of the queue, else we just use the entry
598 * pointed to by the header index
600 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
601 index = 0;
602 else
603 index = le32_to_cpu(*q->headers.consumer);
604 *entry = q->base + index;
605 status = 1;
607 return(status);
611 * aac_consumer_free - free consumer entry
612 * @dev: Adapter
613 * @q: Queue
614 * @qid: Queue ident
616 * Frees up the current top of the queue we are a consumer of. If the
617 * queue was full notify the producer that the queue is no longer full.
620 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
622 int wasfull = 0;
623 u32 notify;
625 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
626 wasfull = 1;
628 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
629 *q->headers.consumer = cpu_to_le32(1);
630 else
631 le32_add_cpu(q->headers.consumer, 1);
633 if (wasfull) {
634 switch (qid) {
636 case HostNormCmdQueue:
637 notify = HostNormCmdNotFull;
638 break;
639 case HostNormRespQueue:
640 notify = HostNormRespNotFull;
641 break;
642 default:
643 BUG();
644 return;
646 aac_adapter_notify(dev, notify);
651 * aac_fib_adapter_complete - complete adapter issued fib
652 * @fibptr: fib to complete
653 * @size: size of fib
655 * Will do all necessary work to complete a FIB that was sent from
656 * the adapter.
659 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
661 struct hw_fib * hw_fib = fibptr->hw_fib_va;
662 struct aac_dev * dev = fibptr->dev;
663 struct aac_queue * q;
664 unsigned long nointr = 0;
665 unsigned long qflags;
667 if (hw_fib->header.XferState == 0) {
668 if (dev->comm_interface == AAC_COMM_MESSAGE)
669 kfree (hw_fib);
670 return 0;
673 * If we plan to do anything check the structure type first.
675 if (hw_fib->header.StructType != FIB_MAGIC) {
676 if (dev->comm_interface == AAC_COMM_MESSAGE)
677 kfree (hw_fib);
678 return -EINVAL;
681 * This block handles the case where the adapter had sent us a
682 * command and we have finished processing the command. We
683 * call completeFib when we are done processing the command
684 * and want to send a response back to the adapter. This will
685 * send the completed cdb to the adapter.
687 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
688 if (dev->comm_interface == AAC_COMM_MESSAGE) {
689 kfree (hw_fib);
690 } else {
691 u32 index;
692 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
693 if (size) {
694 size += sizeof(struct aac_fibhdr);
695 if (size > le16_to_cpu(hw_fib->header.SenderSize))
696 return -EMSGSIZE;
697 hw_fib->header.Size = cpu_to_le16(size);
699 q = &dev->queues->queue[AdapNormRespQueue];
700 spin_lock_irqsave(q->lock, qflags);
701 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
702 *(q->headers.producer) = cpu_to_le32(index + 1);
703 spin_unlock_irqrestore(q->lock, qflags);
704 if (!(nointr & (int)aac_config.irq_mod))
705 aac_adapter_notify(dev, AdapNormRespQueue);
707 } else {
708 printk(KERN_WARNING "aac_fib_adapter_complete: "
709 "Unknown xferstate detected.\n");
710 BUG();
712 return 0;
716 * aac_fib_complete - fib completion handler
717 * @fib: FIB to complete
719 * Will do all necessary work to complete a FIB.
722 int aac_fib_complete(struct fib *fibptr)
724 unsigned long flags;
725 struct hw_fib * hw_fib = fibptr->hw_fib_va;
728 * Check for a fib which has already been completed
731 if (hw_fib->header.XferState == 0)
732 return 0;
734 * If we plan to do anything check the structure type first.
737 if (hw_fib->header.StructType != FIB_MAGIC)
738 return -EINVAL;
740 * This block completes a cdb which orginated on the host and we
741 * just need to deallocate the cdb or reinit it. At this point the
742 * command is complete that we had sent to the adapter and this
743 * cdb could be reused.
745 spin_lock_irqsave(&fibptr->event_lock, flags);
746 if (fibptr->done == 2) {
747 spin_unlock_irqrestore(&fibptr->event_lock, flags);
748 return 0;
750 spin_unlock_irqrestore(&fibptr->event_lock, flags);
752 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
753 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
755 fib_dealloc(fibptr);
757 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
760 * This handles the case when the host has aborted the I/O
761 * to the adapter because the adapter is not responding
763 fib_dealloc(fibptr);
764 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
765 fib_dealloc(fibptr);
766 } else {
767 BUG();
769 return 0;
773 * aac_printf - handle printf from firmware
774 * @dev: Adapter
775 * @val: Message info
777 * Print a message passed to us by the controller firmware on the
778 * Adaptec board
781 void aac_printf(struct aac_dev *dev, u32 val)
783 char *cp = dev->printfbuf;
784 if (dev->printf_enabled)
786 int length = val & 0xffff;
787 int level = (val >> 16) & 0xffff;
790 * The size of the printfbuf is set in port.c
791 * There is no variable or define for it
793 if (length > 255)
794 length = 255;
795 if (cp[length] != 0)
796 cp[length] = 0;
797 if (level == LOG_AAC_HIGH_ERROR)
798 printk(KERN_WARNING "%s:%s", dev->name, cp);
799 else
800 printk(KERN_INFO "%s:%s", dev->name, cp);
802 memset(cp, 0, 256);
807 * aac_handle_aif - Handle a message from the firmware
808 * @dev: Which adapter this fib is from
809 * @fibptr: Pointer to fibptr from adapter
811 * This routine handles a driver notify fib from the adapter and
812 * dispatches it to the appropriate routine for handling.
815 #define AIF_SNIFF_TIMEOUT (30*HZ)
816 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
818 struct hw_fib * hw_fib = fibptr->hw_fib_va;
819 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
820 u32 channel, id, lun, container;
821 struct scsi_device *device;
822 enum {
823 NOTHING,
824 DELETE,
825 ADD,
826 CHANGE
827 } device_config_needed = NOTHING;
829 /* Sniff for container changes */
831 if (!dev || !dev->fsa_dev)
832 return;
833 container = channel = id = lun = (u32)-1;
836 * We have set this up to try and minimize the number of
837 * re-configures that take place. As a result of this when
838 * certain AIF's come in we will set a flag waiting for another
839 * type of AIF before setting the re-config flag.
841 switch (le32_to_cpu(aifcmd->command)) {
842 case AifCmdDriverNotify:
843 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
845 * Morph or Expand complete
847 case AifDenMorphComplete:
848 case AifDenVolumeExtendComplete:
849 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
850 if (container >= dev->maximum_num_containers)
851 break;
854 * Find the scsi_device associated with the SCSI
855 * address. Make sure we have the right array, and if
856 * so set the flag to initiate a new re-config once we
857 * see an AifEnConfigChange AIF come through.
860 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
861 device = scsi_device_lookup(dev->scsi_host_ptr,
862 CONTAINER_TO_CHANNEL(container),
863 CONTAINER_TO_ID(container),
864 CONTAINER_TO_LUN(container));
865 if (device) {
866 dev->fsa_dev[container].config_needed = CHANGE;
867 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
868 dev->fsa_dev[container].config_waiting_stamp = jiffies;
869 scsi_device_put(device);
875 * If we are waiting on something and this happens to be
876 * that thing then set the re-configure flag.
878 if (container != (u32)-1) {
879 if (container >= dev->maximum_num_containers)
880 break;
881 if ((dev->fsa_dev[container].config_waiting_on ==
882 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
883 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
884 dev->fsa_dev[container].config_waiting_on = 0;
885 } else for (container = 0;
886 container < dev->maximum_num_containers; ++container) {
887 if ((dev->fsa_dev[container].config_waiting_on ==
888 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
889 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
890 dev->fsa_dev[container].config_waiting_on = 0;
892 break;
894 case AifCmdEventNotify:
895 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
896 case AifEnBatteryEvent:
897 dev->cache_protected =
898 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
899 break;
901 * Add an Array.
903 case AifEnAddContainer:
904 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
905 if (container >= dev->maximum_num_containers)
906 break;
907 dev->fsa_dev[container].config_needed = ADD;
908 dev->fsa_dev[container].config_waiting_on =
909 AifEnConfigChange;
910 dev->fsa_dev[container].config_waiting_stamp = jiffies;
911 break;
914 * Delete an Array.
916 case AifEnDeleteContainer:
917 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
918 if (container >= dev->maximum_num_containers)
919 break;
920 dev->fsa_dev[container].config_needed = DELETE;
921 dev->fsa_dev[container].config_waiting_on =
922 AifEnConfigChange;
923 dev->fsa_dev[container].config_waiting_stamp = jiffies;
924 break;
927 * Container change detected. If we currently are not
928 * waiting on something else, setup to wait on a Config Change.
930 case AifEnContainerChange:
931 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
932 if (container >= dev->maximum_num_containers)
933 break;
934 if (dev->fsa_dev[container].config_waiting_on &&
935 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
936 break;
937 dev->fsa_dev[container].config_needed = CHANGE;
938 dev->fsa_dev[container].config_waiting_on =
939 AifEnConfigChange;
940 dev->fsa_dev[container].config_waiting_stamp = jiffies;
941 break;
943 case AifEnConfigChange:
944 break;
946 case AifEnAddJBOD:
947 case AifEnDeleteJBOD:
948 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
949 if ((container >> 28)) {
950 container = (u32)-1;
951 break;
953 channel = (container >> 24) & 0xF;
954 if (channel >= dev->maximum_num_channels) {
955 container = (u32)-1;
956 break;
958 id = container & 0xFFFF;
959 if (id >= dev->maximum_num_physicals) {
960 container = (u32)-1;
961 break;
963 lun = (container >> 16) & 0xFF;
964 container = (u32)-1;
965 channel = aac_phys_to_logical(channel);
966 device_config_needed =
967 (((__le32 *)aifcmd->data)[0] ==
968 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
969 if (device_config_needed == ADD) {
970 device = scsi_device_lookup(dev->scsi_host_ptr,
971 channel,
973 lun);
974 if (device) {
975 scsi_remove_device(device);
976 scsi_device_put(device);
979 break;
981 case AifEnEnclosureManagement:
983 * If in JBOD mode, automatic exposure of new
984 * physical target to be suppressed until configured.
986 if (dev->jbod)
987 break;
988 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
989 case EM_DRIVE_INSERTION:
990 case EM_DRIVE_REMOVAL:
991 container = le32_to_cpu(
992 ((__le32 *)aifcmd->data)[2]);
993 if ((container >> 28)) {
994 container = (u32)-1;
995 break;
997 channel = (container >> 24) & 0xF;
998 if (channel >= dev->maximum_num_channels) {
999 container = (u32)-1;
1000 break;
1002 id = container & 0xFFFF;
1003 lun = (container >> 16) & 0xFF;
1004 container = (u32)-1;
1005 if (id >= dev->maximum_num_physicals) {
1006 /* legacy dev_t ? */
1007 if ((0x2000 <= id) || lun || channel ||
1008 ((channel = (id >> 7) & 0x3F) >=
1009 dev->maximum_num_channels))
1010 break;
1011 lun = (id >> 4) & 7;
1012 id &= 0xF;
1014 channel = aac_phys_to_logical(channel);
1015 device_config_needed =
1016 (((__le32 *)aifcmd->data)[3]
1017 == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1018 ADD : DELETE;
1019 break;
1021 break;
1025 * If we are waiting on something and this happens to be
1026 * that thing then set the re-configure flag.
1028 if (container != (u32)-1) {
1029 if (container >= dev->maximum_num_containers)
1030 break;
1031 if ((dev->fsa_dev[container].config_waiting_on ==
1032 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1033 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1034 dev->fsa_dev[container].config_waiting_on = 0;
1035 } else for (container = 0;
1036 container < dev->maximum_num_containers; ++container) {
1037 if ((dev->fsa_dev[container].config_waiting_on ==
1038 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1039 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1040 dev->fsa_dev[container].config_waiting_on = 0;
1042 break;
1044 case AifCmdJobProgress:
1046 * These are job progress AIF's. When a Clear is being
1047 * done on a container it is initially created then hidden from
1048 * the OS. When the clear completes we don't get a config
1049 * change so we monitor the job status complete on a clear then
1050 * wait for a container change.
1053 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1054 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1055 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1056 for (container = 0;
1057 container < dev->maximum_num_containers;
1058 ++container) {
1060 * Stomp on all config sequencing for all
1061 * containers?
1063 dev->fsa_dev[container].config_waiting_on =
1064 AifEnContainerChange;
1065 dev->fsa_dev[container].config_needed = ADD;
1066 dev->fsa_dev[container].config_waiting_stamp =
1067 jiffies;
1070 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1071 ((__le32 *)aifcmd->data)[6] == 0 &&
1072 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1073 for (container = 0;
1074 container < dev->maximum_num_containers;
1075 ++container) {
1077 * Stomp on all config sequencing for all
1078 * containers?
1080 dev->fsa_dev[container].config_waiting_on =
1081 AifEnContainerChange;
1082 dev->fsa_dev[container].config_needed = DELETE;
1083 dev->fsa_dev[container].config_waiting_stamp =
1084 jiffies;
1087 break;
1090 container = 0;
1091 retry_next:
1092 if (device_config_needed == NOTHING)
1093 for (; container < dev->maximum_num_containers; ++container) {
1094 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1095 (dev->fsa_dev[container].config_needed != NOTHING) &&
1096 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1097 device_config_needed =
1098 dev->fsa_dev[container].config_needed;
1099 dev->fsa_dev[container].config_needed = NOTHING;
1100 channel = CONTAINER_TO_CHANNEL(container);
1101 id = CONTAINER_TO_ID(container);
1102 lun = CONTAINER_TO_LUN(container);
1103 break;
1106 if (device_config_needed == NOTHING)
1107 return;
1110 * If we decided that a re-configuration needs to be done,
1111 * schedule it here on the way out the door, please close the door
1112 * behind you.
1116 * Find the scsi_device associated with the SCSI address,
1117 * and mark it as changed, invalidating the cache. This deals
1118 * with changes to existing device IDs.
1121 if (!dev || !dev->scsi_host_ptr)
1122 return;
1124 * force reload of disk info via aac_probe_container
1126 if ((channel == CONTAINER_CHANNEL) &&
1127 (device_config_needed != NOTHING)) {
1128 if (dev->fsa_dev[container].valid == 1)
1129 dev->fsa_dev[container].valid = 2;
1130 aac_probe_container(dev, container);
1132 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1133 if (device) {
1134 switch (device_config_needed) {
1135 case DELETE:
1136 #if defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)
1137 scsi_remove_device(device);
1138 #else
1139 if (scsi_device_online(device)) {
1140 scsi_device_set_state(device, SDEV_OFFLINE);
1141 sdev_printk(KERN_INFO, device,
1142 "Device offlined - %s\n",
1143 (channel == CONTAINER_CHANNEL) ?
1144 "array deleted" :
1145 "enclosure services event");
1147 #endif
1148 break;
1149 case ADD:
1150 if (!scsi_device_online(device)) {
1151 sdev_printk(KERN_INFO, device,
1152 "Device online - %s\n",
1153 (channel == CONTAINER_CHANNEL) ?
1154 "array created" :
1155 "enclosure services event");
1156 scsi_device_set_state(device, SDEV_RUNNING);
1158 /* FALLTHRU */
1159 case CHANGE:
1160 if ((channel == CONTAINER_CHANNEL)
1161 && (!dev->fsa_dev[container].valid)) {
1162 #if defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)
1163 scsi_remove_device(device);
1164 #else
1165 if (!scsi_device_online(device))
1166 break;
1167 scsi_device_set_state(device, SDEV_OFFLINE);
1168 sdev_printk(KERN_INFO, device,
1169 "Device offlined - %s\n",
1170 "array failed");
1171 #endif
1172 break;
1174 scsi_rescan_device(&device->sdev_gendev);
1176 default:
1177 break;
1179 scsi_device_put(device);
1180 device_config_needed = NOTHING;
1182 if (device_config_needed == ADD)
1183 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1184 if (channel == CONTAINER_CHANNEL) {
1185 container++;
1186 device_config_needed = NOTHING;
1187 goto retry_next;
1191 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1193 int index, quirks;
1194 int retval;
1195 struct Scsi_Host *host;
1196 struct scsi_device *dev;
1197 struct scsi_cmnd *command;
1198 struct scsi_cmnd *command_list;
1199 int jafo = 0;
1202 * Assumptions:
1203 * - host is locked, unless called by the aacraid thread.
1204 * (a matter of convenience, due to legacy issues surrounding
1205 * eh_host_adapter_reset).
1206 * - in_reset is asserted, so no new i/o is getting to the
1207 * card.
1208 * - The card is dead, or will be very shortly ;-/ so no new
1209 * commands are completing in the interrupt service.
1211 host = aac->scsi_host_ptr;
1212 scsi_block_requests(host);
1213 aac_adapter_disable_int(aac);
1214 if (aac->thread->pid != current->pid) {
1215 spin_unlock_irq(host->host_lock);
1216 kthread_stop(aac->thread);
1217 jafo = 1;
1221 * If a positive health, means in a known DEAD PANIC
1222 * state and the adapter could be reset to `try again'.
1224 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1226 if (retval)
1227 goto out;
1230 * Loop through the fibs, close the synchronous FIBS
1232 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1233 struct fib *fib = &aac->fibs[index];
1234 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1235 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1236 unsigned long flagv;
1237 spin_lock_irqsave(&fib->event_lock, flagv);
1238 up(&fib->event_wait);
1239 spin_unlock_irqrestore(&fib->event_lock, flagv);
1240 schedule();
1241 retval = 0;
1244 /* Give some extra time for ioctls to complete. */
1245 if (retval == 0)
1246 ssleep(2);
1247 index = aac->cardtype;
1250 * Re-initialize the adapter, first free resources, then carefully
1251 * apply the initialization sequence to come back again. Only risk
1252 * is a change in Firmware dropping cache, it is assumed the caller
1253 * will ensure that i/o is queisced and the card is flushed in that
1254 * case.
1256 aac_fib_map_free(aac);
1257 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1258 aac->comm_addr = NULL;
1259 aac->comm_phys = 0;
1260 kfree(aac->queues);
1261 aac->queues = NULL;
1262 free_irq(aac->pdev->irq, aac);
1263 kfree(aac->fsa_dev);
1264 aac->fsa_dev = NULL;
1265 quirks = aac_get_driver_ident(index)->quirks;
1266 if (quirks & AAC_QUIRK_31BIT) {
1267 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1268 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1269 goto out;
1270 } else {
1271 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1272 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1273 goto out;
1275 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1276 goto out;
1277 if (quirks & AAC_QUIRK_31BIT)
1278 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1279 goto out;
1280 if (jafo) {
1281 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1282 if (IS_ERR(aac->thread)) {
1283 retval = PTR_ERR(aac->thread);
1284 goto out;
1287 (void)aac_get_adapter_info(aac);
1288 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1289 host->sg_tablesize = 34;
1290 host->max_sectors = (host->sg_tablesize * 8) + 112;
1292 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1293 host->sg_tablesize = 17;
1294 host->max_sectors = (host->sg_tablesize * 8) + 112;
1296 aac_get_config_status(aac, 1);
1297 aac_get_containers(aac);
1299 * This is where the assumption that the Adapter is quiesced
1300 * is important.
1302 command_list = NULL;
1303 __shost_for_each_device(dev, host) {
1304 unsigned long flags;
1305 spin_lock_irqsave(&dev->list_lock, flags);
1306 list_for_each_entry(command, &dev->cmd_list, list)
1307 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1308 command->SCp.buffer = (struct scatterlist *)command_list;
1309 command_list = command;
1311 spin_unlock_irqrestore(&dev->list_lock, flags);
1313 while ((command = command_list)) {
1314 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1315 command->SCp.buffer = NULL;
1316 command->result = DID_OK << 16
1317 | COMMAND_COMPLETE << 8
1318 | SAM_STAT_TASK_SET_FULL;
1319 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1320 command->scsi_done(command);
1322 retval = 0;
1324 out:
1325 aac->in_reset = 0;
1326 scsi_unblock_requests(host);
1327 if (jafo) {
1328 spin_lock_irq(host->host_lock);
1330 return retval;
1333 int aac_reset_adapter(struct aac_dev * aac, int forced)
1335 unsigned long flagv = 0;
1336 int retval;
1337 struct Scsi_Host * host;
1339 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1340 return -EBUSY;
1342 if (aac->in_reset) {
1343 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1344 return -EBUSY;
1346 aac->in_reset = 1;
1347 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1350 * Wait for all commands to complete to this specific
1351 * target (block maximum 60 seconds). Although not necessary,
1352 * it does make us a good storage citizen.
1354 host = aac->scsi_host_ptr;
1355 scsi_block_requests(host);
1356 if (forced < 2) for (retval = 60; retval; --retval) {
1357 struct scsi_device * dev;
1358 struct scsi_cmnd * command;
1359 int active = 0;
1361 __shost_for_each_device(dev, host) {
1362 spin_lock_irqsave(&dev->list_lock, flagv);
1363 list_for_each_entry(command, &dev->cmd_list, list) {
1364 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1365 active++;
1366 break;
1369 spin_unlock_irqrestore(&dev->list_lock, flagv);
1370 if (active)
1371 break;
1375 * We can exit If all the commands are complete
1377 if (active == 0)
1378 break;
1379 ssleep(1);
1382 /* Quiesce build, flush cache, write through mode */
1383 if (forced < 2)
1384 aac_send_shutdown(aac);
1385 spin_lock_irqsave(host->host_lock, flagv);
1386 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1387 spin_unlock_irqrestore(host->host_lock, flagv);
1389 if ((forced < 2) && (retval == -ENODEV)) {
1390 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1391 struct fib * fibctx = aac_fib_alloc(aac);
1392 if (fibctx) {
1393 struct aac_pause *cmd;
1394 int status;
1396 aac_fib_init(fibctx);
1398 cmd = (struct aac_pause *) fib_data(fibctx);
1400 cmd->command = cpu_to_le32(VM_ContainerConfig);
1401 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1402 cmd->timeout = cpu_to_le32(1);
1403 cmd->min = cpu_to_le32(1);
1404 cmd->noRescan = cpu_to_le32(1);
1405 cmd->count = cpu_to_le32(0);
1407 status = aac_fib_send(ContainerCommand,
1408 fibctx,
1409 sizeof(struct aac_pause),
1410 FsaNormal,
1411 -2 /* Timeout silently */, 1,
1412 NULL, NULL);
1414 if (status >= 0)
1415 aac_fib_complete(fibctx);
1416 /* FIB should be freed only after getting
1417 * the response from the F/W */
1418 if (status != -ERESTARTSYS)
1419 aac_fib_free(fibctx);
1423 return retval;
1426 int aac_check_health(struct aac_dev * aac)
1428 int BlinkLED;
1429 unsigned long time_now, flagv = 0;
1430 struct list_head * entry;
1431 struct Scsi_Host * host;
1433 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1434 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1435 return 0;
1437 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1438 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1439 return 0; /* OK */
1442 aac->in_reset = 1;
1444 /* Fake up an AIF:
1445 * aac_aifcmd.command = AifCmdEventNotify = 1
1446 * aac_aifcmd.seqnum = 0xFFFFFFFF
1447 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1448 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1449 * aac.aifcmd.data[2] = AifHighPriority = 3
1450 * aac.aifcmd.data[3] = BlinkLED
1453 time_now = jiffies/HZ;
1454 entry = aac->fib_list.next;
1457 * For each Context that is on the
1458 * fibctxList, make a copy of the
1459 * fib, and then set the event to wake up the
1460 * thread that is waiting for it.
1462 while (entry != &aac->fib_list) {
1464 * Extract the fibctx
1466 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1467 struct hw_fib * hw_fib;
1468 struct fib * fib;
1470 * Check if the queue is getting
1471 * backlogged
1473 if (fibctx->count > 20) {
1475 * It's *not* jiffies folks,
1476 * but jiffies / HZ, so do not
1477 * panic ...
1479 u32 time_last = fibctx->jiffies;
1481 * Has it been > 2 minutes
1482 * since the last read off
1483 * the queue?
1485 if ((time_now - time_last) > aif_timeout) {
1486 entry = entry->next;
1487 aac_close_fib_context(aac, fibctx);
1488 continue;
1492 * Warning: no sleep allowed while
1493 * holding spinlock
1495 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1496 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1497 if (fib && hw_fib) {
1498 struct aac_aifcmd * aif;
1500 fib->hw_fib_va = hw_fib;
1501 fib->dev = aac;
1502 aac_fib_init(fib);
1503 fib->type = FSAFS_NTC_FIB_CONTEXT;
1504 fib->size = sizeof (struct fib);
1505 fib->data = hw_fib->data;
1506 aif = (struct aac_aifcmd *)hw_fib->data;
1507 aif->command = cpu_to_le32(AifCmdEventNotify);
1508 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1509 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1510 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1511 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1512 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1515 * Put the FIB onto the
1516 * fibctx's fibs
1518 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1519 fibctx->count++;
1521 * Set the event to wake up the
1522 * thread that will waiting.
1524 up(&fibctx->wait_sem);
1525 } else {
1526 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1527 kfree(fib);
1528 kfree(hw_fib);
1530 entry = entry->next;
1533 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1535 if (BlinkLED < 0) {
1536 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1537 goto out;
1540 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1542 if (!aac_check_reset || ((aac_check_reset == 1) &&
1543 (aac->supplement_adapter_info.SupportedOptions2 &
1544 AAC_OPTION_IGNORE_RESET)))
1545 goto out;
1546 host = aac->scsi_host_ptr;
1547 if (aac->thread->pid != current->pid)
1548 spin_lock_irqsave(host->host_lock, flagv);
1549 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1550 if (aac->thread->pid != current->pid)
1551 spin_unlock_irqrestore(host->host_lock, flagv);
1552 return BlinkLED;
1554 out:
1555 aac->in_reset = 0;
1556 return BlinkLED;
1561 * aac_command_thread - command processing thread
1562 * @dev: Adapter to monitor
1564 * Waits on the commandready event in it's queue. When the event gets set
1565 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1566 * until the queue is empty. When the queue is empty it will wait for
1567 * more FIBs.
1570 int aac_command_thread(void *data)
1572 struct aac_dev *dev = data;
1573 struct hw_fib *hw_fib, *hw_newfib;
1574 struct fib *fib, *newfib;
1575 struct aac_fib_context *fibctx;
1576 unsigned long flags;
1577 DECLARE_WAITQUEUE(wait, current);
1578 unsigned long next_jiffies = jiffies + HZ;
1579 unsigned long next_check_jiffies = next_jiffies;
1580 long difference = HZ;
1583 * We can only have one thread per adapter for AIF's.
1585 if (dev->aif_thread)
1586 return -EINVAL;
1589 * Let the DPC know it has a place to send the AIF's to.
1591 dev->aif_thread = 1;
1592 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1593 set_current_state(TASK_INTERRUPTIBLE);
1594 dprintk ((KERN_INFO "aac_command_thread start\n"));
1595 while (1) {
1596 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1597 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1598 struct list_head *entry;
1599 struct aac_aifcmd * aifcmd;
1601 set_current_state(TASK_RUNNING);
1603 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1604 list_del(entry);
1606 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1607 fib = list_entry(entry, struct fib, fiblink);
1609 * We will process the FIB here or pass it to a
1610 * worker thread that is TBD. We Really can't
1611 * do anything at this point since we don't have
1612 * anything defined for this thread to do.
1614 hw_fib = fib->hw_fib_va;
1615 memset(fib, 0, sizeof(struct fib));
1616 fib->type = FSAFS_NTC_FIB_CONTEXT;
1617 fib->size = sizeof(struct fib);
1618 fib->hw_fib_va = hw_fib;
1619 fib->data = hw_fib->data;
1620 fib->dev = dev;
1622 * We only handle AifRequest fibs from the adapter.
1624 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1625 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1626 /* Handle Driver Notify Events */
1627 aac_handle_aif(dev, fib);
1628 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1629 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1630 } else {
1631 /* The u32 here is important and intended. We are using
1632 32bit wrapping time to fit the adapter field */
1634 u32 time_now, time_last;
1635 unsigned long flagv;
1636 unsigned num;
1637 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1638 struct fib ** fib_pool, ** fib_p;
1640 /* Sniff events */
1641 if ((aifcmd->command ==
1642 cpu_to_le32(AifCmdEventNotify)) ||
1643 (aifcmd->command ==
1644 cpu_to_le32(AifCmdJobProgress))) {
1645 aac_handle_aif(dev, fib);
1648 time_now = jiffies/HZ;
1651 * Warning: no sleep allowed while
1652 * holding spinlock. We take the estimate
1653 * and pre-allocate a set of fibs outside the
1654 * lock.
1656 num = le32_to_cpu(dev->init->AdapterFibsSize)
1657 / sizeof(struct hw_fib); /* some extra */
1658 spin_lock_irqsave(&dev->fib_lock, flagv);
1659 entry = dev->fib_list.next;
1660 while (entry != &dev->fib_list) {
1661 entry = entry->next;
1662 ++num;
1664 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1665 hw_fib_pool = NULL;
1666 fib_pool = NULL;
1667 if (num
1668 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1669 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1670 hw_fib_p = hw_fib_pool;
1671 fib_p = fib_pool;
1672 while (hw_fib_p < &hw_fib_pool[num]) {
1673 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1674 --hw_fib_p;
1675 break;
1677 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1678 kfree(*(--hw_fib_p));
1679 break;
1682 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1683 kfree(fib_pool);
1684 fib_pool = NULL;
1685 kfree(hw_fib_pool);
1686 hw_fib_pool = NULL;
1688 } else {
1689 kfree(hw_fib_pool);
1690 hw_fib_pool = NULL;
1692 spin_lock_irqsave(&dev->fib_lock, flagv);
1693 entry = dev->fib_list.next;
1695 * For each Context that is on the
1696 * fibctxList, make a copy of the
1697 * fib, and then set the event to wake up the
1698 * thread that is waiting for it.
1700 hw_fib_p = hw_fib_pool;
1701 fib_p = fib_pool;
1702 while (entry != &dev->fib_list) {
1704 * Extract the fibctx
1706 fibctx = list_entry(entry, struct aac_fib_context, next);
1708 * Check if the queue is getting
1709 * backlogged
1711 if (fibctx->count > 20)
1714 * It's *not* jiffies folks,
1715 * but jiffies / HZ so do not
1716 * panic ...
1718 time_last = fibctx->jiffies;
1720 * Has it been > 2 minutes
1721 * since the last read off
1722 * the queue?
1724 if ((time_now - time_last) > aif_timeout) {
1725 entry = entry->next;
1726 aac_close_fib_context(dev, fibctx);
1727 continue;
1731 * Warning: no sleep allowed while
1732 * holding spinlock
1734 if (hw_fib_p < &hw_fib_pool[num]) {
1735 hw_newfib = *hw_fib_p;
1736 *(hw_fib_p++) = NULL;
1737 newfib = *fib_p;
1738 *(fib_p++) = NULL;
1740 * Make the copy of the FIB
1742 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1743 memcpy(newfib, fib, sizeof(struct fib));
1744 newfib->hw_fib_va = hw_newfib;
1746 * Put the FIB onto the
1747 * fibctx's fibs
1749 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1750 fibctx->count++;
1752 * Set the event to wake up the
1753 * thread that is waiting.
1755 up(&fibctx->wait_sem);
1756 } else {
1757 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1759 entry = entry->next;
1762 * Set the status of this FIB
1764 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1765 aac_fib_adapter_complete(fib, sizeof(u32));
1766 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1767 /* Free up the remaining resources */
1768 hw_fib_p = hw_fib_pool;
1769 fib_p = fib_pool;
1770 while (hw_fib_p < &hw_fib_pool[num]) {
1771 kfree(*hw_fib_p);
1772 kfree(*fib_p);
1773 ++fib_p;
1774 ++hw_fib_p;
1776 kfree(hw_fib_pool);
1777 kfree(fib_pool);
1779 kfree(fib);
1780 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1783 * There are no more AIF's
1785 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1788 * Background activity
1790 if ((time_before(next_check_jiffies,next_jiffies))
1791 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1792 next_check_jiffies = next_jiffies;
1793 if (aac_check_health(dev) == 0) {
1794 difference = ((long)(unsigned)check_interval)
1795 * HZ;
1796 next_check_jiffies = jiffies + difference;
1797 } else if (!dev->queues)
1798 break;
1800 if (!time_before(next_check_jiffies,next_jiffies)
1801 && ((difference = next_jiffies - jiffies) <= 0)) {
1802 struct timeval now;
1803 int ret;
1805 /* Don't even try to talk to adapter if its sick */
1806 ret = aac_check_health(dev);
1807 if (!ret && !dev->queues)
1808 break;
1809 next_check_jiffies = jiffies
1810 + ((long)(unsigned)check_interval)
1811 * HZ;
1812 do_gettimeofday(&now);
1814 /* Synchronize our watches */
1815 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1816 && (now.tv_usec > (1000000 / HZ)))
1817 difference = (((1000000 - now.tv_usec) * HZ)
1818 + 500000) / 1000000;
1819 else if (ret == 0) {
1820 struct fib *fibptr;
1822 if ((fibptr = aac_fib_alloc(dev))) {
1823 int status;
1824 __le32 *info;
1826 aac_fib_init(fibptr);
1828 info = (__le32 *) fib_data(fibptr);
1829 if (now.tv_usec > 500000)
1830 ++now.tv_sec;
1832 *info = cpu_to_le32(now.tv_sec);
1834 status = aac_fib_send(SendHostTime,
1835 fibptr,
1836 sizeof(*info),
1837 FsaNormal,
1838 1, 1,
1839 NULL,
1840 NULL);
1841 /* Do not set XferState to zero unless
1842 * receives a response from F/W */
1843 if (status >= 0)
1844 aac_fib_complete(fibptr);
1845 /* FIB should be freed only after
1846 * getting the response from the F/W */
1847 if (status != -ERESTARTSYS)
1848 aac_fib_free(fibptr);
1850 difference = (long)(unsigned)update_interval*HZ;
1851 } else {
1852 /* retry shortly */
1853 difference = 10 * HZ;
1855 next_jiffies = jiffies + difference;
1856 if (time_before(next_check_jiffies,next_jiffies))
1857 difference = next_check_jiffies - jiffies;
1859 if (difference <= 0)
1860 difference = 1;
1861 set_current_state(TASK_INTERRUPTIBLE);
1862 schedule_timeout(difference);
1864 if (kthread_should_stop())
1865 break;
1867 if (dev->queues)
1868 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1869 dev->aif_thread = 0;
1870 return 0;