GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / wireless / ath / ath9k / hw.c
blobe36b39471cd66854f42cb82254ccb79b66a831dd
1 /*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
33 static int __init ath9k_init(void)
35 return 0;
37 module_init(ath9k_init);
39 static void __exit ath9k_exit(void)
41 return;
43 module_exit(ath9k_exit);
45 /* Private hardware callbacks */
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
57 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
59 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
61 return priv_ops->macversion_supported(ah->hw_version.macVersion);
64 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65 struct ath9k_channel *chan)
67 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
70 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
72 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73 return;
75 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
78 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
80 /* You will not have this callback if using the old ANI */
81 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82 return;
84 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
87 /********************/
88 /* Helper Functions */
89 /********************/
91 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
93 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
95 if (!ah->curchan) /* should really check for CCK instead */
96 return usecs *ATH9K_CLOCK_RATE_CCK;
97 if (conf->channel->band == IEEE80211_BAND_2GHZ)
98 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
100 if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
101 return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
102 else
103 return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
106 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
108 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
110 if (conf_is_ht40(conf))
111 return ath9k_hw_mac_clks(ah, usecs) * 2;
112 else
113 return ath9k_hw_mac_clks(ah, usecs);
116 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
118 int i;
120 BUG_ON(timeout < AH_TIME_QUANTUM);
122 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123 if ((REG_READ(ah, reg) & mask) == val)
124 return true;
126 udelay(AH_TIME_QUANTUM);
129 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
130 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131 timeout, reg, REG_READ(ah, reg), mask, val);
133 return false;
135 EXPORT_SYMBOL(ath9k_hw_wait);
137 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
139 u32 retval;
140 int i;
142 for (i = 0, retval = 0; i < n; i++) {
143 retval = (retval << 1) | (val & 1);
144 val >>= 1;
146 return retval;
149 bool ath9k_get_channel_edges(struct ath_hw *ah,
150 u16 flags, u16 *low,
151 u16 *high)
153 struct ath9k_hw_capabilities *pCap = &ah->caps;
155 if (flags & CHANNEL_5GHZ) {
156 *low = pCap->low_5ghz_chan;
157 *high = pCap->high_5ghz_chan;
158 return true;
160 if ((flags & CHANNEL_2GHZ)) {
161 *low = pCap->low_2ghz_chan;
162 *high = pCap->high_2ghz_chan;
163 return true;
165 return false;
168 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
169 u8 phy, int kbps,
170 u32 frameLen, u16 rateix,
171 bool shortPreamble)
173 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
175 if (kbps == 0)
176 return 0;
178 switch (phy) {
179 case WLAN_RC_PHY_CCK:
180 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
181 if (shortPreamble)
182 phyTime >>= 1;
183 numBits = frameLen << 3;
184 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
185 break;
186 case WLAN_RC_PHY_OFDM:
187 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
188 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189 numBits = OFDM_PLCP_BITS + (frameLen << 3);
190 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191 txTime = OFDM_SIFS_TIME_QUARTER
192 + OFDM_PREAMBLE_TIME_QUARTER
193 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194 } else if (ah->curchan &&
195 IS_CHAN_HALF_RATE(ah->curchan)) {
196 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
197 numBits = OFDM_PLCP_BITS + (frameLen << 3);
198 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199 txTime = OFDM_SIFS_TIME_HALF +
200 OFDM_PREAMBLE_TIME_HALF
201 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
202 } else {
203 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204 numBits = OFDM_PLCP_BITS + (frameLen << 3);
205 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207 + (numSymbols * OFDM_SYMBOL_TIME);
209 break;
210 default:
211 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
212 "Unknown phy %u (rate ix %u)\n", phy, rateix);
213 txTime = 0;
214 break;
217 return txTime;
219 EXPORT_SYMBOL(ath9k_hw_computetxtime);
221 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222 struct ath9k_channel *chan,
223 struct chan_centers *centers)
225 int8_t extoff;
227 if (!IS_CHAN_HT40(chan)) {
228 centers->ctl_center = centers->ext_center =
229 centers->synth_center = chan->channel;
230 return;
233 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
234 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
235 centers->synth_center =
236 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237 extoff = 1;
238 } else {
239 centers->synth_center =
240 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241 extoff = -1;
244 centers->ctl_center =
245 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246 /* 25 MHz spacing is supported by hw but not on upper layers */
247 centers->ext_center =
248 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
251 /******************/
252 /* Chip Revisions */
253 /******************/
255 static void ath9k_hw_read_revisions(struct ath_hw *ah)
257 u32 val;
259 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
261 if (val == 0xFF) {
262 val = REG_READ(ah, AR_SREV);
263 ah->hw_version.macVersion =
264 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
265 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
266 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
267 } else {
268 if (!AR_SREV_9100(ah))
269 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
271 ah->hw_version.macRev = val & AR_SREV_REVISION;
273 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
274 ah->is_pciexpress = true;
278 /************************************/
279 /* HW Attach, Detach, Init Routines */
280 /************************************/
282 static void ath9k_hw_disablepcie(struct ath_hw *ah)
284 if (AR_SREV_9100(ah))
285 return;
287 ENABLE_REGWRITE_BUFFER(ah);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
299 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
301 REGWRITE_BUFFER_FLUSH(ah);
302 DISABLE_REGWRITE_BUFFER(ah);
305 /* This should work for all families including legacy */
306 static bool ath9k_hw_chip_test(struct ath_hw *ah)
308 struct ath_common *common = ath9k_hw_common(ah);
309 u32 regAddr[2] = { AR_STA_ID0 };
310 u32 regHold[2];
311 u32 patternData[4] = { 0x55555555,
312 0xaaaaaaaa,
313 0x66666666,
314 0x99999999 };
315 int i, j, loop_max;
317 if (!AR_SREV_9300_20_OR_LATER(ah)) {
318 loop_max = 2;
319 regAddr[1] = AR_PHY_BASE + (8 << 2);
320 } else
321 loop_max = 1;
323 for (i = 0; i < loop_max; i++) {
324 u32 addr = regAddr[i];
325 u32 wrData, rdData;
327 regHold[i] = REG_READ(ah, addr);
328 for (j = 0; j < 0x100; j++) {
329 wrData = (j << 16) | j;
330 REG_WRITE(ah, addr, wrData);
331 rdData = REG_READ(ah, addr);
332 if (rdData != wrData) {
333 ath_print(common, ATH_DBG_FATAL,
334 "address test failed "
335 "addr: 0x%08x - wr:0x%08x != "
336 "rd:0x%08x\n",
337 addr, wrData, rdData);
338 return false;
341 for (j = 0; j < 4; j++) {
342 wrData = patternData[j];
343 REG_WRITE(ah, addr, wrData);
344 rdData = REG_READ(ah, addr);
345 if (wrData != rdData) {
346 ath_print(common, ATH_DBG_FATAL,
347 "address test failed "
348 "addr: 0x%08x - wr:0x%08x != "
349 "rd:0x%08x\n",
350 addr, wrData, rdData);
351 return false;
354 REG_WRITE(ah, regAddr[i], regHold[i]);
356 udelay(100);
358 return true;
361 static void ath9k_hw_init_config(struct ath_hw *ah)
363 int i;
365 ah->config.dma_beacon_response_time = 2;
366 ah->config.sw_beacon_response_time = 10;
367 ah->config.additional_swba_backoff = 0;
368 ah->config.ack_6mb = 0x0;
369 ah->config.cwm_ignore_extcca = 0;
370 ah->config.pcie_powersave_enable = 0;
371 ah->config.pcie_clock_req = 0;
372 ah->config.pcie_waen = 0;
373 ah->config.analog_shiftreg = 1;
374 ah->config.ofdm_trig_low = 200;
375 ah->config.ofdm_trig_high = 500;
376 ah->config.cck_trig_high = 200;
377 ah->config.cck_trig_low = 100;
378 ah->config.enable_ani = true;
380 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
381 ah->config.spurchans[i][0] = AR_NO_SPUR;
382 ah->config.spurchans[i][1] = AR_NO_SPUR;
385 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
386 ah->config.ht_enable = 1;
387 else
388 ah->config.ht_enable = 0;
390 /* PAPRD needs some more work to be enabled */
391 ah->config.paprd_disable = 1;
393 ah->config.rx_intr_mitigation = true;
394 ah->config.pcieSerDesWrite = true;
397 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
398 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
399 * This means we use it for all AR5416 devices, and the few
400 * minor PCI AR9280 devices out there.
402 * Serialization is required because these devices do not handle
403 * well the case of two concurrent reads/writes due to the latency
404 * involved. During one read/write another read/write can be issued
405 * on another CPU while the previous read/write may still be working
406 * on our hardware, if we hit this case the hardware poops in a loop.
407 * We prevent this by serializing reads and writes.
409 * This issue is not present on PCI-Express devices or pre-AR5416
410 * devices (legacy, 802.11abg).
412 if (num_possible_cpus() > 1)
413 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
416 static void ath9k_hw_init_defaults(struct ath_hw *ah)
418 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
420 regulatory->country_code = CTRY_DEFAULT;
421 regulatory->power_limit = MAX_RATE_POWER;
422 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
424 ah->hw_version.magic = AR5416_MAGIC;
425 ah->hw_version.subvendorid = 0;
427 ah->ah_flags = 0;
428 if (!AR_SREV_9100(ah))
429 ah->ah_flags = AH_USE_EEPROM;
431 ah->atim_window = 0;
432 ah->sta_id1_defaults =
433 AR_STA_ID1_CRPT_MIC_ENABLE |
434 AR_STA_ID1_MCAST_KSRCH;
435 ah->beacon_interval = 100;
436 ah->enable_32kHz_clock = DONT_USE_32KHZ;
437 ah->slottime = (u32) -1;
438 ah->globaltxtimeout = (u32) -1;
439 ah->power_mode = ATH9K_PM_UNDEFINED;
442 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
444 struct ath_common *common = ath9k_hw_common(ah);
445 u32 sum;
446 int i;
447 u16 eeval;
448 u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
450 sum = 0;
451 for (i = 0; i < 3; i++) {
452 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
453 sum += eeval;
454 common->macaddr[2 * i] = eeval >> 8;
455 common->macaddr[2 * i + 1] = eeval & 0xff;
457 if (sum == 0 || sum == 0xffff * 3)
458 return -EADDRNOTAVAIL;
460 return 0;
463 static int ath9k_hw_post_init(struct ath_hw *ah)
465 int ecode;
467 if (!AR_SREV_9271(ah)) {
468 if (!ath9k_hw_chip_test(ah))
469 return -ENODEV;
472 if (!AR_SREV_9300_20_OR_LATER(ah)) {
473 ecode = ar9002_hw_rf_claim(ah);
474 if (ecode != 0)
475 return ecode;
478 ecode = ath9k_hw_eeprom_init(ah);
479 if (ecode != 0)
480 return ecode;
482 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
483 "Eeprom VER: %d, REV: %d\n",
484 ah->eep_ops->get_eeprom_ver(ah),
485 ah->eep_ops->get_eeprom_rev(ah));
487 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
488 if (ecode) {
489 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
490 "Failed allocating banks for "
491 "external radio\n");
492 ath9k_hw_rf_free_ext_banks(ah);
493 return ecode;
496 if (!AR_SREV_9100(ah)) {
497 ath9k_hw_ani_setup(ah);
498 ath9k_hw_ani_init(ah);
501 return 0;
504 static void ath9k_hw_attach_ops(struct ath_hw *ah)
506 if (AR_SREV_9300_20_OR_LATER(ah))
507 ar9003_hw_attach_ops(ah);
508 else
509 ar9002_hw_attach_ops(ah);
512 /* Called for all hardware families */
513 static int __ath9k_hw_init(struct ath_hw *ah)
515 struct ath_common *common = ath9k_hw_common(ah);
516 int r = 0;
518 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
519 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
521 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
522 ath_print(common, ATH_DBG_FATAL,
523 "Couldn't reset chip\n");
524 return -EIO;
527 ath9k_hw_init_defaults(ah);
528 ath9k_hw_init_config(ah);
530 ath9k_hw_attach_ops(ah);
532 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
533 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
534 return -EIO;
537 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
538 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
539 ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
540 !ah->is_pciexpress)) {
541 ah->config.serialize_regmode =
542 SER_REG_MODE_ON;
543 } else {
544 ah->config.serialize_regmode =
545 SER_REG_MODE_OFF;
549 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
550 ah->config.serialize_regmode);
552 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
553 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
554 else
555 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
557 if (!ath9k_hw_macversion_supported(ah)) {
558 ath_print(common, ATH_DBG_FATAL,
559 "Mac Chip Rev 0x%02x.%x is not supported by "
560 "this driver\n", ah->hw_version.macVersion,
561 ah->hw_version.macRev);
562 return -EOPNOTSUPP;
565 if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
566 ah->is_pciexpress = false;
568 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
569 ath9k_hw_init_cal_settings(ah);
571 ah->ani_function = ATH9K_ANI_ALL;
572 if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
573 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
574 if (!AR_SREV_9300_20_OR_LATER(ah))
575 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
577 ath9k_hw_init_mode_regs(ah);
580 * Read back AR_WA into a permanent copy and set bits 14 and 17.
581 * We need to do this to avoid RMW of this register. We cannot
582 * read the reg when chip is asleep.
584 ah->WARegVal = REG_READ(ah, AR_WA);
585 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
586 AR_WA_ASPM_TIMER_BASED_DISABLE);
588 if (ah->is_pciexpress)
589 ath9k_hw_configpcipowersave(ah, 0, 0);
590 else
591 ath9k_hw_disablepcie(ah);
593 if (!AR_SREV_9300_20_OR_LATER(ah))
594 ar9002_hw_cck_chan14_spread(ah);
596 r = ath9k_hw_post_init(ah);
597 if (r)
598 return r;
600 ath9k_hw_init_mode_gain_regs(ah);
601 r = ath9k_hw_fill_cap_info(ah);
602 if (r)
603 return r;
605 r = ath9k_hw_init_macaddr(ah);
606 if (r) {
607 ath_print(common, ATH_DBG_FATAL,
608 "Failed to initialize MAC address\n");
609 return r;
612 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
613 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
614 else
615 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
617 ah->bb_watchdog_timeout_ms = 25;
619 common->state = ATH_HW_INITIALIZED;
621 return 0;
624 int ath9k_hw_init(struct ath_hw *ah)
626 int ret;
627 struct ath_common *common = ath9k_hw_common(ah);
629 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
630 switch (ah->hw_version.devid) {
631 case AR5416_DEVID_PCI:
632 case AR5416_DEVID_PCIE:
633 case AR5416_AR9100_DEVID:
634 case AR9160_DEVID_PCI:
635 case AR9280_DEVID_PCI:
636 case AR9280_DEVID_PCIE:
637 case AR9285_DEVID_PCIE:
638 case AR9287_DEVID_PCI:
639 case AR9287_DEVID_PCIE:
640 case AR2427_DEVID_PCIE:
641 case AR9300_DEVID_PCIE:
642 break;
643 default:
644 if (common->bus_ops->ath_bus_type == ATH_USB)
645 break;
646 ath_print(common, ATH_DBG_FATAL,
647 "Hardware device ID 0x%04x not supported\n",
648 ah->hw_version.devid);
649 return -EOPNOTSUPP;
652 ret = __ath9k_hw_init(ah);
653 if (ret) {
654 ath_print(common, ATH_DBG_FATAL,
655 "Unable to initialize hardware; "
656 "initialization status: %d\n", ret);
657 return ret;
660 return 0;
662 EXPORT_SYMBOL(ath9k_hw_init);
664 static void ath9k_hw_init_qos(struct ath_hw *ah)
666 ENABLE_REGWRITE_BUFFER(ah);
668 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
669 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
671 REG_WRITE(ah, AR_QOS_NO_ACK,
672 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
673 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
674 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
676 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
677 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
678 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
679 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
680 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
682 REGWRITE_BUFFER_FLUSH(ah);
683 DISABLE_REGWRITE_BUFFER(ah);
686 static void ath9k_hw_init_pll(struct ath_hw *ah,
687 struct ath9k_channel *chan)
689 u32 pll = ath9k_hw_compute_pll_control(ah, chan);
691 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
693 /* Switch the core clock for ar9271 to 117Mhz */
694 if (AR_SREV_9271(ah)) {
695 udelay(500);
696 REG_WRITE(ah, 0x50040, 0x304);
699 udelay(RTC_PLL_SETTLE_DELAY);
701 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
704 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
705 enum nl80211_iftype opmode)
707 u32 imr_reg = AR_IMR_TXERR |
708 AR_IMR_TXURN |
709 AR_IMR_RXERR |
710 AR_IMR_RXORN |
711 AR_IMR_BCNMISC;
713 if (AR_SREV_9300_20_OR_LATER(ah)) {
714 imr_reg |= AR_IMR_RXOK_HP;
715 if (ah->config.rx_intr_mitigation)
716 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
717 else
718 imr_reg |= AR_IMR_RXOK_LP;
720 } else {
721 if (ah->config.rx_intr_mitigation)
722 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
723 else
724 imr_reg |= AR_IMR_RXOK;
727 if (ah->config.tx_intr_mitigation)
728 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
729 else
730 imr_reg |= AR_IMR_TXOK;
732 if (opmode == NL80211_IFTYPE_AP)
733 imr_reg |= AR_IMR_MIB;
735 ENABLE_REGWRITE_BUFFER(ah);
737 REG_WRITE(ah, AR_IMR, imr_reg);
738 ah->imrs2_reg |= AR_IMR_S2_GTT;
739 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
741 if (!AR_SREV_9100(ah)) {
742 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
743 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
744 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
747 REGWRITE_BUFFER_FLUSH(ah);
748 DISABLE_REGWRITE_BUFFER(ah);
750 if (AR_SREV_9300_20_OR_LATER(ah)) {
751 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
752 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
753 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
754 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
758 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
760 u32 val = ath9k_hw_mac_to_clks(ah, us);
761 val = min(val, (u32) 0xFFFF);
762 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
765 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
767 u32 val = ath9k_hw_mac_to_clks(ah, us);
768 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
769 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
772 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
774 u32 val = ath9k_hw_mac_to_clks(ah, us);
775 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
776 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
779 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
781 if (tu > 0xFFFF) {
782 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
783 "bad global tx timeout %u\n", tu);
784 ah->globaltxtimeout = (u32) -1;
785 return false;
786 } else {
787 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
788 ah->globaltxtimeout = tu;
789 return true;
793 void ath9k_hw_init_global_settings(struct ath_hw *ah)
795 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
796 int acktimeout;
797 int slottime;
798 int sifstime;
800 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
801 ah->misc_mode);
803 if (ah->misc_mode != 0)
804 REG_WRITE(ah, AR_PCU_MISC,
805 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
807 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
808 sifstime = 16;
809 else
810 sifstime = 10;
812 /* As defined by IEEE 802.11-2007 17.3.8.6 */
813 slottime = ah->slottime + 3 * ah->coverage_class;
814 acktimeout = slottime + sifstime;
816 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
817 acktimeout += 64 - sifstime - ah->slottime;
819 ath9k_hw_setslottime(ah, slottime);
820 ath9k_hw_set_ack_timeout(ah, acktimeout);
821 ath9k_hw_set_cts_timeout(ah, acktimeout);
822 if (ah->globaltxtimeout != (u32) -1)
823 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
825 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
827 void ath9k_hw_deinit(struct ath_hw *ah)
829 struct ath_common *common = ath9k_hw_common(ah);
831 if (common->state < ATH_HW_INITIALIZED)
832 goto free_hw;
834 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
836 free_hw:
837 ath9k_hw_rf_free_ext_banks(ah);
839 EXPORT_SYMBOL(ath9k_hw_deinit);
841 /*******/
842 /* INI */
843 /*******/
845 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
847 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
849 if (IS_CHAN_B(chan))
850 ctl |= CTL_11B;
851 else if (IS_CHAN_G(chan))
852 ctl |= CTL_11G;
853 else
854 ctl |= CTL_11A;
856 return ctl;
859 /****************************************/
860 /* Reset and Channel Switching Routines */
861 /****************************************/
863 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
865 struct ath_common *common = ath9k_hw_common(ah);
866 u32 regval;
868 ENABLE_REGWRITE_BUFFER(ah);
871 * set AHB_MODE not to do cacheline prefetches
873 if (!AR_SREV_9300_20_OR_LATER(ah)) {
874 regval = REG_READ(ah, AR_AHB_MODE);
875 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
879 * let mac dma reads be in 128 byte chunks
881 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
882 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
884 REGWRITE_BUFFER_FLUSH(ah);
885 DISABLE_REGWRITE_BUFFER(ah);
888 * Restore TX Trigger Level to its pre-reset value.
889 * The initial value depends on whether aggregation is enabled, and is
890 * adjusted whenever underruns are detected.
892 if (!AR_SREV_9300_20_OR_LATER(ah))
893 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
895 ENABLE_REGWRITE_BUFFER(ah);
898 * let mac dma writes be in 128 byte chunks
900 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
901 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
904 * Setup receive FIFO threshold to hold off TX activities
906 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
908 if (AR_SREV_9300_20_OR_LATER(ah)) {
909 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
910 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
912 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
913 ah->caps.rx_status_len);
917 * reduce the number of usable entries in PCU TXBUF to avoid
918 * wrap around issues.
920 if (AR_SREV_9285(ah)) {
921 /* For AR9285 the number of Fifos are reduced to half.
922 * So set the usable tx buf size also to half to
923 * avoid data/delimiter underruns
925 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
926 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
927 } else if (!AR_SREV_9271(ah)) {
928 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
929 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
932 REGWRITE_BUFFER_FLUSH(ah);
933 DISABLE_REGWRITE_BUFFER(ah);
935 if (AR_SREV_9300_20_OR_LATER(ah))
936 ath9k_hw_reset_txstatus_ring(ah);
939 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
941 u32 val;
943 val = REG_READ(ah, AR_STA_ID1);
944 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
945 switch (opmode) {
946 case NL80211_IFTYPE_AP:
947 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
948 | AR_STA_ID1_KSRCH_MODE);
949 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
950 break;
951 case NL80211_IFTYPE_ADHOC:
952 case NL80211_IFTYPE_MESH_POINT:
953 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
954 | AR_STA_ID1_KSRCH_MODE);
955 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
956 break;
957 case NL80211_IFTYPE_STATION:
958 case NL80211_IFTYPE_MONITOR:
959 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
960 break;
964 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
965 u32 *coef_mantissa, u32 *coef_exponent)
967 u32 coef_exp, coef_man;
969 for (coef_exp = 31; coef_exp > 0; coef_exp--)
970 if ((coef_scaled >> coef_exp) & 0x1)
971 break;
973 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
975 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
977 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
978 *coef_exponent = coef_exp - 16;
981 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
983 u32 rst_flags;
984 u32 tmpReg;
986 if (AR_SREV_9100(ah)) {
987 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
988 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
989 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
990 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
991 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
994 ENABLE_REGWRITE_BUFFER(ah);
996 if (AR_SREV_9300_20_OR_LATER(ah)) {
997 REG_WRITE(ah, AR_WA, ah->WARegVal);
998 udelay(10);
1001 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1002 AR_RTC_FORCE_WAKE_ON_INT);
1004 if (AR_SREV_9100(ah)) {
1005 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1006 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1007 } else {
1008 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1009 if (tmpReg &
1010 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1011 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1012 u32 val;
1013 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1015 val = AR_RC_HOSTIF;
1016 if (!AR_SREV_9300_20_OR_LATER(ah))
1017 val |= AR_RC_AHB;
1018 REG_WRITE(ah, AR_RC, val);
1020 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1021 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1023 rst_flags = AR_RTC_RC_MAC_WARM;
1024 if (type == ATH9K_RESET_COLD)
1025 rst_flags |= AR_RTC_RC_MAC_COLD;
1028 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1030 REGWRITE_BUFFER_FLUSH(ah);
1031 DISABLE_REGWRITE_BUFFER(ah);
1033 udelay(50);
1035 REG_WRITE(ah, AR_RTC_RC, 0);
1036 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1037 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1038 "RTC stuck in MAC reset\n");
1039 return false;
1042 if (!AR_SREV_9100(ah))
1043 REG_WRITE(ah, AR_RC, 0);
1045 if (AR_SREV_9100(ah))
1046 udelay(50);
1048 return true;
1051 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1053 ENABLE_REGWRITE_BUFFER(ah);
1055 if (AR_SREV_9300_20_OR_LATER(ah)) {
1056 REG_WRITE(ah, AR_WA, ah->WARegVal);
1057 udelay(10);
1060 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1061 AR_RTC_FORCE_WAKE_ON_INT);
1063 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1064 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1066 REG_WRITE(ah, AR_RTC_RESET, 0);
1067 udelay(2);
1069 REGWRITE_BUFFER_FLUSH(ah);
1070 DISABLE_REGWRITE_BUFFER(ah);
1072 if (!AR_SREV_9300_20_OR_LATER(ah))
1073 udelay(2);
1075 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1076 REG_WRITE(ah, AR_RC, 0);
1078 REG_WRITE(ah, AR_RTC_RESET, 1);
1080 if (!ath9k_hw_wait(ah,
1081 AR_RTC_STATUS,
1082 AR_RTC_STATUS_M,
1083 AR_RTC_STATUS_ON,
1084 AH_WAIT_TIMEOUT)) {
1085 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1086 "RTC not waking up\n");
1087 return false;
1090 ath9k_hw_read_revisions(ah);
1092 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1095 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1097 if (AR_SREV_9300_20_OR_LATER(ah)) {
1098 REG_WRITE(ah, AR_WA, ah->WARegVal);
1099 udelay(10);
1102 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1103 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1105 switch (type) {
1106 case ATH9K_RESET_POWER_ON:
1107 return ath9k_hw_set_reset_power_on(ah);
1108 case ATH9K_RESET_WARM:
1109 case ATH9K_RESET_COLD:
1110 return ath9k_hw_set_reset(ah, type);
1111 default:
1112 return false;
1116 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1117 struct ath9k_channel *chan)
1119 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1120 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1121 return false;
1122 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1123 return false;
1125 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1126 return false;
1128 ah->chip_fullsleep = false;
1129 ath9k_hw_init_pll(ah, chan);
1130 ath9k_hw_set_rfmode(ah, chan);
1132 return true;
1135 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1136 struct ath9k_channel *chan)
1138 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1139 struct ath_common *common = ath9k_hw_common(ah);
1140 struct ieee80211_channel *channel = chan->chan;
1141 u32 qnum;
1142 int r;
1144 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1145 if (ath9k_hw_numtxpending(ah, qnum)) {
1146 ath_print(common, ATH_DBG_QUEUE,
1147 "Transmit frames pending on "
1148 "queue %d\n", qnum);
1149 return false;
1153 if (!ath9k_hw_rfbus_req(ah)) {
1154 ath_print(common, ATH_DBG_FATAL,
1155 "Could not kill baseband RX\n");
1156 return false;
1159 ath9k_hw_set_channel_regs(ah, chan);
1161 r = ath9k_hw_rf_set_freq(ah, chan);
1162 if (r) {
1163 ath_print(common, ATH_DBG_FATAL,
1164 "Failed to set channel\n");
1165 return false;
1168 ah->eep_ops->set_txpower(ah, chan,
1169 ath9k_regd_get_ctl(regulatory, chan),
1170 channel->max_antenna_gain * 2,
1171 channel->max_power * 2,
1172 min((u32) MAX_RATE_POWER,
1173 (u32) regulatory->power_limit));
1175 ath9k_hw_rfbus_done(ah);
1177 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1178 ath9k_hw_set_delta_slope(ah, chan);
1180 ath9k_hw_spur_mitigate_freq(ah, chan);
1182 return true;
1185 bool ath9k_hw_check_alive(struct ath_hw *ah)
1187 int count = 50;
1188 u32 reg;
1190 if (AR_SREV_9285_10_OR_LATER(ah))
1191 return true;
1193 do {
1194 reg = REG_READ(ah, AR_OBS_BUS_1);
1196 if ((reg & 0x7E7FFFEF) == 0x00702400)
1197 continue;
1199 switch (reg & 0x7E000B00) {
1200 case 0x1E000000:
1201 case 0x52000B00:
1202 case 0x18000B00:
1203 continue;
1204 default:
1205 return true;
1207 } while (count-- > 0);
1209 return false;
1211 EXPORT_SYMBOL(ath9k_hw_check_alive);
1213 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1214 struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1216 struct ath_common *common = ath9k_hw_common(ah);
1217 u32 saveLedState;
1218 struct ath9k_channel *curchan = ah->curchan;
1219 u32 saveDefAntenna;
1220 u32 macStaId1;
1221 u64 tsf = 0;
1222 int i, r;
1224 ah->txchainmask = common->tx_chainmask;
1225 ah->rxchainmask = common->rx_chainmask;
1227 if (!ah->chip_fullsleep) {
1228 ath9k_hw_abortpcurecv(ah);
1229 if (!ath9k_hw_stopdmarecv(ah)) {
1230 ath_print(common, ATH_DBG_XMIT,
1231 "Failed to stop receive dma\n");
1232 bChannelChange = false;
1236 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1237 return -EIO;
1239 if (curchan && !ah->chip_fullsleep && ah->caldata)
1240 ath9k_hw_getnf(ah, curchan);
1242 ah->caldata = caldata;
1243 if (caldata &&
1244 (chan->channel != caldata->channel ||
1245 (chan->channelFlags & ~CHANNEL_CW_INT) !=
1246 (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1247 /* Operating channel changed, reset channel calibration data */
1248 memset(caldata, 0, sizeof(*caldata));
1249 ath9k_init_nfcal_hist_buffer(ah, chan);
1252 if (bChannelChange &&
1253 (ah->chip_fullsleep != true) &&
1254 (ah->curchan != NULL) &&
1255 (chan->channel != ah->curchan->channel) &&
1256 ((chan->channelFlags & CHANNEL_ALL) ==
1257 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1258 !AR_SREV_9280(ah)) {
1260 if (ath9k_hw_channel_change(ah, chan)) {
1261 ath9k_hw_loadnf(ah, ah->curchan);
1262 ath9k_hw_start_nfcal(ah, true);
1263 return 0;
1267 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1268 if (saveDefAntenna == 0)
1269 saveDefAntenna = 1;
1271 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1273 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1274 if (AR_SREV_9100(ah) ||
1275 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1276 tsf = ath9k_hw_gettsf64(ah);
1278 saveLedState = REG_READ(ah, AR_CFG_LED) &
1279 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1280 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1282 ath9k_hw_mark_phy_inactive(ah);
1284 /* Only required on the first reset */
1285 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1286 REG_WRITE(ah,
1287 AR9271_RESET_POWER_DOWN_CONTROL,
1288 AR9271_RADIO_RF_RST);
1289 udelay(50);
1292 if (!ath9k_hw_chip_reset(ah, chan)) {
1293 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1294 return -EINVAL;
1297 /* Only required on the first reset */
1298 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1299 ah->htc_reset_init = false;
1300 REG_WRITE(ah,
1301 AR9271_RESET_POWER_DOWN_CONTROL,
1302 AR9271_GATE_MAC_CTL);
1303 udelay(50);
1306 /* Restore TSF */
1307 if (tsf)
1308 ath9k_hw_settsf64(ah, tsf);
1310 if (AR_SREV_9280_10_OR_LATER(ah))
1311 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1313 if (!AR_SREV_9300_20_OR_LATER(ah))
1314 ar9002_hw_enable_async_fifo(ah);
1316 r = ath9k_hw_process_ini(ah, chan);
1317 if (r)
1318 return r;
1321 * Some AR91xx SoC devices frequently fail to accept TSF writes
1322 * right after the chip reset. When that happens, write a new
1323 * value after the initvals have been applied, with an offset
1324 * based on measured time difference
1326 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1327 tsf += 1500;
1328 ath9k_hw_settsf64(ah, tsf);
1331 /* Setup MFP options for CCMP */
1332 if (AR_SREV_9280_20_OR_LATER(ah)) {
1333 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1334 * frames when constructing CCMP AAD. */
1335 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1336 0xc7ff);
1337 ah->sw_mgmt_crypto = false;
1338 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1339 /* Disable hardware crypto for management frames */
1340 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1341 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1342 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1343 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1344 ah->sw_mgmt_crypto = true;
1345 } else
1346 ah->sw_mgmt_crypto = true;
1348 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1349 ath9k_hw_set_delta_slope(ah, chan);
1351 ath9k_hw_spur_mitigate_freq(ah, chan);
1352 ah->eep_ops->set_board_values(ah, chan);
1354 ath9k_hw_set_operating_mode(ah, ah->opmode);
1356 ENABLE_REGWRITE_BUFFER(ah);
1358 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1359 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1360 | macStaId1
1361 | AR_STA_ID1_RTS_USE_DEF
1362 | (ah->config.
1363 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1364 | ah->sta_id1_defaults);
1365 ath_hw_setbssidmask(common);
1366 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1367 ath9k_hw_write_associd(ah);
1368 REG_WRITE(ah, AR_ISR, ~0);
1369 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1371 REGWRITE_BUFFER_FLUSH(ah);
1372 DISABLE_REGWRITE_BUFFER(ah);
1374 r = ath9k_hw_rf_set_freq(ah, chan);
1375 if (r)
1376 return r;
1378 ENABLE_REGWRITE_BUFFER(ah);
1380 for (i = 0; i < AR_NUM_DCU; i++)
1381 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1383 REGWRITE_BUFFER_FLUSH(ah);
1384 DISABLE_REGWRITE_BUFFER(ah);
1386 ah->intr_txqs = 0;
1387 for (i = 0; i < ah->caps.total_queues; i++)
1388 ath9k_hw_resettxqueue(ah, i);
1390 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1391 ath9k_hw_ani_cache_ini_regs(ah);
1392 ath9k_hw_init_qos(ah);
1394 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1395 ath9k_enable_rfkill(ah);
1397 ath9k_hw_init_global_settings(ah);
1399 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1400 ar9002_hw_update_async_fifo(ah);
1401 ar9002_hw_enable_wep_aggregation(ah);
1404 REG_WRITE(ah, AR_STA_ID1,
1405 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1407 ath9k_hw_set_dma(ah);
1409 REG_WRITE(ah, AR_OBS, 8);
1411 if (ah->config.rx_intr_mitigation) {
1412 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1413 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1416 if (ah->config.tx_intr_mitigation) {
1417 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1418 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1421 ath9k_hw_init_bb(ah, chan);
1423 if (!ath9k_hw_init_cal(ah, chan))
1424 return -EIO;
1426 ENABLE_REGWRITE_BUFFER(ah);
1428 ath9k_hw_restore_chainmask(ah);
1429 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1431 REGWRITE_BUFFER_FLUSH(ah);
1432 DISABLE_REGWRITE_BUFFER(ah);
1435 * For big endian systems turn on swapping for descriptors
1437 if (AR_SREV_9100(ah)) {
1438 u32 mask;
1439 mask = REG_READ(ah, AR_CFG);
1440 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1441 ath_print(common, ATH_DBG_RESET,
1442 "CFG Byte Swap Set 0x%x\n", mask);
1443 } else {
1444 mask =
1445 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1446 REG_WRITE(ah, AR_CFG, mask);
1447 ath_print(common, ATH_DBG_RESET,
1448 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1450 } else {
1451 if (common->bus_ops->ath_bus_type == ATH_USB) {
1452 /* Configure AR9271 target WLAN */
1453 if (AR_SREV_9271(ah))
1454 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1455 else
1456 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1458 #ifdef __BIG_ENDIAN
1459 else
1460 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1461 #endif
1464 if (ah->btcoex_hw.enabled)
1465 ath9k_hw_btcoex_enable(ah);
1467 if (AR_SREV_9300_20_OR_LATER(ah))
1468 ar9003_hw_bb_watchdog_config(ah);
1470 return 0;
1472 EXPORT_SYMBOL(ath9k_hw_reset);
1474 /************************/
1475 /* Key Cache Management */
1476 /************************/
1478 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1480 u32 keyType;
1482 if (entry >= ah->caps.keycache_size) {
1483 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1484 "keychache entry %u out of range\n", entry);
1485 return false;
1488 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1490 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1491 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1492 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1493 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1494 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1495 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1496 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1497 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1499 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1500 u16 micentry = entry + 64;
1502 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1503 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1504 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1505 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1509 return true;
1511 EXPORT_SYMBOL(ath9k_hw_keyreset);
1513 static bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1515 u32 macHi, macLo;
1516 u32 unicast_flag = AR_KEYTABLE_VALID;
1518 if (entry >= ah->caps.keycache_size) {
1519 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1520 "keychache entry %u out of range\n", entry);
1521 return false;
1524 if (mac != NULL) {
1526 * AR_KEYTABLE_VALID indicates that the address is a unicast
1527 * address, which must match the transmitter address for
1528 * decrypting frames.
1529 * Not setting this bit allows the hardware to use the key
1530 * for multicast frame decryption.
1532 if (mac[0] & 0x01)
1533 unicast_flag = 0;
1535 macHi = (mac[5] << 8) | mac[4];
1536 macLo = (mac[3] << 24) |
1537 (mac[2] << 16) |
1538 (mac[1] << 8) |
1539 mac[0];
1540 macLo >>= 1;
1541 macLo |= (macHi & 1) << 31;
1542 macHi >>= 1;
1543 } else {
1544 macLo = macHi = 0;
1546 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1547 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1549 return true;
1552 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1553 const struct ath9k_keyval *k,
1554 const u8 *mac)
1556 const struct ath9k_hw_capabilities *pCap = &ah->caps;
1557 struct ath_common *common = ath9k_hw_common(ah);
1558 u32 key0, key1, key2, key3, key4;
1559 u32 keyType;
1561 if (entry >= pCap->keycache_size) {
1562 ath_print(common, ATH_DBG_FATAL,
1563 "keycache entry %u out of range\n", entry);
1564 return false;
1567 switch (k->kv_type) {
1568 case ATH9K_CIPHER_AES_OCB:
1569 keyType = AR_KEYTABLE_TYPE_AES;
1570 break;
1571 case ATH9K_CIPHER_AES_CCM:
1572 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1573 ath_print(common, ATH_DBG_ANY,
1574 "AES-CCM not supported by mac rev 0x%x\n",
1575 ah->hw_version.macRev);
1576 return false;
1578 keyType = AR_KEYTABLE_TYPE_CCM;
1579 break;
1580 case ATH9K_CIPHER_TKIP:
1581 keyType = AR_KEYTABLE_TYPE_TKIP;
1582 if (ATH9K_IS_MIC_ENABLED(ah)
1583 && entry + 64 >= pCap->keycache_size) {
1584 ath_print(common, ATH_DBG_ANY,
1585 "entry %u inappropriate for TKIP\n", entry);
1586 return false;
1588 break;
1589 case ATH9K_CIPHER_WEP:
1590 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1591 ath_print(common, ATH_DBG_ANY,
1592 "WEP key length %u too small\n", k->kv_len);
1593 return false;
1595 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1596 keyType = AR_KEYTABLE_TYPE_40;
1597 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1598 keyType = AR_KEYTABLE_TYPE_104;
1599 else
1600 keyType = AR_KEYTABLE_TYPE_128;
1601 break;
1602 case ATH9K_CIPHER_CLR:
1603 keyType = AR_KEYTABLE_TYPE_CLR;
1604 break;
1605 default:
1606 ath_print(common, ATH_DBG_FATAL,
1607 "cipher %u not supported\n", k->kv_type);
1608 return false;
1611 key0 = get_unaligned_le32(k->kv_val + 0);
1612 key1 = get_unaligned_le16(k->kv_val + 4);
1613 key2 = get_unaligned_le32(k->kv_val + 6);
1614 key3 = get_unaligned_le16(k->kv_val + 10);
1615 key4 = get_unaligned_le32(k->kv_val + 12);
1616 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1617 key4 &= 0xff;
1620 * Note: Key cache registers access special memory area that requires
1621 * two 32-bit writes to actually update the values in the internal
1622 * memory. Consequently, the exact order and pairs used here must be
1623 * maintained.
1626 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1627 u16 micentry = entry + 64;
1630 * Write inverted key[47:0] first to avoid Michael MIC errors
1631 * on frames that could be sent or received at the same time.
1632 * The correct key will be written in the end once everything
1633 * else is ready.
1635 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1636 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1638 /* Write key[95:48] */
1639 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1640 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1642 /* Write key[127:96] and key type */
1643 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1644 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1646 /* Write MAC address for the entry */
1647 (void) ath9k_hw_keysetmac(ah, entry, mac);
1649 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1651 * TKIP uses two key cache entries:
1652 * Michael MIC TX/RX keys in the same key cache entry
1653 * (idx = main index + 64):
1654 * key0 [31:0] = RX key [31:0]
1655 * key1 [15:0] = TX key [31:16]
1656 * key1 [31:16] = reserved
1657 * key2 [31:0] = RX key [63:32]
1658 * key3 [15:0] = TX key [15:0]
1659 * key3 [31:16] = reserved
1660 * key4 [31:0] = TX key [63:32]
1662 u32 mic0, mic1, mic2, mic3, mic4;
1664 mic0 = get_unaligned_le32(k->kv_mic + 0);
1665 mic2 = get_unaligned_le32(k->kv_mic + 4);
1666 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1667 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1668 mic4 = get_unaligned_le32(k->kv_txmic + 4);
1670 /* Write RX[31:0] and TX[31:16] */
1671 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1672 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1674 /* Write RX[63:32] and TX[15:0] */
1675 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1676 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1678 /* Write TX[63:32] and keyType(reserved) */
1679 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1680 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1681 AR_KEYTABLE_TYPE_CLR);
1683 } else {
1685 * TKIP uses four key cache entries (two for group
1686 * keys):
1687 * Michael MIC TX/RX keys are in different key cache
1688 * entries (idx = main index + 64 for TX and
1689 * main index + 32 + 96 for RX):
1690 * key0 [31:0] = TX/RX MIC key [31:0]
1691 * key1 [31:0] = reserved
1692 * key2 [31:0] = TX/RX MIC key [63:32]
1693 * key3 [31:0] = reserved
1694 * key4 [31:0] = reserved
1696 * Upper layer code will call this function separately
1697 * for TX and RX keys when these registers offsets are
1698 * used.
1700 u32 mic0, mic2;
1702 mic0 = get_unaligned_le32(k->kv_mic + 0);
1703 mic2 = get_unaligned_le32(k->kv_mic + 4);
1705 /* Write MIC key[31:0] */
1706 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1707 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1709 /* Write MIC key[63:32] */
1710 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1711 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1713 /* Write TX[63:32] and keyType(reserved) */
1714 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1715 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1716 AR_KEYTABLE_TYPE_CLR);
1719 /* MAC address registers are reserved for the MIC entry */
1720 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1721 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1724 * Write the correct (un-inverted) key[47:0] last to enable
1725 * TKIP now that all other registers are set with correct
1726 * values.
1728 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1729 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1730 } else {
1731 /* Write key[47:0] */
1732 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1733 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1735 /* Write key[95:48] */
1736 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1737 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1739 /* Write key[127:96] and key type */
1740 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1741 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1743 /* Write MAC address for the entry */
1744 (void) ath9k_hw_keysetmac(ah, entry, mac);
1747 return true;
1749 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1751 /******************************/
1752 /* Power Management (Chipset) */
1753 /******************************/
1756 * Notify Power Mgt is disabled in self-generated frames.
1757 * If requested, force chip to sleep.
1759 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1761 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1762 if (setChip) {
1764 * Clear the RTC force wake bit to allow the
1765 * mac to go to sleep.
1767 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1768 AR_RTC_FORCE_WAKE_EN);
1769 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1770 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1772 /* Shutdown chip. Active low */
1773 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1774 REG_CLR_BIT(ah, (AR_RTC_RESET),
1775 AR_RTC_RESET_EN);
1778 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1779 if (AR_SREV_9300_20_OR_LATER(ah))
1780 REG_WRITE(ah, AR_WA,
1781 ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1785 * Notify Power Management is enabled in self-generating
1786 * frames. If request, set power mode of chip to
1787 * auto/normal. Duration in units of 128us (1/8 TU).
1789 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1791 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1792 if (setChip) {
1793 struct ath9k_hw_capabilities *pCap = &ah->caps;
1795 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1796 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1797 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1798 AR_RTC_FORCE_WAKE_ON_INT);
1799 } else {
1801 * Clear the RTC force wake bit to allow the
1802 * mac to go to sleep.
1804 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1805 AR_RTC_FORCE_WAKE_EN);
1809 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1810 if (AR_SREV_9300_20_OR_LATER(ah))
1811 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1814 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1816 u32 val;
1817 int i;
1819 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1820 if (AR_SREV_9300_20_OR_LATER(ah)) {
1821 REG_WRITE(ah, AR_WA, ah->WARegVal);
1822 udelay(10);
1825 if (setChip) {
1826 if ((REG_READ(ah, AR_RTC_STATUS) &
1827 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1828 if (ath9k_hw_set_reset_reg(ah,
1829 ATH9K_RESET_POWER_ON) != true) {
1830 return false;
1832 if (!AR_SREV_9300_20_OR_LATER(ah))
1833 ath9k_hw_init_pll(ah, NULL);
1835 if (AR_SREV_9100(ah))
1836 REG_SET_BIT(ah, AR_RTC_RESET,
1837 AR_RTC_RESET_EN);
1839 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1840 AR_RTC_FORCE_WAKE_EN);
1841 udelay(50);
1843 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1844 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1845 if (val == AR_RTC_STATUS_ON)
1846 break;
1847 udelay(50);
1848 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1849 AR_RTC_FORCE_WAKE_EN);
1851 if (i == 0) {
1852 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1853 "Failed to wakeup in %uus\n",
1854 POWER_UP_TIME / 20);
1855 return false;
1859 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1861 return true;
1864 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1866 struct ath_common *common = ath9k_hw_common(ah);
1867 int status = true, setChip = true;
1868 static const char *modes[] = {
1869 "AWAKE",
1870 "FULL-SLEEP",
1871 "NETWORK SLEEP",
1872 "UNDEFINED"
1875 if (ah->power_mode == mode)
1876 return status;
1878 ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1879 modes[ah->power_mode], modes[mode]);
1881 switch (mode) {
1882 case ATH9K_PM_AWAKE:
1883 status = ath9k_hw_set_power_awake(ah, setChip);
1884 break;
1885 case ATH9K_PM_FULL_SLEEP:
1886 ath9k_set_power_sleep(ah, setChip);
1887 ah->chip_fullsleep = true;
1888 break;
1889 case ATH9K_PM_NETWORK_SLEEP:
1890 ath9k_set_power_network_sleep(ah, setChip);
1891 break;
1892 default:
1893 ath_print(common, ATH_DBG_FATAL,
1894 "Unknown power mode %u\n", mode);
1895 return false;
1897 ah->power_mode = mode;
1899 return status;
1901 EXPORT_SYMBOL(ath9k_hw_setpower);
1903 /*******************/
1904 /* Beacon Handling */
1905 /*******************/
1907 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1909 int flags = 0;
1911 ah->beacon_interval = beacon_period;
1913 ENABLE_REGWRITE_BUFFER(ah);
1915 switch (ah->opmode) {
1916 case NL80211_IFTYPE_STATION:
1917 case NL80211_IFTYPE_MONITOR:
1918 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1919 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1920 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1921 flags |= AR_TBTT_TIMER_EN;
1922 break;
1923 case NL80211_IFTYPE_ADHOC:
1924 case NL80211_IFTYPE_MESH_POINT:
1925 REG_SET_BIT(ah, AR_TXCFG,
1926 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1927 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1928 TU_TO_USEC(next_beacon +
1929 (ah->atim_window ? ah->
1930 atim_window : 1)));
1931 flags |= AR_NDP_TIMER_EN;
1932 case NL80211_IFTYPE_AP:
1933 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1934 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1935 TU_TO_USEC(next_beacon -
1936 ah->config.
1937 dma_beacon_response_time));
1938 REG_WRITE(ah, AR_NEXT_SWBA,
1939 TU_TO_USEC(next_beacon -
1940 ah->config.
1941 sw_beacon_response_time));
1942 flags |=
1943 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1944 break;
1945 default:
1946 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1947 "%s: unsupported opmode: %d\n",
1948 __func__, ah->opmode);
1949 return;
1950 break;
1953 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1954 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1955 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1956 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1958 REGWRITE_BUFFER_FLUSH(ah);
1959 DISABLE_REGWRITE_BUFFER(ah);
1961 beacon_period &= ~ATH9K_BEACON_ENA;
1962 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1963 ath9k_hw_reset_tsf(ah);
1966 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1968 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1970 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1971 const struct ath9k_beacon_state *bs)
1973 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1974 struct ath9k_hw_capabilities *pCap = &ah->caps;
1975 struct ath_common *common = ath9k_hw_common(ah);
1977 ENABLE_REGWRITE_BUFFER(ah);
1979 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1981 REG_WRITE(ah, AR_BEACON_PERIOD,
1982 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1983 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1984 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1986 REGWRITE_BUFFER_FLUSH(ah);
1987 DISABLE_REGWRITE_BUFFER(ah);
1989 REG_RMW_FIELD(ah, AR_RSSI_THR,
1990 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1992 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1994 if (bs->bs_sleepduration > beaconintval)
1995 beaconintval = bs->bs_sleepduration;
1997 dtimperiod = bs->bs_dtimperiod;
1998 if (bs->bs_sleepduration > dtimperiod)
1999 dtimperiod = bs->bs_sleepduration;
2001 if (beaconintval == dtimperiod)
2002 nextTbtt = bs->bs_nextdtim;
2003 else
2004 nextTbtt = bs->bs_nexttbtt;
2006 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2007 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2008 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2009 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2011 ENABLE_REGWRITE_BUFFER(ah);
2013 REG_WRITE(ah, AR_NEXT_DTIM,
2014 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2015 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2017 REG_WRITE(ah, AR_SLEEP1,
2018 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2019 | AR_SLEEP1_ASSUME_DTIM);
2021 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2022 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2023 else
2024 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2026 REG_WRITE(ah, AR_SLEEP2,
2027 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2029 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2030 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2032 REGWRITE_BUFFER_FLUSH(ah);
2033 DISABLE_REGWRITE_BUFFER(ah);
2035 REG_SET_BIT(ah, AR_TIMER_MODE,
2036 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2037 AR_DTIM_TIMER_EN);
2039 /* TSF Out of Range Threshold */
2040 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2042 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2044 /*******************/
2045 /* HW Capabilities */
2046 /*******************/
2048 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2050 struct ath9k_hw_capabilities *pCap = &ah->caps;
2051 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2052 struct ath_common *common = ath9k_hw_common(ah);
2053 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2055 u16 capField = 0, eeval;
2057 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2058 regulatory->current_rd = eeval;
2060 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2061 if (AR_SREV_9285_10_OR_LATER(ah))
2062 eeval |= AR9285_RDEXT_DEFAULT;
2063 regulatory->current_rd_ext = eeval;
2065 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2067 if (ah->opmode != NL80211_IFTYPE_AP &&
2068 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2069 if (regulatory->current_rd == 0x64 ||
2070 regulatory->current_rd == 0x65)
2071 regulatory->current_rd += 5;
2072 else if (regulatory->current_rd == 0x41)
2073 regulatory->current_rd = 0x43;
2074 ath_print(common, ATH_DBG_REGULATORY,
2075 "regdomain mapped to 0x%x\n", regulatory->current_rd);
2078 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2079 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2080 ath_print(common, ATH_DBG_FATAL,
2081 "no band has been marked as supported in EEPROM.\n");
2082 return -EINVAL;
2085 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2087 if (eeval & AR5416_OPFLAGS_11A) {
2088 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2089 if (ah->config.ht_enable) {
2090 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2091 set_bit(ATH9K_MODE_11NA_HT20,
2092 pCap->wireless_modes);
2093 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2094 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2095 pCap->wireless_modes);
2096 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2097 pCap->wireless_modes);
2102 if (eeval & AR5416_OPFLAGS_11G) {
2103 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2104 if (ah->config.ht_enable) {
2105 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2106 set_bit(ATH9K_MODE_11NG_HT20,
2107 pCap->wireless_modes);
2108 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2109 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2110 pCap->wireless_modes);
2111 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2112 pCap->wireless_modes);
2117 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2119 * For AR9271 we will temporarilly uses the rx chainmax as read from
2120 * the EEPROM.
2122 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2123 !(eeval & AR5416_OPFLAGS_11A) &&
2124 !(AR_SREV_9271(ah)))
2125 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2126 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2127 else
2128 /* Use rx_chainmask from EEPROM. */
2129 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2131 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2132 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2134 pCap->low_2ghz_chan = 2312;
2135 pCap->high_2ghz_chan = 2732;
2137 pCap->low_5ghz_chan = 4920;
2138 pCap->high_5ghz_chan = 6100;
2140 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2141 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2142 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2144 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2145 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2146 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2148 if (ah->config.ht_enable)
2149 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2150 else
2151 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2153 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2154 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2155 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2156 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2158 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2159 pCap->total_queues =
2160 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2161 else
2162 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2164 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2165 pCap->keycache_size =
2166 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2167 else
2168 pCap->keycache_size = AR_KEYTABLE_SIZE;
2170 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2172 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2173 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2174 else
2175 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2177 if (AR_SREV_9271(ah))
2178 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2179 else if (AR_DEVID_7010(ah))
2180 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2181 else if (AR_SREV_9285_10_OR_LATER(ah))
2182 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2183 else if (AR_SREV_9280_10_OR_LATER(ah))
2184 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2185 else
2186 pCap->num_gpio_pins = AR_NUM_GPIO;
2188 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2189 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2190 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2191 } else {
2192 pCap->rts_aggr_limit = (8 * 1024);
2195 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2197 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2198 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2199 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2200 ah->rfkill_gpio =
2201 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2202 ah->rfkill_polarity =
2203 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2205 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2207 #endif
2208 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2209 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2210 else
2211 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2213 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2214 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2215 else
2216 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2218 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2219 pCap->reg_cap =
2220 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2221 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2222 AR_EEPROM_EEREGCAP_EN_KK_U2 |
2223 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2224 } else {
2225 pCap->reg_cap =
2226 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2227 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2230 /* Advertise midband for AR5416 with FCC midband set in eeprom */
2231 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2232 AR_SREV_5416(ah))
2233 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2235 pCap->num_antcfg_5ghz =
2236 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2237 pCap->num_antcfg_2ghz =
2238 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2240 if (AR_SREV_9280_10_OR_LATER(ah) &&
2241 ath9k_hw_btcoex_supported(ah)) {
2242 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2243 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2245 if (AR_SREV_9285(ah)) {
2246 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2247 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2248 } else {
2249 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2251 } else {
2252 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2255 if (AR_SREV_9300_20_OR_LATER(ah)) {
2256 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2257 ATH9K_HW_CAP_FASTCLOCK;
2258 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2259 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2260 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2261 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2262 pCap->txs_len = sizeof(struct ar9003_txs);
2263 if (!ah->config.paprd_disable &&
2264 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2265 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2266 } else {
2267 pCap->tx_desc_len = sizeof(struct ath_desc);
2268 if (AR_SREV_9280_20(ah) &&
2269 ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2270 AR5416_EEP_MINOR_VER_16) ||
2271 ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2272 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2275 if (AR_SREV_9300_20_OR_LATER(ah))
2276 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2278 if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2279 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2281 return 0;
2284 /****************************/
2285 /* GPIO / RFKILL / Antennae */
2286 /****************************/
2288 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2289 u32 gpio, u32 type)
2291 int addr;
2292 u32 gpio_shift, tmp;
2294 if (gpio > 11)
2295 addr = AR_GPIO_OUTPUT_MUX3;
2296 else if (gpio > 5)
2297 addr = AR_GPIO_OUTPUT_MUX2;
2298 else
2299 addr = AR_GPIO_OUTPUT_MUX1;
2301 gpio_shift = (gpio % 6) * 5;
2303 if (AR_SREV_9280_20_OR_LATER(ah)
2304 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2305 REG_RMW(ah, addr, (type << gpio_shift),
2306 (0x1f << gpio_shift));
2307 } else {
2308 tmp = REG_READ(ah, addr);
2309 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2310 tmp &= ~(0x1f << gpio_shift);
2311 tmp |= (type << gpio_shift);
2312 REG_WRITE(ah, addr, tmp);
2316 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2318 u32 gpio_shift;
2320 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2322 if (AR_DEVID_7010(ah)) {
2323 gpio_shift = gpio;
2324 REG_RMW(ah, AR7010_GPIO_OE,
2325 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2326 (AR7010_GPIO_OE_MASK << gpio_shift));
2327 return;
2330 gpio_shift = gpio << 1;
2331 REG_RMW(ah,
2332 AR_GPIO_OE_OUT,
2333 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2334 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2336 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2338 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2340 #define MS_REG_READ(x, y) \
2341 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2343 if (gpio >= ah->caps.num_gpio_pins)
2344 return 0xffffffff;
2346 if (AR_DEVID_7010(ah)) {
2347 u32 val;
2348 val = REG_READ(ah, AR7010_GPIO_IN);
2349 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2350 } else if (AR_SREV_9300_20_OR_LATER(ah))
2351 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2352 AR_GPIO_BIT(gpio)) != 0;
2353 else if (AR_SREV_9271(ah))
2354 return MS_REG_READ(AR9271, gpio) != 0;
2355 else if (AR_SREV_9287_10_OR_LATER(ah))
2356 return MS_REG_READ(AR9287, gpio) != 0;
2357 else if (AR_SREV_9285_10_OR_LATER(ah))
2358 return MS_REG_READ(AR9285, gpio) != 0;
2359 else if (AR_SREV_9280_10_OR_LATER(ah))
2360 return MS_REG_READ(AR928X, gpio) != 0;
2361 else
2362 return MS_REG_READ(AR, gpio) != 0;
2364 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2366 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2367 u32 ah_signal_type)
2369 u32 gpio_shift;
2371 if (AR_DEVID_7010(ah)) {
2372 gpio_shift = gpio;
2373 REG_RMW(ah, AR7010_GPIO_OE,
2374 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2375 (AR7010_GPIO_OE_MASK << gpio_shift));
2376 return;
2379 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2380 gpio_shift = 2 * gpio;
2381 REG_RMW(ah,
2382 AR_GPIO_OE_OUT,
2383 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2384 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2386 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2388 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2390 if (AR_DEVID_7010(ah)) {
2391 val = val ? 0 : 1;
2392 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2393 AR_GPIO_BIT(gpio));
2394 return;
2397 if (AR_SREV_9271(ah))
2398 val = ~val;
2400 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2401 AR_GPIO_BIT(gpio));
2403 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2405 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2407 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2409 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2411 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2413 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2415 EXPORT_SYMBOL(ath9k_hw_setantenna);
2417 /*********************/
2418 /* General Operation */
2419 /*********************/
2421 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2423 u32 bits = REG_READ(ah, AR_RX_FILTER);
2424 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2426 if (phybits & AR_PHY_ERR_RADAR)
2427 bits |= ATH9K_RX_FILTER_PHYRADAR;
2428 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2429 bits |= ATH9K_RX_FILTER_PHYERR;
2431 return bits;
2433 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2435 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2437 u32 phybits;
2439 ENABLE_REGWRITE_BUFFER(ah);
2441 REG_WRITE(ah, AR_RX_FILTER, bits);
2443 phybits = 0;
2444 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2445 phybits |= AR_PHY_ERR_RADAR;
2446 if (bits & ATH9K_RX_FILTER_PHYERR)
2447 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2448 REG_WRITE(ah, AR_PHY_ERR, phybits);
2450 if (phybits)
2451 REG_WRITE(ah, AR_RXCFG,
2452 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2453 else
2454 REG_WRITE(ah, AR_RXCFG,
2455 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2457 REGWRITE_BUFFER_FLUSH(ah);
2458 DISABLE_REGWRITE_BUFFER(ah);
2460 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2462 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2464 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2465 return false;
2467 ath9k_hw_init_pll(ah, NULL);
2468 return true;
2470 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2472 bool ath9k_hw_disable(struct ath_hw *ah)
2474 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2475 return false;
2477 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2478 return false;
2480 ath9k_hw_init_pll(ah, NULL);
2481 return true;
2483 EXPORT_SYMBOL(ath9k_hw_disable);
2485 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2487 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2488 struct ath9k_channel *chan = ah->curchan;
2489 struct ieee80211_channel *channel = chan->chan;
2491 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2493 ah->eep_ops->set_txpower(ah, chan,
2494 ath9k_regd_get_ctl(regulatory, chan),
2495 channel->max_antenna_gain * 2,
2496 channel->max_power * 2,
2497 min((u32) MAX_RATE_POWER,
2498 (u32) regulatory->power_limit));
2500 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2502 void ath9k_hw_setopmode(struct ath_hw *ah)
2504 ath9k_hw_set_operating_mode(ah, ah->opmode);
2506 EXPORT_SYMBOL(ath9k_hw_setopmode);
2508 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2510 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2511 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2513 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2515 void ath9k_hw_write_associd(struct ath_hw *ah)
2517 struct ath_common *common = ath9k_hw_common(ah);
2519 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2520 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2521 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2523 EXPORT_SYMBOL(ath9k_hw_write_associd);
2525 #define ATH9K_MAX_TSF_READ 10
2527 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2529 u32 tsf_lower, tsf_upper1, tsf_upper2;
2530 int i;
2532 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2533 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2534 tsf_lower = REG_READ(ah, AR_TSF_L32);
2535 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2536 if (tsf_upper2 == tsf_upper1)
2537 break;
2538 tsf_upper1 = tsf_upper2;
2541 WARN_ON( i == ATH9K_MAX_TSF_READ );
2543 return (((u64)tsf_upper1 << 32) | tsf_lower);
2545 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2547 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2549 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2550 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2552 EXPORT_SYMBOL(ath9k_hw_settsf64);
2554 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2556 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2557 AH_TSF_WRITE_TIMEOUT))
2558 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2559 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2561 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2563 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2565 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2567 if (setting)
2568 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2569 else
2570 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2572 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2574 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2576 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2577 u32 macmode;
2579 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2580 macmode = AR_2040_JOINED_RX_CLEAR;
2581 else
2582 macmode = 0;
2584 REG_WRITE(ah, AR_2040_MODE, macmode);
2587 /* HW Generic timers configuration */
2589 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2591 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2592 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2593 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2594 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2595 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2596 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2597 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2598 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2599 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2600 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2601 AR_NDP2_TIMER_MODE, 0x0002},
2602 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2603 AR_NDP2_TIMER_MODE, 0x0004},
2604 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2605 AR_NDP2_TIMER_MODE, 0x0008},
2606 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2607 AR_NDP2_TIMER_MODE, 0x0010},
2608 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2609 AR_NDP2_TIMER_MODE, 0x0020},
2610 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2611 AR_NDP2_TIMER_MODE, 0x0040},
2612 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2613 AR_NDP2_TIMER_MODE, 0x0080}
2616 /* HW generic timer primitives */
2618 /* compute and clear index of rightmost 1 */
2619 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2621 u32 b;
2623 b = *mask;
2624 b &= (0-b);
2625 *mask &= ~b;
2626 b *= debruijn32;
2627 b >>= 27;
2629 return timer_table->gen_timer_index[b];
2632 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2634 return REG_READ(ah, AR_TSF_L32);
2636 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2638 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2639 void (*trigger)(void *),
2640 void (*overflow)(void *),
2641 void *arg,
2642 u8 timer_index)
2644 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2645 struct ath_gen_timer *timer;
2647 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2649 if (timer == NULL) {
2650 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2651 "Failed to allocate memory"
2652 "for hw timer[%d]\n", timer_index);
2653 return NULL;
2656 /* allocate a hardware generic timer slot */
2657 timer_table->timers[timer_index] = timer;
2658 timer->index = timer_index;
2659 timer->trigger = trigger;
2660 timer->overflow = overflow;
2661 timer->arg = arg;
2663 return timer;
2665 EXPORT_SYMBOL(ath_gen_timer_alloc);
2667 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2668 struct ath_gen_timer *timer,
2669 u32 timer_next,
2670 u32 timer_period)
2672 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2673 u32 tsf;
2675 BUG_ON(!timer_period);
2677 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2679 tsf = ath9k_hw_gettsf32(ah);
2681 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2682 "curent tsf %x period %x"
2683 "timer_next %x\n", tsf, timer_period, timer_next);
2686 * Pull timer_next forward if the current TSF already passed it
2687 * because of software latency
2689 if (timer_next < tsf)
2690 timer_next = tsf + timer_period;
2693 * Program generic timer registers
2695 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2696 timer_next);
2697 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2698 timer_period);
2699 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2700 gen_tmr_configuration[timer->index].mode_mask);
2702 /* Enable both trigger and thresh interrupt masks */
2703 REG_SET_BIT(ah, AR_IMR_S5,
2704 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2705 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2707 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2709 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2711 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2713 if ((timer->index < AR_FIRST_NDP_TIMER) ||
2714 (timer->index >= ATH_MAX_GEN_TIMER)) {
2715 return;
2718 /* Clear generic timer enable bits. */
2719 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2720 gen_tmr_configuration[timer->index].mode_mask);
2722 /* Disable both trigger and thresh interrupt masks */
2723 REG_CLR_BIT(ah, AR_IMR_S5,
2724 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2725 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2727 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2729 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2731 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2733 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2735 /* free the hardware generic timer slot */
2736 timer_table->timers[timer->index] = NULL;
2737 kfree(timer);
2739 EXPORT_SYMBOL(ath_gen_timer_free);
2742 * Generic Timer Interrupts handling
2744 void ath_gen_timer_isr(struct ath_hw *ah)
2746 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2747 struct ath_gen_timer *timer;
2748 struct ath_common *common = ath9k_hw_common(ah);
2749 u32 trigger_mask, thresh_mask, index;
2751 /* get hardware generic timer interrupt status */
2752 trigger_mask = ah->intr_gen_timer_trigger;
2753 thresh_mask = ah->intr_gen_timer_thresh;
2754 trigger_mask &= timer_table->timer_mask.val;
2755 thresh_mask &= timer_table->timer_mask.val;
2757 trigger_mask &= ~thresh_mask;
2759 while (thresh_mask) {
2760 index = rightmost_index(timer_table, &thresh_mask);
2761 timer = timer_table->timers[index];
2762 BUG_ON(!timer);
2763 ath_print(common, ATH_DBG_HWTIMER,
2764 "TSF overflow for Gen timer %d\n", index);
2765 timer->overflow(timer->arg);
2768 while (trigger_mask) {
2769 index = rightmost_index(timer_table, &trigger_mask);
2770 timer = timer_table->timers[index];
2771 BUG_ON(!timer);
2772 ath_print(common, ATH_DBG_HWTIMER,
2773 "Gen timer[%d] trigger\n", index);
2774 timer->trigger(timer->arg);
2777 EXPORT_SYMBOL(ath_gen_timer_isr);
2779 /********/
2780 /* HTC */
2781 /********/
2783 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2785 ah->htc_reset_init = true;
2787 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2789 static struct {
2790 u32 version;
2791 const char * name;
2792 } ath_mac_bb_names[] = {
2793 /* Devices with external radios */
2794 { AR_SREV_VERSION_5416_PCI, "5416" },
2795 { AR_SREV_VERSION_5416_PCIE, "5418" },
2796 { AR_SREV_VERSION_9100, "9100" },
2797 { AR_SREV_VERSION_9160, "9160" },
2798 /* Single-chip solutions */
2799 { AR_SREV_VERSION_9280, "9280" },
2800 { AR_SREV_VERSION_9285, "9285" },
2801 { AR_SREV_VERSION_9287, "9287" },
2802 { AR_SREV_VERSION_9271, "9271" },
2803 { AR_SREV_VERSION_9300, "9300" },
2806 /* For devices with external radios */
2807 static struct {
2808 u16 version;
2809 const char * name;
2810 } ath_rf_names[] = {
2811 { 0, "5133" },
2812 { AR_RAD5133_SREV_MAJOR, "5133" },
2813 { AR_RAD5122_SREV_MAJOR, "5122" },
2814 { AR_RAD2133_SREV_MAJOR, "2133" },
2815 { AR_RAD2122_SREV_MAJOR, "2122" }
2819 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2821 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2823 int i;
2825 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2826 if (ath_mac_bb_names[i].version == mac_bb_version) {
2827 return ath_mac_bb_names[i].name;
2831 return "????";
2835 * Return the RF name. "????" is returned if the RF is unknown.
2836 * Used for devices with external radios.
2838 static const char *ath9k_hw_rf_name(u16 rf_version)
2840 int i;
2842 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2843 if (ath_rf_names[i].version == rf_version) {
2844 return ath_rf_names[i].name;
2848 return "????";
2851 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2853 int used;
2855 /* chipsets >= AR9280 are single-chip */
2856 if (AR_SREV_9280_10_OR_LATER(ah)) {
2857 used = snprintf(hw_name, len,
2858 "Atheros AR%s Rev:%x",
2859 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2860 ah->hw_version.macRev);
2862 else {
2863 used = snprintf(hw_name, len,
2864 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2865 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2866 ah->hw_version.macRev,
2867 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2868 AR_RADIO_SREV_MAJOR)),
2869 ah->hw_version.phyRev);
2872 hw_name[used] = '\0';
2874 EXPORT_SYMBOL(ath9k_hw_name);