GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / vxge / vxge-config.c
blobeaf25baee77578bc85530318034c90b6ca96ca98
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
24 * __vxge_hw_channel_allocate - Allocate memory for channel
25 * This function allocates required memory for the channel and various arrays
26 * in the channel
28 struct __vxge_hw_channel*
29 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
30 enum __vxge_hw_channel_type type,
31 u32 length, u32 per_dtr_space, void *userdata)
33 struct __vxge_hw_channel *channel;
34 struct __vxge_hw_device *hldev;
35 int size = 0;
36 u32 vp_id;
38 hldev = vph->vpath->hldev;
39 vp_id = vph->vpath->vp_id;
41 switch (type) {
42 case VXGE_HW_CHANNEL_TYPE_FIFO:
43 size = sizeof(struct __vxge_hw_fifo);
44 break;
45 case VXGE_HW_CHANNEL_TYPE_RING:
46 size = sizeof(struct __vxge_hw_ring);
47 break;
48 default:
49 break;
52 channel = kzalloc(size, GFP_KERNEL);
53 if (channel == NULL)
54 goto exit0;
55 INIT_LIST_HEAD(&channel->item);
57 channel->common_reg = hldev->common_reg;
58 channel->first_vp_id = hldev->first_vp_id;
59 channel->type = type;
60 channel->devh = hldev;
61 channel->vph = vph;
62 channel->userdata = userdata;
63 channel->per_dtr_space = per_dtr_space;
64 channel->length = length;
65 channel->vp_id = vp_id;
67 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
68 if (channel->work_arr == NULL)
69 goto exit1;
71 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
72 if (channel->free_arr == NULL)
73 goto exit1;
74 channel->free_ptr = length;
76 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
77 if (channel->reserve_arr == NULL)
78 goto exit1;
79 channel->reserve_ptr = length;
80 channel->reserve_top = 0;
82 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
83 if (channel->orig_arr == NULL)
84 goto exit1;
86 return channel;
87 exit1:
88 __vxge_hw_channel_free(channel);
90 exit0:
91 return NULL;
95 * __vxge_hw_channel_free - Free memory allocated for channel
96 * This function deallocates memory from the channel and various arrays
97 * in the channel
99 void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
101 kfree(channel->work_arr);
102 kfree(channel->free_arr);
103 kfree(channel->reserve_arr);
104 kfree(channel->orig_arr);
105 kfree(channel);
109 * __vxge_hw_channel_initialize - Initialize a channel
110 * This function initializes a channel by properly setting the
111 * various references
113 enum vxge_hw_status
114 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
116 u32 i;
117 struct __vxge_hw_virtualpath *vpath;
119 vpath = channel->vph->vpath;
121 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
122 for (i = 0; i < channel->length; i++)
123 channel->orig_arr[i] = channel->reserve_arr[i];
126 switch (channel->type) {
127 case VXGE_HW_CHANNEL_TYPE_FIFO:
128 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
129 channel->stats = &((struct __vxge_hw_fifo *)
130 channel)->stats->common_stats;
131 break;
132 case VXGE_HW_CHANNEL_TYPE_RING:
133 vpath->ringh = (struct __vxge_hw_ring *)channel;
134 channel->stats = &((struct __vxge_hw_ring *)
135 channel)->stats->common_stats;
136 break;
137 default:
138 break;
141 return VXGE_HW_OK;
145 * __vxge_hw_channel_reset - Resets a channel
146 * This function resets a channel by properly setting the various references
148 enum vxge_hw_status
149 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
151 u32 i;
153 for (i = 0; i < channel->length; i++) {
154 if (channel->reserve_arr != NULL)
155 channel->reserve_arr[i] = channel->orig_arr[i];
156 if (channel->free_arr != NULL)
157 channel->free_arr[i] = NULL;
158 if (channel->work_arr != NULL)
159 channel->work_arr[i] = NULL;
161 channel->free_ptr = channel->length;
162 channel->reserve_ptr = channel->length;
163 channel->reserve_top = 0;
164 channel->post_index = 0;
165 channel->compl_index = 0;
167 return VXGE_HW_OK;
171 * __vxge_hw_device_pci_e_init
172 * Initialize certain PCI/PCI-X configuration registers
173 * with recommended values. Save config space for future hw resets.
175 void
176 __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
178 u16 cmd = 0;
180 /* Set the PErr Repconse bit and SERR in PCI command register. */
181 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
182 cmd |= 0x140;
183 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
185 pci_save_state(hldev->pdev);
189 * __vxge_hw_device_register_poll
190 * Will poll certain register for specified amount of time.
191 * Will poll until masked bit is not cleared.
193 enum vxge_hw_status
194 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
196 u64 val64;
197 u32 i = 0;
198 enum vxge_hw_status ret = VXGE_HW_FAIL;
200 udelay(10);
202 do {
203 val64 = readq(reg);
204 if (!(val64 & mask))
205 return VXGE_HW_OK;
206 udelay(100);
207 } while (++i <= 9);
209 i = 0;
210 do {
211 val64 = readq(reg);
212 if (!(val64 & mask))
213 return VXGE_HW_OK;
214 mdelay(1);
215 } while (++i <= max_millis);
217 return ret;
220 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
221 * in progress
222 * This routine checks the vpath reset in progress register is turned zero
224 enum vxge_hw_status
225 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
227 enum vxge_hw_status status;
228 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
229 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
230 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
231 return status;
235 * __vxge_hw_device_toc_get
236 * This routine sets the swapper and reads the toc pointer and returns the
237 * memory mapped address of the toc
239 struct vxge_hw_toc_reg __iomem *
240 __vxge_hw_device_toc_get(void __iomem *bar0)
242 u64 val64;
243 struct vxge_hw_toc_reg __iomem *toc = NULL;
244 enum vxge_hw_status status;
246 struct vxge_hw_legacy_reg __iomem *legacy_reg =
247 (struct vxge_hw_legacy_reg __iomem *)bar0;
249 status = __vxge_hw_legacy_swapper_set(legacy_reg);
250 if (status != VXGE_HW_OK)
251 goto exit;
253 val64 = readq(&legacy_reg->toc_first_pointer);
254 toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
255 exit:
256 return toc;
260 * __vxge_hw_device_reg_addr_get
261 * This routine sets the swapper and reads the toc pointer and initializes the
262 * register location pointers in the device object. It waits until the ric is
263 * completed initializing registers.
265 enum vxge_hw_status
266 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
268 u64 val64;
269 u32 i;
270 enum vxge_hw_status status = VXGE_HW_OK;
272 hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
274 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
275 if (hldev->toc_reg == NULL) {
276 status = VXGE_HW_FAIL;
277 goto exit;
280 val64 = readq(&hldev->toc_reg->toc_common_pointer);
281 hldev->common_reg =
282 (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
284 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
285 hldev->mrpcim_reg =
286 (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
288 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
289 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
290 hldev->srpcim_reg[i] =
291 (struct vxge_hw_srpcim_reg __iomem *)
292 (hldev->bar0 + val64);
295 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
296 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
297 hldev->vpmgmt_reg[i] =
298 (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
301 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
302 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
303 hldev->vpath_reg[i] =
304 (struct vxge_hw_vpath_reg __iomem *)
305 (hldev->bar0 + val64);
308 val64 = readq(&hldev->toc_reg->toc_kdfc);
310 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
311 case 0:
312 hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
313 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
314 break;
315 default:
316 break;
319 status = __vxge_hw_device_vpath_reset_in_prog_check(
320 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
321 exit:
322 return status;
326 * __vxge_hw_device_id_get
327 * This routine returns sets the device id and revision numbers into the device
328 * structure
330 void __vxge_hw_device_id_get(struct __vxge_hw_device *hldev)
332 u64 val64;
334 val64 = readq(&hldev->common_reg->titan_asic_id);
335 hldev->device_id =
336 (u16)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_DEVICE_ID(val64);
338 hldev->major_revision =
339 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MAJOR_REVISION(val64);
341 hldev->minor_revision =
342 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MINOR_REVISION(val64);
346 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
347 * This routine returns the Access Rights of the driver
349 static u32
350 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
352 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
354 switch (host_type) {
355 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
356 if (func_id == 0) {
357 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
358 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
360 break;
361 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
362 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
363 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
364 break;
365 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
366 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
367 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
368 break;
369 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
370 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
371 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
372 break;
373 case VXGE_HW_SR_VH_FUNCTION0:
374 case VXGE_HW_VH_NORMAL_FUNCTION:
375 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
376 break;
379 return access_rights;
382 * __vxge_hw_device_is_privilaged
383 * This routine checks if the device function is privilaged or not
386 enum vxge_hw_status
387 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
389 if (__vxge_hw_device_access_rights_get(host_type,
390 func_id) &
391 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
392 return VXGE_HW_OK;
393 else
394 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
398 * __vxge_hw_device_host_info_get
399 * This routine returns the host type assignments
401 void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
403 u64 val64;
404 u32 i;
406 val64 = readq(&hldev->common_reg->host_type_assignments);
408 hldev->host_type =
409 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
411 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
413 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
415 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
416 continue;
418 hldev->func_id =
419 __vxge_hw_vpath_func_id_get(i, hldev->vpmgmt_reg[i]);
421 hldev->access_rights = __vxge_hw_device_access_rights_get(
422 hldev->host_type, hldev->func_id);
424 hldev->first_vp_id = i;
425 break;
430 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
431 * link width and signalling rate.
433 static enum vxge_hw_status
434 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
436 int exp_cap;
437 u16 lnk;
439 /* Get the negotiated link width and speed from PCI config space */
440 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
441 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
443 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
444 return VXGE_HW_ERR_INVALID_PCI_INFO;
446 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
447 case PCIE_LNK_WIDTH_RESRV:
448 case PCIE_LNK_X1:
449 case PCIE_LNK_X2:
450 case PCIE_LNK_X4:
451 case PCIE_LNK_X8:
452 break;
453 default:
454 return VXGE_HW_ERR_INVALID_PCI_INFO;
457 return VXGE_HW_OK;
461 * __vxge_hw_device_initialize
462 * Initialize Titan-V hardware.
464 enum vxge_hw_status __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
466 enum vxge_hw_status status = VXGE_HW_OK;
468 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
469 hldev->func_id)) {
470 /* Validate the pci-e link width and speed */
471 status = __vxge_hw_verify_pci_e_info(hldev);
472 if (status != VXGE_HW_OK)
473 goto exit;
476 exit:
477 return status;
481 * vxge_hw_device_hw_info_get - Get the hw information
482 * Returns the vpath mask that has the bits set for each vpath allocated
483 * for the driver, FW version information and the first mac addresse for
484 * each vpath
486 enum vxge_hw_status __devinit
487 vxge_hw_device_hw_info_get(void __iomem *bar0,
488 struct vxge_hw_device_hw_info *hw_info)
490 u32 i;
491 u64 val64;
492 struct vxge_hw_toc_reg __iomem *toc;
493 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
494 struct vxge_hw_common_reg __iomem *common_reg;
495 struct vxge_hw_vpath_reg __iomem *vpath_reg;
496 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
497 enum vxge_hw_status status;
499 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
501 toc = __vxge_hw_device_toc_get(bar0);
502 if (toc == NULL) {
503 status = VXGE_HW_ERR_CRITICAL;
504 goto exit;
507 val64 = readq(&toc->toc_common_pointer);
508 common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
510 status = __vxge_hw_device_vpath_reset_in_prog_check(
511 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
512 if (status != VXGE_HW_OK)
513 goto exit;
515 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
517 val64 = readq(&common_reg->host_type_assignments);
519 hw_info->host_type =
520 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
522 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
524 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
525 continue;
527 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
529 vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
530 (bar0 + val64);
532 hw_info->func_id = __vxge_hw_vpath_func_id_get(i, vpmgmt_reg);
533 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
534 hw_info->func_id) &
535 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
537 val64 = readq(&toc->toc_mrpcim_pointer);
539 mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
540 (bar0 + val64);
542 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
543 wmb();
546 val64 = readq(&toc->toc_vpath_pointer[i]);
548 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
550 hw_info->function_mode =
551 __vxge_hw_vpath_pci_func_mode_get(i, vpath_reg);
553 status = __vxge_hw_vpath_fw_ver_get(i, vpath_reg, hw_info);
554 if (status != VXGE_HW_OK)
555 goto exit;
557 status = __vxge_hw_vpath_card_info_get(i, vpath_reg, hw_info);
558 if (status != VXGE_HW_OK)
559 goto exit;
561 break;
564 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
566 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
567 continue;
569 val64 = readq(&toc->toc_vpath_pointer[i]);
570 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
572 status = __vxge_hw_vpath_addr_get(i, vpath_reg,
573 hw_info->mac_addrs[i],
574 hw_info->mac_addr_masks[i]);
575 if (status != VXGE_HW_OK)
576 goto exit;
578 exit:
579 return status;
583 * vxge_hw_device_initialize - Initialize Titan device.
584 * Initialize Titan device. Note that all the arguments of this public API
585 * are 'IN', including @hldev. Driver cooperates with
586 * OS to find new Titan device, locate its PCI and memory spaces.
588 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
589 * to enable the latter to perform Titan hardware initialization.
591 enum vxge_hw_status __devinit
592 vxge_hw_device_initialize(
593 struct __vxge_hw_device **devh,
594 struct vxge_hw_device_attr *attr,
595 struct vxge_hw_device_config *device_config)
597 u32 i;
598 u32 nblocks = 0;
599 struct __vxge_hw_device *hldev = NULL;
600 enum vxge_hw_status status = VXGE_HW_OK;
602 status = __vxge_hw_device_config_check(device_config);
603 if (status != VXGE_HW_OK)
604 goto exit;
606 hldev = (struct __vxge_hw_device *)
607 vmalloc(sizeof(struct __vxge_hw_device));
608 if (hldev == NULL) {
609 status = VXGE_HW_ERR_OUT_OF_MEMORY;
610 goto exit;
613 memset(hldev, 0, sizeof(struct __vxge_hw_device));
614 hldev->magic = VXGE_HW_DEVICE_MAGIC;
616 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
618 /* apply config */
619 memcpy(&hldev->config, device_config,
620 sizeof(struct vxge_hw_device_config));
622 hldev->bar0 = attr->bar0;
623 hldev->pdev = attr->pdev;
625 hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
626 hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
627 hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
629 __vxge_hw_device_pci_e_init(hldev);
631 status = __vxge_hw_device_reg_addr_get(hldev);
632 if (status != VXGE_HW_OK) {
633 vfree(hldev);
634 goto exit;
636 __vxge_hw_device_id_get(hldev);
638 __vxge_hw_device_host_info_get(hldev);
640 /* Incrementing for stats blocks */
641 nblocks++;
643 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
645 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
646 continue;
648 if (device_config->vp_config[i].ring.enable ==
649 VXGE_HW_RING_ENABLE)
650 nblocks += device_config->vp_config[i].ring.ring_blocks;
652 if (device_config->vp_config[i].fifo.enable ==
653 VXGE_HW_FIFO_ENABLE)
654 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
655 nblocks++;
658 if (__vxge_hw_blockpool_create(hldev,
659 &hldev->block_pool,
660 device_config->dma_blockpool_initial + nblocks,
661 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
663 vxge_hw_device_terminate(hldev);
664 status = VXGE_HW_ERR_OUT_OF_MEMORY;
665 goto exit;
668 status = __vxge_hw_device_initialize(hldev);
670 if (status != VXGE_HW_OK) {
671 vxge_hw_device_terminate(hldev);
672 goto exit;
675 *devh = hldev;
676 exit:
677 return status;
681 * vxge_hw_device_terminate - Terminate Titan device.
682 * Terminate HW device.
684 void
685 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
687 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
689 hldev->magic = VXGE_HW_DEVICE_DEAD;
690 __vxge_hw_blockpool_destroy(&hldev->block_pool);
691 vfree(hldev);
695 * vxge_hw_device_stats_get - Get the device hw statistics.
696 * Returns the vpath h/w stats for the device.
698 enum vxge_hw_status
699 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
700 struct vxge_hw_device_stats_hw_info *hw_stats)
702 u32 i;
703 enum vxge_hw_status status = VXGE_HW_OK;
705 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
707 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
708 (hldev->virtual_paths[i].vp_open ==
709 VXGE_HW_VP_NOT_OPEN))
710 continue;
712 memcpy(hldev->virtual_paths[i].hw_stats_sav,
713 hldev->virtual_paths[i].hw_stats,
714 sizeof(struct vxge_hw_vpath_stats_hw_info));
716 status = __vxge_hw_vpath_stats_get(
717 &hldev->virtual_paths[i],
718 hldev->virtual_paths[i].hw_stats);
721 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
722 sizeof(struct vxge_hw_device_stats_hw_info));
724 return status;
728 * vxge_hw_driver_stats_get - Get the device sw statistics.
729 * Returns the vpath s/w stats for the device.
731 enum vxge_hw_status vxge_hw_driver_stats_get(
732 struct __vxge_hw_device *hldev,
733 struct vxge_hw_device_stats_sw_info *sw_stats)
735 enum vxge_hw_status status = VXGE_HW_OK;
737 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
738 sizeof(struct vxge_hw_device_stats_sw_info));
740 return status;
744 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
745 * and offset and perform an operation
746 * Get the statistics from the given location and offset.
748 enum vxge_hw_status
749 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
750 u32 operation, u32 location, u32 offset, u64 *stat)
752 u64 val64;
753 enum vxge_hw_status status = VXGE_HW_OK;
755 status = __vxge_hw_device_is_privilaged(hldev->host_type,
756 hldev->func_id);
757 if (status != VXGE_HW_OK)
758 goto exit;
760 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
761 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
762 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
763 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
765 status = __vxge_hw_pio_mem_write64(val64,
766 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
767 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
768 hldev->config.device_poll_millis);
770 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
771 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
772 else
773 *stat = 0;
774 exit:
775 return status;
779 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
780 * Get the Statistics on aggregate port
782 enum vxge_hw_status
783 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
784 struct vxge_hw_xmac_aggr_stats *aggr_stats)
786 u64 *val64;
787 int i;
788 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
789 enum vxge_hw_status status = VXGE_HW_OK;
791 val64 = (u64 *)aggr_stats;
793 status = __vxge_hw_device_is_privilaged(hldev->host_type,
794 hldev->func_id);
795 if (status != VXGE_HW_OK)
796 goto exit;
798 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
799 status = vxge_hw_mrpcim_stats_access(hldev,
800 VXGE_HW_STATS_OP_READ,
801 VXGE_HW_STATS_LOC_AGGR,
802 ((offset + (104 * port)) >> 3), val64);
803 if (status != VXGE_HW_OK)
804 goto exit;
806 offset += 8;
807 val64++;
809 exit:
810 return status;
814 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
815 * Get the Statistics on port
817 enum vxge_hw_status
818 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
819 struct vxge_hw_xmac_port_stats *port_stats)
821 u64 *val64;
822 enum vxge_hw_status status = VXGE_HW_OK;
823 int i;
824 u32 offset = 0x0;
825 val64 = (u64 *) port_stats;
827 status = __vxge_hw_device_is_privilaged(hldev->host_type,
828 hldev->func_id);
829 if (status != VXGE_HW_OK)
830 goto exit;
832 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
833 status = vxge_hw_mrpcim_stats_access(hldev,
834 VXGE_HW_STATS_OP_READ,
835 VXGE_HW_STATS_LOC_AGGR,
836 ((offset + (608 * port)) >> 3), val64);
837 if (status != VXGE_HW_OK)
838 goto exit;
840 offset += 8;
841 val64++;
844 exit:
845 return status;
849 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
850 * Get the XMAC Statistics
852 enum vxge_hw_status
853 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
854 struct vxge_hw_xmac_stats *xmac_stats)
856 enum vxge_hw_status status = VXGE_HW_OK;
857 u32 i;
859 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
860 0, &xmac_stats->aggr_stats[0]);
862 if (status != VXGE_HW_OK)
863 goto exit;
865 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
866 1, &xmac_stats->aggr_stats[1]);
867 if (status != VXGE_HW_OK)
868 goto exit;
870 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
872 status = vxge_hw_device_xmac_port_stats_get(hldev,
873 i, &xmac_stats->port_stats[i]);
874 if (status != VXGE_HW_OK)
875 goto exit;
878 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
880 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
881 continue;
883 status = __vxge_hw_vpath_xmac_tx_stats_get(
884 &hldev->virtual_paths[i],
885 &xmac_stats->vpath_tx_stats[i]);
886 if (status != VXGE_HW_OK)
887 goto exit;
889 status = __vxge_hw_vpath_xmac_rx_stats_get(
890 &hldev->virtual_paths[i],
891 &xmac_stats->vpath_rx_stats[i]);
892 if (status != VXGE_HW_OK)
893 goto exit;
895 exit:
896 return status;
900 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
901 * This routine is used to dynamically change the debug output
903 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
904 enum vxge_debug_level level, u32 mask)
906 if (hldev == NULL)
907 return;
909 #if defined(VXGE_DEBUG_TRACE_MASK) || defined(VXGE_DEBUG_ERR_MASK)
910 hldev->debug_module_mask = mask;
911 hldev->debug_level = level;
912 #endif
914 #if defined(VXGE_DEBUG_ERR_MASK)
915 hldev->level_err = level & VXGE_ERR;
916 #endif
918 #if defined(VXGE_DEBUG_TRACE_MASK)
919 hldev->level_trace = level & VXGE_TRACE;
920 #endif
924 * vxge_hw_device_error_level_get - Get the error level
925 * This routine returns the current error level set
927 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
929 #if defined(VXGE_DEBUG_ERR_MASK)
930 if (hldev == NULL)
931 return VXGE_ERR;
932 else
933 return hldev->level_err;
934 #else
935 return 0;
936 #endif
940 * vxge_hw_device_trace_level_get - Get the trace level
941 * This routine returns the current trace level set
943 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
945 #if defined(VXGE_DEBUG_TRACE_MASK)
946 if (hldev == NULL)
947 return VXGE_TRACE;
948 else
949 return hldev->level_trace;
950 #else
951 return 0;
952 #endif
955 * vxge_hw_device_debug_mask_get - Get the debug mask
956 * This routine returns the current debug mask set
958 u32 vxge_hw_device_debug_mask_get(struct __vxge_hw_device *hldev)
960 #if defined(VXGE_DEBUG_TRACE_MASK) || defined(VXGE_DEBUG_ERR_MASK)
961 if (hldev == NULL)
962 return 0;
963 return hldev->debug_module_mask;
964 #else
965 return 0;
966 #endif
970 * vxge_hw_getpause_data -Pause frame frame generation and reception.
971 * Returns the Pause frame generation and reception capability of the NIC.
973 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
974 u32 port, u32 *tx, u32 *rx)
976 u64 val64;
977 enum vxge_hw_status status = VXGE_HW_OK;
979 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
980 status = VXGE_HW_ERR_INVALID_DEVICE;
981 goto exit;
984 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
985 status = VXGE_HW_ERR_INVALID_PORT;
986 goto exit;
989 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
990 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
991 goto exit;
994 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
995 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
996 *tx = 1;
997 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
998 *rx = 1;
999 exit:
1000 return status;
1004 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1005 * It can be used to set or reset Pause frame generation or reception
1006 * support of the NIC.
1009 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1010 u32 port, u32 tx, u32 rx)
1012 u64 val64;
1013 enum vxge_hw_status status = VXGE_HW_OK;
1015 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1016 status = VXGE_HW_ERR_INVALID_DEVICE;
1017 goto exit;
1020 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1021 status = VXGE_HW_ERR_INVALID_PORT;
1022 goto exit;
1025 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1026 hldev->func_id);
1027 if (status != VXGE_HW_OK)
1028 goto exit;
1030 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1031 if (tx)
1032 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1033 else
1034 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1035 if (rx)
1036 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1037 else
1038 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1040 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1041 exit:
1042 return status;
1045 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1047 int link_width, exp_cap;
1048 u16 lnk;
1050 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
1051 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
1052 link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1053 return link_width;
1057 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1058 * This function returns the index of memory block
1060 static inline u32
1061 __vxge_hw_ring_block_memblock_idx(u8 *block)
1063 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1067 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1068 * This function sets index to a memory block
1070 static inline void
1071 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1073 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
1077 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
1078 * in RxD block
1079 * Sets the next block pointer in RxD block
1081 static inline void
1082 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
1084 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
1088 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
1089 * first block
1090 * Returns the dma address of the first RxD block
1092 u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
1094 struct vxge_hw_mempool_dma *dma_object;
1096 dma_object = ring->mempool->memblocks_dma_arr;
1097 vxge_assert(dma_object != NULL);
1099 return dma_object->addr;
1103 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
1104 * This function returns the dma address of a given item
1106 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
1107 void *item)
1109 u32 memblock_idx;
1110 void *memblock;
1111 struct vxge_hw_mempool_dma *memblock_dma_object;
1112 ptrdiff_t dma_item_offset;
1114 /* get owner memblock index */
1115 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
1117 /* get owner memblock by memblock index */
1118 memblock = mempoolh->memblocks_arr[memblock_idx];
1120 /* get memblock DMA object by memblock index */
1121 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
1123 /* calculate offset in the memblock of this item */
1124 dma_item_offset = (u8 *)item - (u8 *)memblock;
1126 return memblock_dma_object->addr + dma_item_offset;
1130 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
1131 * This function returns the dma address of a given item
1133 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
1134 struct __vxge_hw_ring *ring, u32 from,
1135 u32 to)
1137 u8 *to_item , *from_item;
1138 dma_addr_t to_dma;
1140 /* get "from" RxD block */
1141 from_item = mempoolh->items_arr[from];
1142 vxge_assert(from_item);
1144 /* get "to" RxD block */
1145 to_item = mempoolh->items_arr[to];
1146 vxge_assert(to_item);
1148 /* return address of the beginning of previous RxD block */
1149 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
1151 /* set next pointer for this RxD block to point on
1152 * previous item's DMA start address */
1153 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
1157 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
1158 * block callback
1159 * This function is callback passed to __vxge_hw_mempool_create to create memory
1160 * pool for RxD block
1162 static void
1163 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
1164 u32 memblock_index,
1165 struct vxge_hw_mempool_dma *dma_object,
1166 u32 index, u32 is_last)
1168 u32 i;
1169 void *item = mempoolh->items_arr[index];
1170 struct __vxge_hw_ring *ring =
1171 (struct __vxge_hw_ring *)mempoolh->userdata;
1173 /* format rxds array */
1174 for (i = 0; i < ring->rxds_per_block; i++) {
1175 void *rxdblock_priv;
1176 void *uld_priv;
1177 struct vxge_hw_ring_rxd_1 *rxdp;
1179 u32 reserve_index = ring->channel.reserve_ptr -
1180 (index * ring->rxds_per_block + i + 1);
1181 u32 memblock_item_idx;
1183 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
1184 i * ring->rxd_size;
1186 /* Note: memblock_item_idx is index of the item within
1187 * the memblock. For instance, in case of three RxD-blocks
1188 * per memblock this value can be 0, 1 or 2. */
1189 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
1190 memblock_index, item,
1191 &memblock_item_idx);
1193 rxdp = (struct vxge_hw_ring_rxd_1 *)
1194 ring->channel.reserve_arr[reserve_index];
1196 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
1198 /* pre-format Host_Control */
1199 rxdp->host_control = (u64)(size_t)uld_priv;
1202 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
1204 if (is_last) {
1205 /* link last one with first one */
1206 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
1209 if (index > 0) {
1210 /* link this RxD block with previous one */
1211 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
1216 * __vxge_hw_ring_replenish - Initial replenish of RxDs
1217 * This function replenishes the RxDs from reserve array to work array
1219 enum vxge_hw_status
1220 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
1222 void *rxd;
1223 struct __vxge_hw_channel *channel;
1224 enum vxge_hw_status status = VXGE_HW_OK;
1226 channel = &ring->channel;
1228 while (vxge_hw_channel_dtr_count(channel) > 0) {
1230 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
1232 vxge_assert(status == VXGE_HW_OK);
1234 if (ring->rxd_init) {
1235 status = ring->rxd_init(rxd, channel->userdata);
1236 if (status != VXGE_HW_OK) {
1237 vxge_hw_ring_rxd_free(ring, rxd);
1238 goto exit;
1242 vxge_hw_ring_rxd_post(ring, rxd);
1244 status = VXGE_HW_OK;
1245 exit:
1246 return status;
1250 * __vxge_hw_ring_create - Create a Ring
1251 * This function creates Ring and initializes it.
1254 enum vxge_hw_status
1255 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
1256 struct vxge_hw_ring_attr *attr)
1258 enum vxge_hw_status status = VXGE_HW_OK;
1259 struct __vxge_hw_ring *ring;
1260 u32 ring_length;
1261 struct vxge_hw_ring_config *config;
1262 struct __vxge_hw_device *hldev;
1263 u32 vp_id;
1264 struct vxge_hw_mempool_cbs ring_mp_callback;
1266 if ((vp == NULL) || (attr == NULL)) {
1267 status = VXGE_HW_FAIL;
1268 goto exit;
1271 hldev = vp->vpath->hldev;
1272 vp_id = vp->vpath->vp_id;
1274 config = &hldev->config.vp_config[vp_id].ring;
1276 ring_length = config->ring_blocks *
1277 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1279 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
1280 VXGE_HW_CHANNEL_TYPE_RING,
1281 ring_length,
1282 attr->per_rxd_space,
1283 attr->userdata);
1285 if (ring == NULL) {
1286 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1287 goto exit;
1290 vp->vpath->ringh = ring;
1291 ring->vp_id = vp_id;
1292 ring->vp_reg = vp->vpath->vp_reg;
1293 ring->common_reg = hldev->common_reg;
1294 ring->stats = &vp->vpath->sw_stats->ring_stats;
1295 ring->config = config;
1296 ring->callback = attr->callback;
1297 ring->rxd_init = attr->rxd_init;
1298 ring->rxd_term = attr->rxd_term;
1299 ring->buffer_mode = config->buffer_mode;
1300 ring->rxds_limit = config->rxds_limit;
1302 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
1303 ring->rxd_priv_size =
1304 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
1305 ring->per_rxd_space = attr->per_rxd_space;
1307 ring->rxd_priv_size =
1308 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
1309 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
1311 /* how many RxDs can fit into one block. Depends on configured
1312 * buffer_mode. */
1313 ring->rxds_per_block =
1314 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1316 /* calculate actual RxD block private size */
1317 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
1318 ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
1319 ring->mempool = __vxge_hw_mempool_create(hldev,
1320 VXGE_HW_BLOCK_SIZE,
1321 VXGE_HW_BLOCK_SIZE,
1322 ring->rxdblock_priv_size,
1323 ring->config->ring_blocks,
1324 ring->config->ring_blocks,
1325 &ring_mp_callback,
1326 ring);
1328 if (ring->mempool == NULL) {
1329 __vxge_hw_ring_delete(vp);
1330 return VXGE_HW_ERR_OUT_OF_MEMORY;
1333 status = __vxge_hw_channel_initialize(&ring->channel);
1334 if (status != VXGE_HW_OK) {
1335 __vxge_hw_ring_delete(vp);
1336 goto exit;
1339 /* Note:
1340 * Specifying rxd_init callback means two things:
1341 * 1) rxds need to be initialized by driver at channel-open time;
1342 * 2) rxds need to be posted at channel-open time
1343 * (that's what the initial_replenish() below does)
1344 * Currently we don't have a case when the 1) is done without the 2).
1346 if (ring->rxd_init) {
1347 status = vxge_hw_ring_replenish(ring);
1348 if (status != VXGE_HW_OK) {
1349 __vxge_hw_ring_delete(vp);
1350 goto exit;
1354 /* initial replenish will increment the counter in its post() routine,
1355 * we have to reset it */
1356 ring->stats->common_stats.usage_cnt = 0;
1357 exit:
1358 return status;
1362 * __vxge_hw_ring_abort - Returns the RxD
1363 * This function terminates the RxDs of ring
1365 enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
1367 void *rxdh;
1368 struct __vxge_hw_channel *channel;
1370 channel = &ring->channel;
1372 for (;;) {
1373 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
1375 if (rxdh == NULL)
1376 break;
1378 vxge_hw_channel_dtr_complete(channel);
1380 if (ring->rxd_term)
1381 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
1382 channel->userdata);
1384 vxge_hw_channel_dtr_free(channel, rxdh);
1387 return VXGE_HW_OK;
1391 * __vxge_hw_ring_reset - Resets the ring
1392 * This function resets the ring during vpath reset operation
1394 enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
1396 enum vxge_hw_status status = VXGE_HW_OK;
1397 struct __vxge_hw_channel *channel;
1399 channel = &ring->channel;
1401 __vxge_hw_ring_abort(ring);
1403 status = __vxge_hw_channel_reset(channel);
1405 if (status != VXGE_HW_OK)
1406 goto exit;
1408 if (ring->rxd_init) {
1409 status = vxge_hw_ring_replenish(ring);
1410 if (status != VXGE_HW_OK)
1411 goto exit;
1413 exit:
1414 return status;
1418 * __vxge_hw_ring_delete - Removes the ring
1419 * This function freeup the memory pool and removes the ring
1421 enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
1423 struct __vxge_hw_ring *ring = vp->vpath->ringh;
1425 __vxge_hw_ring_abort(ring);
1427 if (ring->mempool)
1428 __vxge_hw_mempool_destroy(ring->mempool);
1430 vp->vpath->ringh = NULL;
1431 __vxge_hw_channel_free(&ring->channel);
1433 return VXGE_HW_OK;
1437 * __vxge_hw_mempool_grow
1438 * Will resize mempool up to %num_allocate value.
1440 enum vxge_hw_status
1441 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
1442 u32 *num_allocated)
1444 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
1445 u32 n_items = mempool->items_per_memblock;
1446 u32 start_block_idx = mempool->memblocks_allocated;
1447 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
1448 enum vxge_hw_status status = VXGE_HW_OK;
1450 *num_allocated = 0;
1452 if (end_block_idx > mempool->memblocks_max) {
1453 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1454 goto exit;
1457 for (i = start_block_idx; i < end_block_idx; i++) {
1458 u32 j;
1459 u32 is_last = ((end_block_idx - 1) == i);
1460 struct vxge_hw_mempool_dma *dma_object =
1461 mempool->memblocks_dma_arr + i;
1462 void *the_memblock;
1464 /* allocate memblock's private part. Each DMA memblock
1465 * has a space allocated for item's private usage upon
1466 * mempool's user request. Each time mempool grows, it will
1467 * allocate new memblock and its private part at once.
1468 * This helps to minimize memory usage a lot. */
1469 mempool->memblocks_priv_arr[i] =
1470 vmalloc(mempool->items_priv_size * n_items);
1471 if (mempool->memblocks_priv_arr[i] == NULL) {
1472 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1473 goto exit;
1476 memset(mempool->memblocks_priv_arr[i], 0,
1477 mempool->items_priv_size * n_items);
1479 /* allocate DMA-capable memblock */
1480 mempool->memblocks_arr[i] =
1481 __vxge_hw_blockpool_malloc(mempool->devh,
1482 mempool->memblock_size, dma_object);
1483 if (mempool->memblocks_arr[i] == NULL) {
1484 vfree(mempool->memblocks_priv_arr[i]);
1485 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1486 goto exit;
1489 (*num_allocated)++;
1490 mempool->memblocks_allocated++;
1492 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
1494 the_memblock = mempool->memblocks_arr[i];
1496 /* fill the items hash array */
1497 for (j = 0; j < n_items; j++) {
1498 u32 index = i * n_items + j;
1500 if (first_time && index >= mempool->items_initial)
1501 break;
1503 mempool->items_arr[index] =
1504 ((char *)the_memblock + j*mempool->item_size);
1506 /* let caller to do more job on each item */
1507 if (mempool->item_func_alloc != NULL)
1508 mempool->item_func_alloc(mempool, i,
1509 dma_object, index, is_last);
1511 mempool->items_current = index + 1;
1514 if (first_time && mempool->items_current ==
1515 mempool->items_initial)
1516 break;
1518 exit:
1519 return status;
1523 * vxge_hw_mempool_create
1524 * This function will create memory pool object. Pool may grow but will
1525 * never shrink. Pool consists of number of dynamically allocated blocks
1526 * with size enough to hold %items_initial number of items. Memory is
1527 * DMA-able but client must map/unmap before interoperating with the device.
1529 struct vxge_hw_mempool*
1530 __vxge_hw_mempool_create(
1531 struct __vxge_hw_device *devh,
1532 u32 memblock_size,
1533 u32 item_size,
1534 u32 items_priv_size,
1535 u32 items_initial,
1536 u32 items_max,
1537 struct vxge_hw_mempool_cbs *mp_callback,
1538 void *userdata)
1540 enum vxge_hw_status status = VXGE_HW_OK;
1541 u32 memblocks_to_allocate;
1542 struct vxge_hw_mempool *mempool = NULL;
1543 u32 allocated;
1545 if (memblock_size < item_size) {
1546 status = VXGE_HW_FAIL;
1547 goto exit;
1550 mempool = (struct vxge_hw_mempool *)
1551 vmalloc(sizeof(struct vxge_hw_mempool));
1552 if (mempool == NULL) {
1553 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1554 goto exit;
1556 memset(mempool, 0, sizeof(struct vxge_hw_mempool));
1558 mempool->devh = devh;
1559 mempool->memblock_size = memblock_size;
1560 mempool->items_max = items_max;
1561 mempool->items_initial = items_initial;
1562 mempool->item_size = item_size;
1563 mempool->items_priv_size = items_priv_size;
1564 mempool->item_func_alloc = mp_callback->item_func_alloc;
1565 mempool->userdata = userdata;
1567 mempool->memblocks_allocated = 0;
1569 mempool->items_per_memblock = memblock_size / item_size;
1571 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
1572 mempool->items_per_memblock;
1574 /* allocate array of memblocks */
1575 mempool->memblocks_arr =
1576 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1577 if (mempool->memblocks_arr == NULL) {
1578 __vxge_hw_mempool_destroy(mempool);
1579 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1580 mempool = NULL;
1581 goto exit;
1583 memset(mempool->memblocks_arr, 0,
1584 sizeof(void *) * mempool->memblocks_max);
1586 /* allocate array of private parts of items per memblocks */
1587 mempool->memblocks_priv_arr =
1588 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1589 if (mempool->memblocks_priv_arr == NULL) {
1590 __vxge_hw_mempool_destroy(mempool);
1591 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1592 mempool = NULL;
1593 goto exit;
1595 memset(mempool->memblocks_priv_arr, 0,
1596 sizeof(void *) * mempool->memblocks_max);
1598 /* allocate array of memblocks DMA objects */
1599 mempool->memblocks_dma_arr = (struct vxge_hw_mempool_dma *)
1600 vmalloc(sizeof(struct vxge_hw_mempool_dma) *
1601 mempool->memblocks_max);
1603 if (mempool->memblocks_dma_arr == NULL) {
1604 __vxge_hw_mempool_destroy(mempool);
1605 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1606 mempool = NULL;
1607 goto exit;
1609 memset(mempool->memblocks_dma_arr, 0,
1610 sizeof(struct vxge_hw_mempool_dma) *
1611 mempool->memblocks_max);
1613 /* allocate hash array of items */
1614 mempool->items_arr =
1615 (void **) vmalloc(sizeof(void *) * mempool->items_max);
1616 if (mempool->items_arr == NULL) {
1617 __vxge_hw_mempool_destroy(mempool);
1618 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1619 mempool = NULL;
1620 goto exit;
1622 memset(mempool->items_arr, 0, sizeof(void *) * mempool->items_max);
1624 /* calculate initial number of memblocks */
1625 memblocks_to_allocate = (mempool->items_initial +
1626 mempool->items_per_memblock - 1) /
1627 mempool->items_per_memblock;
1629 /* pre-allocate the mempool */
1630 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
1631 &allocated);
1632 if (status != VXGE_HW_OK) {
1633 __vxge_hw_mempool_destroy(mempool);
1634 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1635 mempool = NULL;
1636 goto exit;
1639 exit:
1640 return mempool;
1644 * vxge_hw_mempool_destroy
1646 void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
1648 u32 i, j;
1649 struct __vxge_hw_device *devh = mempool->devh;
1651 for (i = 0; i < mempool->memblocks_allocated; i++) {
1652 struct vxge_hw_mempool_dma *dma_object;
1654 vxge_assert(mempool->memblocks_arr[i]);
1655 vxge_assert(mempool->memblocks_dma_arr + i);
1657 dma_object = mempool->memblocks_dma_arr + i;
1659 for (j = 0; j < mempool->items_per_memblock; j++) {
1660 u32 index = i * mempool->items_per_memblock + j;
1662 /* to skip last partially filled(if any) memblock */
1663 if (index >= mempool->items_current)
1664 break;
1667 vfree(mempool->memblocks_priv_arr[i]);
1669 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
1670 mempool->memblock_size, dma_object);
1673 vfree(mempool->items_arr);
1675 vfree(mempool->memblocks_dma_arr);
1677 vfree(mempool->memblocks_priv_arr);
1679 vfree(mempool->memblocks_arr);
1681 vfree(mempool);
1685 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1686 * Check the fifo configuration
1688 enum vxge_hw_status
1689 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1691 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1692 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1693 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1695 return VXGE_HW_OK;
1699 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1700 * Check the vpath configuration
1702 enum vxge_hw_status
1703 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1705 enum vxge_hw_status status;
1707 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1708 (vp_config->min_bandwidth >
1709 VXGE_HW_VPATH_BANDWIDTH_MAX))
1710 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1712 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1713 if (status != VXGE_HW_OK)
1714 return status;
1716 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1717 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1718 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1719 return VXGE_HW_BADCFG_VPATH_MTU;
1721 if ((vp_config->rpa_strip_vlan_tag !=
1722 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1723 (vp_config->rpa_strip_vlan_tag !=
1724 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1725 (vp_config->rpa_strip_vlan_tag !=
1726 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1727 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1729 return VXGE_HW_OK;
1733 * __vxge_hw_device_config_check - Check device configuration.
1734 * Check the device configuration
1736 enum vxge_hw_status
1737 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1739 u32 i;
1740 enum vxge_hw_status status;
1742 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1743 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1744 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1745 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1746 return VXGE_HW_BADCFG_INTR_MODE;
1748 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1749 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1750 return VXGE_HW_BADCFG_RTS_MAC_EN;
1752 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1753 status = __vxge_hw_device_vpath_config_check(
1754 &new_config->vp_config[i]);
1755 if (status != VXGE_HW_OK)
1756 return status;
1759 return VXGE_HW_OK;
1763 * vxge_hw_device_config_default_get - Initialize device config with defaults.
1764 * Initialize Titan device config with default values.
1766 enum vxge_hw_status __devinit
1767 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
1769 u32 i;
1771 device_config->dma_blockpool_initial =
1772 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
1773 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
1774 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
1775 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
1776 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
1777 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
1778 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
1780 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1782 device_config->vp_config[i].vp_id = i;
1784 device_config->vp_config[i].min_bandwidth =
1785 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
1787 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
1789 device_config->vp_config[i].ring.ring_blocks =
1790 VXGE_HW_DEF_RING_BLOCKS;
1792 device_config->vp_config[i].ring.buffer_mode =
1793 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
1795 device_config->vp_config[i].ring.scatter_mode =
1796 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
1798 device_config->vp_config[i].ring.rxds_limit =
1799 VXGE_HW_DEF_RING_RXDS_LIMIT;
1801 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
1803 device_config->vp_config[i].fifo.fifo_blocks =
1804 VXGE_HW_MIN_FIFO_BLOCKS;
1806 device_config->vp_config[i].fifo.max_frags =
1807 VXGE_HW_MAX_FIFO_FRAGS;
1809 device_config->vp_config[i].fifo.memblock_size =
1810 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
1812 device_config->vp_config[i].fifo.alignment_size =
1813 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
1815 device_config->vp_config[i].fifo.intr =
1816 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
1818 device_config->vp_config[i].fifo.no_snoop_bits =
1819 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
1820 device_config->vp_config[i].tti.intr_enable =
1821 VXGE_HW_TIM_INTR_DEFAULT;
1823 device_config->vp_config[i].tti.btimer_val =
1824 VXGE_HW_USE_FLASH_DEFAULT;
1826 device_config->vp_config[i].tti.timer_ac_en =
1827 VXGE_HW_USE_FLASH_DEFAULT;
1829 device_config->vp_config[i].tti.timer_ci_en =
1830 VXGE_HW_USE_FLASH_DEFAULT;
1832 device_config->vp_config[i].tti.timer_ri_en =
1833 VXGE_HW_USE_FLASH_DEFAULT;
1835 device_config->vp_config[i].tti.rtimer_val =
1836 VXGE_HW_USE_FLASH_DEFAULT;
1838 device_config->vp_config[i].tti.util_sel =
1839 VXGE_HW_USE_FLASH_DEFAULT;
1841 device_config->vp_config[i].tti.ltimer_val =
1842 VXGE_HW_USE_FLASH_DEFAULT;
1844 device_config->vp_config[i].tti.urange_a =
1845 VXGE_HW_USE_FLASH_DEFAULT;
1847 device_config->vp_config[i].tti.uec_a =
1848 VXGE_HW_USE_FLASH_DEFAULT;
1850 device_config->vp_config[i].tti.urange_b =
1851 VXGE_HW_USE_FLASH_DEFAULT;
1853 device_config->vp_config[i].tti.uec_b =
1854 VXGE_HW_USE_FLASH_DEFAULT;
1856 device_config->vp_config[i].tti.urange_c =
1857 VXGE_HW_USE_FLASH_DEFAULT;
1859 device_config->vp_config[i].tti.uec_c =
1860 VXGE_HW_USE_FLASH_DEFAULT;
1862 device_config->vp_config[i].tti.uec_d =
1863 VXGE_HW_USE_FLASH_DEFAULT;
1865 device_config->vp_config[i].rti.intr_enable =
1866 VXGE_HW_TIM_INTR_DEFAULT;
1868 device_config->vp_config[i].rti.btimer_val =
1869 VXGE_HW_USE_FLASH_DEFAULT;
1871 device_config->vp_config[i].rti.timer_ac_en =
1872 VXGE_HW_USE_FLASH_DEFAULT;
1874 device_config->vp_config[i].rti.timer_ci_en =
1875 VXGE_HW_USE_FLASH_DEFAULT;
1877 device_config->vp_config[i].rti.timer_ri_en =
1878 VXGE_HW_USE_FLASH_DEFAULT;
1880 device_config->vp_config[i].rti.rtimer_val =
1881 VXGE_HW_USE_FLASH_DEFAULT;
1883 device_config->vp_config[i].rti.util_sel =
1884 VXGE_HW_USE_FLASH_DEFAULT;
1886 device_config->vp_config[i].rti.ltimer_val =
1887 VXGE_HW_USE_FLASH_DEFAULT;
1889 device_config->vp_config[i].rti.urange_a =
1890 VXGE_HW_USE_FLASH_DEFAULT;
1892 device_config->vp_config[i].rti.uec_a =
1893 VXGE_HW_USE_FLASH_DEFAULT;
1895 device_config->vp_config[i].rti.urange_b =
1896 VXGE_HW_USE_FLASH_DEFAULT;
1898 device_config->vp_config[i].rti.uec_b =
1899 VXGE_HW_USE_FLASH_DEFAULT;
1901 device_config->vp_config[i].rti.urange_c =
1902 VXGE_HW_USE_FLASH_DEFAULT;
1904 device_config->vp_config[i].rti.uec_c =
1905 VXGE_HW_USE_FLASH_DEFAULT;
1907 device_config->vp_config[i].rti.uec_d =
1908 VXGE_HW_USE_FLASH_DEFAULT;
1910 device_config->vp_config[i].mtu =
1911 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
1913 device_config->vp_config[i].rpa_strip_vlan_tag =
1914 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
1917 return VXGE_HW_OK;
1921 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
1922 * Set the swapper bits appropriately for the lagacy section.
1924 enum vxge_hw_status
1925 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
1927 u64 val64;
1928 enum vxge_hw_status status = VXGE_HW_OK;
1930 val64 = readq(&legacy_reg->toc_swapper_fb);
1932 wmb();
1934 switch (val64) {
1936 case VXGE_HW_SWAPPER_INITIAL_VALUE:
1937 return status;
1939 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
1940 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
1941 &legacy_reg->pifm_rd_swap_en);
1942 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
1943 &legacy_reg->pifm_rd_flip_en);
1944 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
1945 &legacy_reg->pifm_wr_swap_en);
1946 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
1947 &legacy_reg->pifm_wr_flip_en);
1948 break;
1950 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
1951 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
1952 &legacy_reg->pifm_rd_swap_en);
1953 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
1954 &legacy_reg->pifm_wr_swap_en);
1955 break;
1957 case VXGE_HW_SWAPPER_BIT_FLIPPED:
1958 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
1959 &legacy_reg->pifm_rd_flip_en);
1960 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
1961 &legacy_reg->pifm_wr_flip_en);
1962 break;
1965 wmb();
1967 val64 = readq(&legacy_reg->toc_swapper_fb);
1969 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
1970 status = VXGE_HW_ERR_SWAPPER_CTRL;
1972 return status;
1976 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
1977 * Set the swapper bits appropriately for the vpath.
1979 enum vxge_hw_status
1980 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
1982 #ifndef __BIG_ENDIAN
1983 u64 val64;
1985 val64 = readq(&vpath_reg->vpath_general_cfg1);
1986 wmb();
1987 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
1988 writeq(val64, &vpath_reg->vpath_general_cfg1);
1989 wmb();
1990 #endif
1991 return VXGE_HW_OK;
1995 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
1996 * Set the swapper bits appropriately for the vpath.
1998 enum vxge_hw_status
1999 __vxge_hw_kdfc_swapper_set(
2000 struct vxge_hw_legacy_reg __iomem *legacy_reg,
2001 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2003 u64 val64;
2005 val64 = readq(&legacy_reg->pifm_wr_swap_en);
2007 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
2008 val64 = readq(&vpath_reg->kdfcctl_cfg0);
2009 wmb();
2011 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
2012 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
2013 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
2015 writeq(val64, &vpath_reg->kdfcctl_cfg0);
2016 wmb();
2019 return VXGE_HW_OK;
2023 * vxge_hw_mgmt_device_config - Retrieve device configuration.
2024 * Get device configuration. Permits to retrieve at run-time configuration
2025 * values that were used to initialize and configure the device.
2027 enum vxge_hw_status
2028 vxge_hw_mgmt_device_config(struct __vxge_hw_device *hldev,
2029 struct vxge_hw_device_config *dev_config, int size)
2032 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC))
2033 return VXGE_HW_ERR_INVALID_DEVICE;
2035 if (size != sizeof(struct vxge_hw_device_config))
2036 return VXGE_HW_ERR_VERSION_CONFLICT;
2038 memcpy(dev_config, &hldev->config,
2039 sizeof(struct vxge_hw_device_config));
2041 return VXGE_HW_OK;
2045 * vxge_hw_mgmt_reg_read - Read Titan register.
2047 enum vxge_hw_status
2048 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
2049 enum vxge_hw_mgmt_reg_type type,
2050 u32 index, u32 offset, u64 *value)
2052 enum vxge_hw_status status = VXGE_HW_OK;
2054 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2055 status = VXGE_HW_ERR_INVALID_DEVICE;
2056 goto exit;
2059 switch (type) {
2060 case vxge_hw_mgmt_reg_type_legacy:
2061 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2062 status = VXGE_HW_ERR_INVALID_OFFSET;
2063 break;
2065 *value = readq((void __iomem *)hldev->legacy_reg + offset);
2066 break;
2067 case vxge_hw_mgmt_reg_type_toc:
2068 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2069 status = VXGE_HW_ERR_INVALID_OFFSET;
2070 break;
2072 *value = readq((void __iomem *)hldev->toc_reg + offset);
2073 break;
2074 case vxge_hw_mgmt_reg_type_common:
2075 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2076 status = VXGE_HW_ERR_INVALID_OFFSET;
2077 break;
2079 *value = readq((void __iomem *)hldev->common_reg + offset);
2080 break;
2081 case vxge_hw_mgmt_reg_type_mrpcim:
2082 if (!(hldev->access_rights &
2083 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2084 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2085 break;
2087 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2088 status = VXGE_HW_ERR_INVALID_OFFSET;
2089 break;
2091 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
2092 break;
2093 case vxge_hw_mgmt_reg_type_srpcim:
2094 if (!(hldev->access_rights &
2095 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2096 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2097 break;
2099 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2100 status = VXGE_HW_ERR_INVALID_INDEX;
2101 break;
2103 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2104 status = VXGE_HW_ERR_INVALID_OFFSET;
2105 break;
2107 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
2108 offset);
2109 break;
2110 case vxge_hw_mgmt_reg_type_vpmgmt:
2111 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2112 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2113 status = VXGE_HW_ERR_INVALID_INDEX;
2114 break;
2116 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2117 status = VXGE_HW_ERR_INVALID_OFFSET;
2118 break;
2120 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
2121 offset);
2122 break;
2123 case vxge_hw_mgmt_reg_type_vpath:
2124 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
2125 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2126 status = VXGE_HW_ERR_INVALID_INDEX;
2127 break;
2129 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
2130 status = VXGE_HW_ERR_INVALID_INDEX;
2131 break;
2133 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2134 status = VXGE_HW_ERR_INVALID_OFFSET;
2135 break;
2137 *value = readq((void __iomem *)hldev->vpath_reg[index] +
2138 offset);
2139 break;
2140 default:
2141 status = VXGE_HW_ERR_INVALID_TYPE;
2142 break;
2145 exit:
2146 return status;
2150 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
2152 enum vxge_hw_status
2153 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
2155 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
2156 enum vxge_hw_status status = VXGE_HW_OK;
2157 int i = 0, j = 0;
2159 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2160 if (!((vpath_mask) & vxge_mBIT(i)))
2161 continue;
2162 vpmgmt_reg = hldev->vpmgmt_reg[i];
2163 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
2164 if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
2165 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
2166 return VXGE_HW_FAIL;
2169 return status;
2172 * vxge_hw_mgmt_reg_Write - Write Titan register.
2174 enum vxge_hw_status
2175 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
2176 enum vxge_hw_mgmt_reg_type type,
2177 u32 index, u32 offset, u64 value)
2179 enum vxge_hw_status status = VXGE_HW_OK;
2181 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2182 status = VXGE_HW_ERR_INVALID_DEVICE;
2183 goto exit;
2186 switch (type) {
2187 case vxge_hw_mgmt_reg_type_legacy:
2188 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2189 status = VXGE_HW_ERR_INVALID_OFFSET;
2190 break;
2192 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
2193 break;
2194 case vxge_hw_mgmt_reg_type_toc:
2195 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2196 status = VXGE_HW_ERR_INVALID_OFFSET;
2197 break;
2199 writeq(value, (void __iomem *)hldev->toc_reg + offset);
2200 break;
2201 case vxge_hw_mgmt_reg_type_common:
2202 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2203 status = VXGE_HW_ERR_INVALID_OFFSET;
2204 break;
2206 writeq(value, (void __iomem *)hldev->common_reg + offset);
2207 break;
2208 case vxge_hw_mgmt_reg_type_mrpcim:
2209 if (!(hldev->access_rights &
2210 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2211 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2212 break;
2214 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2215 status = VXGE_HW_ERR_INVALID_OFFSET;
2216 break;
2218 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
2219 break;
2220 case vxge_hw_mgmt_reg_type_srpcim:
2221 if (!(hldev->access_rights &
2222 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2223 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2224 break;
2226 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2227 status = VXGE_HW_ERR_INVALID_INDEX;
2228 break;
2230 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2231 status = VXGE_HW_ERR_INVALID_OFFSET;
2232 break;
2234 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
2235 offset);
2237 break;
2238 case vxge_hw_mgmt_reg_type_vpmgmt:
2239 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2240 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2241 status = VXGE_HW_ERR_INVALID_INDEX;
2242 break;
2244 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2245 status = VXGE_HW_ERR_INVALID_OFFSET;
2246 break;
2248 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
2249 offset);
2250 break;
2251 case vxge_hw_mgmt_reg_type_vpath:
2252 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
2253 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2254 status = VXGE_HW_ERR_INVALID_INDEX;
2255 break;
2257 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2258 status = VXGE_HW_ERR_INVALID_OFFSET;
2259 break;
2261 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
2262 offset);
2263 break;
2264 default:
2265 status = VXGE_HW_ERR_INVALID_TYPE;
2266 break;
2268 exit:
2269 return status;
2273 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
2274 * list callback
2275 * This function is callback passed to __vxge_hw_mempool_create to create memory
2276 * pool for TxD list
2278 static void
2279 __vxge_hw_fifo_mempool_item_alloc(
2280 struct vxge_hw_mempool *mempoolh,
2281 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
2282 u32 index, u32 is_last)
2284 u32 memblock_item_idx;
2285 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
2286 struct vxge_hw_fifo_txd *txdp =
2287 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
2288 struct __vxge_hw_fifo *fifo =
2289 (struct __vxge_hw_fifo *)mempoolh->userdata;
2290 void *memblock = mempoolh->memblocks_arr[memblock_index];
2292 vxge_assert(txdp);
2294 txdp->host_control = (u64) (size_t)
2295 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
2296 &memblock_item_idx);
2298 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
2300 vxge_assert(txdl_priv);
2302 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
2304 /* pre-format HW's TxDL's private */
2305 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
2306 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
2307 txdl_priv->dma_handle = dma_object->handle;
2308 txdl_priv->memblock = memblock;
2309 txdl_priv->first_txdp = txdp;
2310 txdl_priv->next_txdl_priv = NULL;
2311 txdl_priv->alloc_frags = 0;
2315 * __vxge_hw_fifo_create - Create a FIFO
2316 * This function creates FIFO and initializes it.
2318 enum vxge_hw_status
2319 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
2320 struct vxge_hw_fifo_attr *attr)
2322 enum vxge_hw_status status = VXGE_HW_OK;
2323 struct __vxge_hw_fifo *fifo;
2324 struct vxge_hw_fifo_config *config;
2325 u32 txdl_size, txdl_per_memblock;
2326 struct vxge_hw_mempool_cbs fifo_mp_callback;
2327 struct __vxge_hw_virtualpath *vpath;
2329 if ((vp == NULL) || (attr == NULL)) {
2330 status = VXGE_HW_ERR_INVALID_HANDLE;
2331 goto exit;
2333 vpath = vp->vpath;
2334 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
2336 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
2338 txdl_per_memblock = config->memblock_size / txdl_size;
2340 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
2341 VXGE_HW_CHANNEL_TYPE_FIFO,
2342 config->fifo_blocks * txdl_per_memblock,
2343 attr->per_txdl_space, attr->userdata);
2345 if (fifo == NULL) {
2346 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2347 goto exit;
2350 vpath->fifoh = fifo;
2351 fifo->nofl_db = vpath->nofl_db;
2353 fifo->vp_id = vpath->vp_id;
2354 fifo->vp_reg = vpath->vp_reg;
2355 fifo->stats = &vpath->sw_stats->fifo_stats;
2357 fifo->config = config;
2359 /* apply "interrupts per txdl" attribute */
2360 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
2362 if (fifo->config->intr)
2363 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
2365 fifo->no_snoop_bits = config->no_snoop_bits;
2368 * FIFO memory management strategy:
2370 * TxDL split into three independent parts:
2371 * - set of TxD's
2372 * - TxD HW private part
2373 * - driver private part
2375 * Adaptative memory allocation used. i.e. Memory allocated on
2376 * demand with the size which will fit into one memory block.
2377 * One memory block may contain more than one TxDL.
2379 * During "reserve" operations more memory can be allocated on demand
2380 * for example due to FIFO full condition.
2382 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
2383 * routine which will essentially stop the channel and free resources.
2386 /* TxDL common private size == TxDL private + driver private */
2387 fifo->priv_size =
2388 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
2389 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2390 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2392 fifo->per_txdl_space = attr->per_txdl_space;
2394 /* recompute txdl size to be cacheline aligned */
2395 fifo->txdl_size = txdl_size;
2396 fifo->txdl_per_memblock = txdl_per_memblock;
2398 fifo->txdl_term = attr->txdl_term;
2399 fifo->callback = attr->callback;
2401 if (fifo->txdl_per_memblock == 0) {
2402 __vxge_hw_fifo_delete(vp);
2403 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
2404 goto exit;
2407 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
2409 fifo->mempool =
2410 __vxge_hw_mempool_create(vpath->hldev,
2411 fifo->config->memblock_size,
2412 fifo->txdl_size,
2413 fifo->priv_size,
2414 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2415 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2416 &fifo_mp_callback,
2417 fifo);
2419 if (fifo->mempool == NULL) {
2420 __vxge_hw_fifo_delete(vp);
2421 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2422 goto exit;
2425 status = __vxge_hw_channel_initialize(&fifo->channel);
2426 if (status != VXGE_HW_OK) {
2427 __vxge_hw_fifo_delete(vp);
2428 goto exit;
2431 vxge_assert(fifo->channel.reserve_ptr);
2432 exit:
2433 return status;
2437 * __vxge_hw_fifo_abort - Returns the TxD
2438 * This function terminates the TxDs of fifo
2440 enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
2442 void *txdlh;
2444 for (;;) {
2445 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
2447 if (txdlh == NULL)
2448 break;
2450 vxge_hw_channel_dtr_complete(&fifo->channel);
2452 if (fifo->txdl_term) {
2453 fifo->txdl_term(txdlh,
2454 VXGE_HW_TXDL_STATE_POSTED,
2455 fifo->channel.userdata);
2458 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
2461 return VXGE_HW_OK;
2465 * __vxge_hw_fifo_reset - Resets the fifo
2466 * This function resets the fifo during vpath reset operation
2468 enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
2470 enum vxge_hw_status status = VXGE_HW_OK;
2472 __vxge_hw_fifo_abort(fifo);
2473 status = __vxge_hw_channel_reset(&fifo->channel);
2475 return status;
2479 * __vxge_hw_fifo_delete - Removes the FIFO
2480 * This function freeup the memory pool and removes the FIFO
2482 enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
2484 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
2486 __vxge_hw_fifo_abort(fifo);
2488 if (fifo->mempool)
2489 __vxge_hw_mempool_destroy(fifo->mempool);
2491 vp->vpath->fifoh = NULL;
2493 __vxge_hw_channel_free(&fifo->channel);
2495 return VXGE_HW_OK;
2499 * __vxge_hw_vpath_pci_read - Read the content of given address
2500 * in pci config space.
2501 * Read from the vpath pci config space.
2503 enum vxge_hw_status
2504 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
2505 u32 phy_func_0, u32 offset, u32 *val)
2507 u64 val64;
2508 enum vxge_hw_status status = VXGE_HW_OK;
2509 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2511 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
2513 if (phy_func_0)
2514 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
2516 writeq(val64, &vp_reg->pci_config_access_cfg1);
2517 wmb();
2518 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
2519 &vp_reg->pci_config_access_cfg2);
2520 wmb();
2522 status = __vxge_hw_device_register_poll(
2523 &vp_reg->pci_config_access_cfg2,
2524 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2526 if (status != VXGE_HW_OK)
2527 goto exit;
2529 val64 = readq(&vp_reg->pci_config_access_status);
2531 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
2532 status = VXGE_HW_FAIL;
2533 *val = 0;
2534 } else
2535 *val = (u32)vxge_bVALn(val64, 32, 32);
2536 exit:
2537 return status;
2541 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
2542 * Returns the function number of the vpath.
2545 __vxge_hw_vpath_func_id_get(u32 vp_id,
2546 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
2548 u64 val64;
2550 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
2552 return
2553 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
2557 * __vxge_hw_read_rts_ds - Program RTS steering critieria
2559 static inline void
2560 __vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg,
2561 u64 dta_struct_sel)
2563 writeq(0, &vpath_reg->rts_access_steer_ctrl);
2564 wmb();
2565 writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0);
2566 writeq(0, &vpath_reg->rts_access_steer_data1);
2567 wmb();
2572 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
2573 * part number and product description.
2575 enum vxge_hw_status
2576 __vxge_hw_vpath_card_info_get(
2577 u32 vp_id,
2578 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2579 struct vxge_hw_device_hw_info *hw_info)
2581 u32 i, j;
2582 u64 val64;
2583 u64 data1 = 0ULL;
2584 u64 data2 = 0ULL;
2585 enum vxge_hw_status status = VXGE_HW_OK;
2586 u8 *serial_number = hw_info->serial_number;
2587 u8 *part_number = hw_info->part_number;
2588 u8 *product_desc = hw_info->product_desc;
2590 __vxge_hw_read_rts_ds(vpath_reg,
2591 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER);
2593 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2594 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2595 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2596 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2597 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2598 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2600 status = __vxge_hw_pio_mem_write64(val64,
2601 &vpath_reg->rts_access_steer_ctrl,
2602 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2603 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2605 if (status != VXGE_HW_OK)
2606 return status;
2608 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2610 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2611 data1 = readq(&vpath_reg->rts_access_steer_data0);
2612 ((u64 *)serial_number)[0] = be64_to_cpu(data1);
2614 data2 = readq(&vpath_reg->rts_access_steer_data1);
2615 ((u64 *)serial_number)[1] = be64_to_cpu(data2);
2616 status = VXGE_HW_OK;
2617 } else
2618 *serial_number = 0;
2620 __vxge_hw_read_rts_ds(vpath_reg,
2621 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER);
2623 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2624 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2625 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2626 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2627 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2628 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2630 status = __vxge_hw_pio_mem_write64(val64,
2631 &vpath_reg->rts_access_steer_ctrl,
2632 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2633 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2635 if (status != VXGE_HW_OK)
2636 return status;
2638 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2640 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2642 data1 = readq(&vpath_reg->rts_access_steer_data0);
2643 ((u64 *)part_number)[0] = be64_to_cpu(data1);
2645 data2 = readq(&vpath_reg->rts_access_steer_data1);
2646 ((u64 *)part_number)[1] = be64_to_cpu(data2);
2648 status = VXGE_HW_OK;
2650 } else
2651 *part_number = 0;
2653 j = 0;
2655 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
2656 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
2658 __vxge_hw_read_rts_ds(vpath_reg, i);
2660 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2661 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2662 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2663 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2664 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2665 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2667 status = __vxge_hw_pio_mem_write64(val64,
2668 &vpath_reg->rts_access_steer_ctrl,
2669 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2670 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2672 if (status != VXGE_HW_OK)
2673 return status;
2675 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2677 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2679 data1 = readq(&vpath_reg->rts_access_steer_data0);
2680 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
2682 data2 = readq(&vpath_reg->rts_access_steer_data1);
2683 ((u64 *)product_desc)[j++] = be64_to_cpu(data2);
2685 status = VXGE_HW_OK;
2686 } else
2687 *product_desc = 0;
2690 return status;
2694 * __vxge_hw_vpath_fw_ver_get - Get the fw version
2695 * Returns FW Version
2697 enum vxge_hw_status
2698 __vxge_hw_vpath_fw_ver_get(
2699 u32 vp_id,
2700 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2701 struct vxge_hw_device_hw_info *hw_info)
2703 u64 val64;
2704 u64 data1 = 0ULL;
2705 u64 data2 = 0ULL;
2706 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
2707 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
2708 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
2709 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
2710 enum vxge_hw_status status = VXGE_HW_OK;
2712 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2713 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) |
2714 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2715 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2716 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2717 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2719 status = __vxge_hw_pio_mem_write64(val64,
2720 &vpath_reg->rts_access_steer_ctrl,
2721 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2722 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2724 if (status != VXGE_HW_OK)
2725 goto exit;
2727 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2729 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2731 data1 = readq(&vpath_reg->rts_access_steer_data0);
2732 data2 = readq(&vpath_reg->rts_access_steer_data1);
2734 fw_date->day =
2735 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(
2736 data1);
2737 fw_date->month =
2738 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(
2739 data1);
2740 fw_date->year =
2741 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(
2742 data1);
2744 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
2745 fw_date->month, fw_date->day, fw_date->year);
2747 fw_version->major =
2748 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1);
2749 fw_version->minor =
2750 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1);
2751 fw_version->build =
2752 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1);
2754 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2755 fw_version->major, fw_version->minor, fw_version->build);
2757 flash_date->day =
2758 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2);
2759 flash_date->month =
2760 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2);
2761 flash_date->year =
2762 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2);
2764 snprintf(flash_date->date, VXGE_HW_FW_STRLEN,
2765 "%2.2d/%2.2d/%4.4d",
2766 flash_date->month, flash_date->day, flash_date->year);
2768 flash_version->major =
2769 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2);
2770 flash_version->minor =
2771 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2);
2772 flash_version->build =
2773 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2);
2775 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2776 flash_version->major, flash_version->minor,
2777 flash_version->build);
2779 status = VXGE_HW_OK;
2781 } else
2782 status = VXGE_HW_FAIL;
2783 exit:
2784 return status;
2788 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
2789 * Returns pci function mode
2792 __vxge_hw_vpath_pci_func_mode_get(
2793 u32 vp_id,
2794 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2796 u64 val64;
2797 u64 data1 = 0ULL;
2798 enum vxge_hw_status status = VXGE_HW_OK;
2800 __vxge_hw_read_rts_ds(vpath_reg,
2801 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PCI_MODE);
2803 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2804 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2805 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2806 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2807 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2808 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2810 status = __vxge_hw_pio_mem_write64(val64,
2811 &vpath_reg->rts_access_steer_ctrl,
2812 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2813 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2815 if (status != VXGE_HW_OK)
2816 goto exit;
2818 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2820 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2821 data1 = readq(&vpath_reg->rts_access_steer_data0);
2822 status = VXGE_HW_OK;
2823 } else {
2824 data1 = 0;
2825 status = VXGE_HW_FAIL;
2827 exit:
2828 return data1;
2832 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
2833 * @hldev: HW device.
2834 * @on_off: TRUE if flickering to be on, FALSE to be off
2836 * Flicker the link LED.
2838 enum vxge_hw_status
2839 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev,
2840 u64 on_off)
2842 u64 val64;
2843 enum vxge_hw_status status = VXGE_HW_OK;
2844 struct vxge_hw_vpath_reg __iomem *vp_reg;
2846 if (hldev == NULL) {
2847 status = VXGE_HW_ERR_INVALID_DEVICE;
2848 goto exit;
2851 vp_reg = hldev->vpath_reg[hldev->first_vp_id];
2853 writeq(0, &vp_reg->rts_access_steer_ctrl);
2854 wmb();
2855 writeq(on_off, &vp_reg->rts_access_steer_data0);
2856 writeq(0, &vp_reg->rts_access_steer_data1);
2857 wmb();
2859 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2860 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL) |
2861 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2862 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2863 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2864 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2866 status = __vxge_hw_pio_mem_write64(val64,
2867 &vp_reg->rts_access_steer_ctrl,
2868 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2869 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2870 exit:
2871 return status;
2875 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
2877 enum vxge_hw_status
2878 __vxge_hw_vpath_rts_table_get(
2879 struct __vxge_hw_vpath_handle *vp,
2880 u32 action, u32 rts_table, u32 offset, u64 *data1, u64 *data2)
2882 u64 val64;
2883 struct __vxge_hw_virtualpath *vpath;
2884 struct vxge_hw_vpath_reg __iomem *vp_reg;
2886 enum vxge_hw_status status = VXGE_HW_OK;
2888 if (vp == NULL) {
2889 status = VXGE_HW_ERR_INVALID_HANDLE;
2890 goto exit;
2893 vpath = vp->vpath;
2894 vp_reg = vpath->vp_reg;
2896 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
2897 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
2898 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2899 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
2901 if ((rts_table ==
2902 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
2903 (rts_table ==
2904 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
2905 (rts_table ==
2906 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
2907 (rts_table ==
2908 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
2909 val64 = val64 | VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
2912 status = __vxge_hw_pio_mem_write64(val64,
2913 &vp_reg->rts_access_steer_ctrl,
2914 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2915 vpath->hldev->config.device_poll_millis);
2917 if (status != VXGE_HW_OK)
2918 goto exit;
2920 val64 = readq(&vp_reg->rts_access_steer_ctrl);
2922 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2924 *data1 = readq(&vp_reg->rts_access_steer_data0);
2926 if ((rts_table ==
2927 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
2928 (rts_table ==
2929 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
2930 *data2 = readq(&vp_reg->rts_access_steer_data1);
2932 status = VXGE_HW_OK;
2933 } else
2934 status = VXGE_HW_FAIL;
2935 exit:
2936 return status;
2940 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
2942 enum vxge_hw_status
2943 __vxge_hw_vpath_rts_table_set(
2944 struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table,
2945 u32 offset, u64 data1, u64 data2)
2947 u64 val64;
2948 struct __vxge_hw_virtualpath *vpath;
2949 enum vxge_hw_status status = VXGE_HW_OK;
2950 struct vxge_hw_vpath_reg __iomem *vp_reg;
2952 if (vp == NULL) {
2953 status = VXGE_HW_ERR_INVALID_HANDLE;
2954 goto exit;
2957 vpath = vp->vpath;
2958 vp_reg = vpath->vp_reg;
2960 writeq(data1, &vp_reg->rts_access_steer_data0);
2961 wmb();
2963 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
2964 (rts_table ==
2965 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
2966 writeq(data2, &vp_reg->rts_access_steer_data1);
2967 wmb();
2970 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
2971 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
2972 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2973 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
2975 status = __vxge_hw_pio_mem_write64(val64,
2976 &vp_reg->rts_access_steer_ctrl,
2977 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2978 vpath->hldev->config.device_poll_millis);
2980 if (status != VXGE_HW_OK)
2981 goto exit;
2983 val64 = readq(&vp_reg->rts_access_steer_ctrl);
2985 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS)
2986 status = VXGE_HW_OK;
2987 else
2988 status = VXGE_HW_FAIL;
2989 exit:
2990 return status;
2994 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
2995 * from MAC address table.
2997 enum vxge_hw_status
2998 __vxge_hw_vpath_addr_get(
2999 u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
3000 u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN])
3002 u32 i;
3003 u64 val64;
3004 u64 data1 = 0ULL;
3005 u64 data2 = 0ULL;
3006 enum vxge_hw_status status = VXGE_HW_OK;
3008 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3009 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY) |
3010 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3011 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) |
3012 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3013 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3015 status = __vxge_hw_pio_mem_write64(val64,
3016 &vpath_reg->rts_access_steer_ctrl,
3017 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3018 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3020 if (status != VXGE_HW_OK)
3021 goto exit;
3023 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
3025 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3027 data1 = readq(&vpath_reg->rts_access_steer_data0);
3028 data2 = readq(&vpath_reg->rts_access_steer_data1);
3030 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
3031 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
3032 data2);
3034 for (i = ETH_ALEN; i > 0; i--) {
3035 macaddr[i-1] = (u8)(data1 & 0xFF);
3036 data1 >>= 8;
3038 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
3039 data2 >>= 8;
3041 status = VXGE_HW_OK;
3042 } else
3043 status = VXGE_HW_FAIL;
3044 exit:
3045 return status;
3049 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3051 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3052 struct __vxge_hw_vpath_handle *vp,
3053 enum vxge_hw_rth_algoritms algorithm,
3054 struct vxge_hw_rth_hash_types *hash_type,
3055 u16 bucket_size)
3057 u64 data0, data1;
3058 enum vxge_hw_status status = VXGE_HW_OK;
3060 if (vp == NULL) {
3061 status = VXGE_HW_ERR_INVALID_HANDLE;
3062 goto exit;
3065 status = __vxge_hw_vpath_rts_table_get(vp,
3066 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3067 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3068 0, &data0, &data1);
3070 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3071 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3073 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3074 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3075 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3077 if (hash_type->hash_type_tcpipv4_en)
3078 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3080 if (hash_type->hash_type_ipv4_en)
3081 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3083 if (hash_type->hash_type_tcpipv6_en)
3084 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3086 if (hash_type->hash_type_ipv6_en)
3087 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3089 if (hash_type->hash_type_tcpipv6ex_en)
3090 data0 |=
3091 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3093 if (hash_type->hash_type_ipv6ex_en)
3094 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3096 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3097 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3098 else
3099 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3101 status = __vxge_hw_vpath_rts_table_set(vp,
3102 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3103 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3104 0, data0, 0);
3105 exit:
3106 return status;
3109 static void
3110 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3111 u16 flag, u8 *itable)
3113 switch (flag) {
3114 case 1:
3115 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3116 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3117 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3118 itable[j]);
3119 case 2:
3120 *data0 |=
3121 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3122 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3123 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3124 itable[j]);
3125 case 3:
3126 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3127 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3128 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3129 itable[j]);
3130 case 4:
3131 *data1 |=
3132 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3133 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3134 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3135 itable[j]);
3136 default:
3137 return;
3141 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3143 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3144 struct __vxge_hw_vpath_handle **vpath_handles,
3145 u32 vpath_count,
3146 u8 *mtable,
3147 u8 *itable,
3148 u32 itable_size)
3150 u32 i, j, action, rts_table;
3151 u64 data0;
3152 u64 data1;
3153 u32 max_entries;
3154 enum vxge_hw_status status = VXGE_HW_OK;
3155 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3157 if (vp == NULL) {
3158 status = VXGE_HW_ERR_INVALID_HANDLE;
3159 goto exit;
3162 max_entries = (((u32)1) << itable_size);
3164 if (vp->vpath->hldev->config.rth_it_type
3165 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3166 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3167 rts_table =
3168 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3170 for (j = 0; j < max_entries; j++) {
3172 data1 = 0;
3174 data0 =
3175 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3176 itable[j]);
3178 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3179 action, rts_table, j, data0, data1);
3181 if (status != VXGE_HW_OK)
3182 goto exit;
3185 for (j = 0; j < max_entries; j++) {
3187 data1 = 0;
3189 data0 =
3190 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3191 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3192 itable[j]);
3194 status = __vxge_hw_vpath_rts_table_set(
3195 vpath_handles[mtable[itable[j]]], action,
3196 rts_table, j, data0, data1);
3198 if (status != VXGE_HW_OK)
3199 goto exit;
3201 } else {
3202 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3203 rts_table =
3204 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3205 for (i = 0; i < vpath_count; i++) {
3207 for (j = 0; j < max_entries;) {
3209 data0 = 0;
3210 data1 = 0;
3212 while (j < max_entries) {
3213 if (mtable[itable[j]] != i) {
3214 j++;
3215 continue;
3217 vxge_hw_rts_rth_data0_data1_get(j,
3218 &data0, &data1, 1, itable);
3219 j++;
3220 break;
3223 while (j < max_entries) {
3224 if (mtable[itable[j]] != i) {
3225 j++;
3226 continue;
3228 vxge_hw_rts_rth_data0_data1_get(j,
3229 &data0, &data1, 2, itable);
3230 j++;
3231 break;
3234 while (j < max_entries) {
3235 if (mtable[itable[j]] != i) {
3236 j++;
3237 continue;
3239 vxge_hw_rts_rth_data0_data1_get(j,
3240 &data0, &data1, 3, itable);
3241 j++;
3242 break;
3245 while (j < max_entries) {
3246 if (mtable[itable[j]] != i) {
3247 j++;
3248 continue;
3250 vxge_hw_rts_rth_data0_data1_get(j,
3251 &data0, &data1, 4, itable);
3252 j++;
3253 break;
3256 if (data0 != 0) {
3257 status = __vxge_hw_vpath_rts_table_set(
3258 vpath_handles[i],
3259 action, rts_table,
3260 0, data0, data1);
3262 if (status != VXGE_HW_OK)
3263 goto exit;
3268 exit:
3269 return status;
3273 * vxge_hw_vpath_check_leak - Check for memory leak
3274 * @ringh: Handle to the ring object used for receive
3276 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3277 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3278 * Returns: VXGE_HW_FAIL, if leak has occurred.
3281 enum vxge_hw_status
3282 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3284 enum vxge_hw_status status = VXGE_HW_OK;
3285 u64 rxd_new_count, rxd_spat;
3287 if (ring == NULL)
3288 return status;
3290 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3291 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3292 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3294 if (rxd_new_count >= rxd_spat)
3295 status = VXGE_HW_FAIL;
3297 return status;
3301 * __vxge_hw_vpath_mgmt_read
3302 * This routine reads the vpath_mgmt registers
3304 static enum vxge_hw_status
3305 __vxge_hw_vpath_mgmt_read(
3306 struct __vxge_hw_device *hldev,
3307 struct __vxge_hw_virtualpath *vpath)
3309 u32 i, mtu = 0, max_pyld = 0;
3310 u64 val64;
3311 enum vxge_hw_status status = VXGE_HW_OK;
3313 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3315 val64 = readq(&vpath->vpmgmt_reg->
3316 rxmac_cfg0_port_vpmgmt_clone[i]);
3317 max_pyld =
3318 (u32)
3319 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3320 (val64);
3321 if (mtu < max_pyld)
3322 mtu = max_pyld;
3325 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3327 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3329 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3330 if (val64 & vxge_mBIT(i))
3331 vpath->vsport_number = i;
3334 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3336 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3337 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3338 else
3339 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3341 return status;
3345 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
3346 * This routine checks the vpath_rst_in_prog register to see if
3347 * adapter completed the reset process for the vpath
3349 enum vxge_hw_status
3350 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
3352 enum vxge_hw_status status;
3354 status = __vxge_hw_device_register_poll(
3355 &vpath->hldev->common_reg->vpath_rst_in_prog,
3356 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
3357 1 << (16 - vpath->vp_id)),
3358 vpath->hldev->config.device_poll_millis);
3360 return status;
3364 * __vxge_hw_vpath_reset
3365 * This routine resets the vpath on the device
3367 enum vxge_hw_status
3368 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3370 u64 val64;
3371 enum vxge_hw_status status = VXGE_HW_OK;
3373 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
3375 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
3376 &hldev->common_reg->cmn_rsthdlr_cfg0);
3378 return status;
3382 * __vxge_hw_vpath_sw_reset
3383 * This routine resets the vpath structures
3385 enum vxge_hw_status
3386 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3388 enum vxge_hw_status status = VXGE_HW_OK;
3389 struct __vxge_hw_virtualpath *vpath;
3391 vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
3393 if (vpath->ringh) {
3394 status = __vxge_hw_ring_reset(vpath->ringh);
3395 if (status != VXGE_HW_OK)
3396 goto exit;
3399 if (vpath->fifoh)
3400 status = __vxge_hw_fifo_reset(vpath->fifoh);
3401 exit:
3402 return status;
3406 * __vxge_hw_vpath_prc_configure
3407 * This routine configures the prc registers of virtual path using the config
3408 * passed
3410 void
3411 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3413 u64 val64;
3414 struct __vxge_hw_virtualpath *vpath;
3415 struct vxge_hw_vp_config *vp_config;
3416 struct vxge_hw_vpath_reg __iomem *vp_reg;
3418 vpath = &hldev->virtual_paths[vp_id];
3419 vp_reg = vpath->vp_reg;
3420 vp_config = vpath->vp_config;
3422 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
3423 return;
3425 val64 = readq(&vp_reg->prc_cfg1);
3426 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
3427 writeq(val64, &vp_reg->prc_cfg1);
3429 val64 = readq(&vpath->vp_reg->prc_cfg6);
3430 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
3431 writeq(val64, &vpath->vp_reg->prc_cfg6);
3433 val64 = readq(&vp_reg->prc_cfg7);
3435 if (vpath->vp_config->ring.scatter_mode !=
3436 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
3438 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
3440 switch (vpath->vp_config->ring.scatter_mode) {
3441 case VXGE_HW_RING_SCATTER_MODE_A:
3442 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3443 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
3444 break;
3445 case VXGE_HW_RING_SCATTER_MODE_B:
3446 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3447 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
3448 break;
3449 case VXGE_HW_RING_SCATTER_MODE_C:
3450 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3451 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
3452 break;
3456 writeq(val64, &vp_reg->prc_cfg7);
3458 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
3459 __vxge_hw_ring_first_block_address_get(
3460 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
3462 val64 = readq(&vp_reg->prc_cfg4);
3463 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
3464 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
3466 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
3467 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
3469 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
3470 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
3471 else
3472 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
3474 writeq(val64, &vp_reg->prc_cfg4);
3478 * __vxge_hw_vpath_kdfc_configure
3479 * This routine configures the kdfc registers of virtual path using the
3480 * config passed
3482 enum vxge_hw_status
3483 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3485 u64 val64;
3486 u64 vpath_stride;
3487 enum vxge_hw_status status = VXGE_HW_OK;
3488 struct __vxge_hw_virtualpath *vpath;
3489 struct vxge_hw_vpath_reg __iomem *vp_reg;
3491 vpath = &hldev->virtual_paths[vp_id];
3492 vp_reg = vpath->vp_reg;
3493 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
3495 if (status != VXGE_HW_OK)
3496 goto exit;
3498 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
3500 vpath->max_kdfc_db =
3501 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
3502 val64+1)/2;
3504 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3506 vpath->max_nofl_db = vpath->max_kdfc_db;
3508 if (vpath->max_nofl_db <
3509 ((vpath->vp_config->fifo.memblock_size /
3510 (vpath->vp_config->fifo.max_frags *
3511 sizeof(struct vxge_hw_fifo_txd))) *
3512 vpath->vp_config->fifo.fifo_blocks)) {
3514 return VXGE_HW_BADCFG_FIFO_BLOCKS;
3516 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
3517 (vpath->max_nofl_db*2)-1);
3520 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
3522 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
3523 &vp_reg->kdfc_fifo_trpl_ctrl);
3525 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
3527 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
3528 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
3530 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
3531 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
3532 #ifndef __BIG_ENDIAN
3533 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
3534 #endif
3535 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
3537 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
3538 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
3539 wmb();
3540 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
3542 vpath->nofl_db =
3543 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
3544 (hldev->kdfc + (vp_id *
3545 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
3546 vpath_stride)));
3547 exit:
3548 return status;
3552 * __vxge_hw_vpath_mac_configure
3553 * This routine configures the mac of virtual path using the config passed
3555 enum vxge_hw_status
3556 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3558 u64 val64;
3559 enum vxge_hw_status status = VXGE_HW_OK;
3560 struct __vxge_hw_virtualpath *vpath;
3561 struct vxge_hw_vp_config *vp_config;
3562 struct vxge_hw_vpath_reg __iomem *vp_reg;
3564 vpath = &hldev->virtual_paths[vp_id];
3565 vp_reg = vpath->vp_reg;
3566 vp_config = vpath->vp_config;
3568 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
3569 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
3571 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
3573 val64 = readq(&vp_reg->xmac_rpa_vcfg);
3575 if (vp_config->rpa_strip_vlan_tag !=
3576 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
3577 if (vp_config->rpa_strip_vlan_tag)
3578 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3579 else
3580 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3583 writeq(val64, &vp_reg->xmac_rpa_vcfg);
3584 val64 = readq(&vp_reg->rxmac_vcfg0);
3586 if (vp_config->mtu !=
3587 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
3588 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
3589 if ((vp_config->mtu +
3590 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
3591 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3592 vp_config->mtu +
3593 VXGE_HW_MAC_HEADER_MAX_SIZE);
3594 else
3595 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3596 vpath->max_mtu);
3599 writeq(val64, &vp_reg->rxmac_vcfg0);
3601 val64 = readq(&vp_reg->rxmac_vcfg1);
3603 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
3604 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
3606 if (hldev->config.rth_it_type ==
3607 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
3608 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
3609 0x2) |
3610 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
3613 writeq(val64, &vp_reg->rxmac_vcfg1);
3615 return status;
3619 * __vxge_hw_vpath_tim_configure
3620 * This routine configures the tim registers of virtual path using the config
3621 * passed
3623 enum vxge_hw_status
3624 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3626 u64 val64;
3627 enum vxge_hw_status status = VXGE_HW_OK;
3628 struct __vxge_hw_virtualpath *vpath;
3629 struct vxge_hw_vpath_reg __iomem *vp_reg;
3630 struct vxge_hw_vp_config *config;
3632 vpath = &hldev->virtual_paths[vp_id];
3633 vp_reg = vpath->vp_reg;
3634 config = vpath->vp_config;
3636 writeq((u64)0, &vp_reg->tim_dest_addr);
3637 writeq((u64)0, &vp_reg->tim_vpath_map);
3638 writeq((u64)0, &vp_reg->tim_bitmap);
3639 writeq((u64)0, &vp_reg->tim_remap);
3641 if (config->ring.enable == VXGE_HW_RING_ENABLE)
3642 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
3643 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
3644 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
3646 val64 = readq(&vp_reg->tim_pci_cfg);
3647 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
3648 writeq(val64, &vp_reg->tim_pci_cfg);
3650 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3652 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3654 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3655 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3656 0x3ffffff);
3657 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3658 config->tti.btimer_val);
3661 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3663 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3664 if (config->tti.timer_ac_en)
3665 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3666 else
3667 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3670 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3671 if (config->tti.timer_ci_en)
3672 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3673 else
3674 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3677 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3678 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3679 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3680 config->tti.urange_a);
3683 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3684 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3685 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3686 config->tti.urange_b);
3689 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3690 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3691 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3692 config->tti.urange_c);
3695 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3696 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3698 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3699 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3700 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3701 config->tti.uec_a);
3704 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3705 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3706 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
3707 config->tti.uec_b);
3710 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
3711 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
3712 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
3713 config->tti.uec_c);
3716 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
3717 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
3718 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
3719 config->tti.uec_d);
3722 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3723 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3725 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
3726 if (config->tti.timer_ri_en)
3727 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3728 else
3729 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3732 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3733 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3734 0x3ffffff);
3735 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3736 config->tti.rtimer_val);
3739 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
3740 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
3741 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
3742 config->tti.util_sel);
3745 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3746 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3747 0x3ffffff);
3748 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3749 config->tti.ltimer_val);
3752 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3755 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
3757 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3759 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3760 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3761 0x3ffffff);
3762 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3763 config->rti.btimer_val);
3766 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3768 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3769 if (config->rti.timer_ac_en)
3770 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3771 else
3772 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3775 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3776 if (config->rti.timer_ci_en)
3777 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3778 else
3779 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3782 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3783 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3784 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3785 config->rti.urange_a);
3788 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3789 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3790 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3791 config->rti.urange_b);
3794 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3795 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3796 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3797 config->rti.urange_c);
3800 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3801 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
3803 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3804 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3805 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3806 config->rti.uec_a);
3809 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3810 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3811 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
3812 config->rti.uec_b);
3815 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
3816 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
3817 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
3818 config->rti.uec_c);
3821 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
3822 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
3823 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
3824 config->rti.uec_d);
3827 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
3828 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
3830 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
3831 if (config->rti.timer_ri_en)
3832 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3833 else
3834 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3837 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3838 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3839 0x3ffffff);
3840 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3841 config->rti.rtimer_val);
3844 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
3845 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
3846 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
3847 config->rti.util_sel);
3850 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3851 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3852 0x3ffffff);
3853 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3854 config->rti.ltimer_val);
3857 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
3860 val64 = 0;
3861 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
3862 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
3863 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
3864 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
3865 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
3866 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
3868 return status;
3871 void
3872 vxge_hw_vpath_tti_ci_set(struct __vxge_hw_device *hldev, u32 vp_id)
3874 struct __vxge_hw_virtualpath *vpath;
3875 struct vxge_hw_vpath_reg __iomem *vp_reg;
3876 struct vxge_hw_vp_config *config;
3877 u64 val64;
3879 vpath = &hldev->virtual_paths[vp_id];
3880 vp_reg = vpath->vp_reg;
3881 config = vpath->vp_config;
3883 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3884 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3886 if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
3887 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
3888 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3889 writeq(val64,
3890 &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3895 * __vxge_hw_vpath_initialize
3896 * This routine is the final phase of init which initializes the
3897 * registers of the vpath using the configuration passed.
3899 enum vxge_hw_status
3900 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
3902 u64 val64;
3903 u32 val32;
3904 enum vxge_hw_status status = VXGE_HW_OK;
3905 struct __vxge_hw_virtualpath *vpath;
3906 struct vxge_hw_vpath_reg __iomem *vp_reg;
3908 vpath = &hldev->virtual_paths[vp_id];
3910 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
3911 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
3912 goto exit;
3914 vp_reg = vpath->vp_reg;
3916 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
3918 if (status != VXGE_HW_OK)
3919 goto exit;
3921 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
3923 if (status != VXGE_HW_OK)
3924 goto exit;
3926 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
3928 if (status != VXGE_HW_OK)
3929 goto exit;
3931 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
3933 if (status != VXGE_HW_OK)
3934 goto exit;
3936 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
3938 /* Get MRRS value from device control */
3939 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
3941 if (status == VXGE_HW_OK) {
3942 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
3943 val64 &=
3944 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
3945 val64 |=
3946 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
3948 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
3951 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
3952 val64 |=
3953 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
3954 VXGE_HW_MAX_PAYLOAD_SIZE_512);
3956 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
3957 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
3959 exit:
3960 return status;
3964 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
3965 * This routine is the initial phase of init which resets the vpath and
3966 * initializes the software support structures.
3968 enum vxge_hw_status
3969 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
3970 struct vxge_hw_vp_config *config)
3972 struct __vxge_hw_virtualpath *vpath;
3973 enum vxge_hw_status status = VXGE_HW_OK;
3975 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
3976 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
3977 goto exit;
3980 vpath = &hldev->virtual_paths[vp_id];
3982 vpath->vp_id = vp_id;
3983 vpath->vp_open = VXGE_HW_VP_OPEN;
3984 vpath->hldev = hldev;
3985 vpath->vp_config = config;
3986 vpath->vp_reg = hldev->vpath_reg[vp_id];
3987 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
3989 __vxge_hw_vpath_reset(hldev, vp_id);
3991 status = __vxge_hw_vpath_reset_check(vpath);
3993 if (status != VXGE_HW_OK) {
3994 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
3995 goto exit;
3998 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4000 if (status != VXGE_HW_OK) {
4001 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4002 goto exit;
4005 INIT_LIST_HEAD(&vpath->vpath_handles);
4007 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4009 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4010 hldev->tim_int_mask1, vp_id);
4012 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4014 if (status != VXGE_HW_OK)
4015 __vxge_hw_vp_terminate(hldev, vp_id);
4016 exit:
4017 return status;
4021 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4022 * This routine closes all channels it opened and freeup memory
4024 void
4025 __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4027 struct __vxge_hw_virtualpath *vpath;
4029 vpath = &hldev->virtual_paths[vp_id];
4031 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4032 goto exit;
4034 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4035 vpath->hldev->tim_int_mask1, vpath->vp_id);
4036 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4038 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4039 exit:
4040 return;
4044 * vxge_hw_vpath_mtu_set - Set MTU.
4045 * Set new MTU value. Example, to use jumbo frames:
4046 * vxge_hw_vpath_mtu_set(my_device, 9600);
4048 enum vxge_hw_status
4049 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4051 u64 val64;
4052 enum vxge_hw_status status = VXGE_HW_OK;
4053 struct __vxge_hw_virtualpath *vpath;
4055 if (vp == NULL) {
4056 status = VXGE_HW_ERR_INVALID_HANDLE;
4057 goto exit;
4059 vpath = vp->vpath;
4061 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4063 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4064 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4066 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4068 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4069 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4071 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4073 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4075 exit:
4076 return status;
4080 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4081 * This function is used to open access to virtual path of an
4082 * adapter for offload, GRO operations. This function returns
4083 * synchronously.
4085 enum vxge_hw_status
4086 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4087 struct vxge_hw_vpath_attr *attr,
4088 struct __vxge_hw_vpath_handle **vpath_handle)
4090 struct __vxge_hw_virtualpath *vpath;
4091 struct __vxge_hw_vpath_handle *vp;
4092 enum vxge_hw_status status;
4094 vpath = &hldev->virtual_paths[attr->vp_id];
4096 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4097 status = VXGE_HW_ERR_INVALID_STATE;
4098 goto vpath_open_exit1;
4101 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4102 &hldev->config.vp_config[attr->vp_id]);
4104 if (status != VXGE_HW_OK)
4105 goto vpath_open_exit1;
4107 vp = (struct __vxge_hw_vpath_handle *)
4108 vmalloc(sizeof(struct __vxge_hw_vpath_handle));
4109 if (vp == NULL) {
4110 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4111 goto vpath_open_exit2;
4114 memset(vp, 0, sizeof(struct __vxge_hw_vpath_handle));
4116 vp->vpath = vpath;
4118 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4119 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4120 if (status != VXGE_HW_OK)
4121 goto vpath_open_exit6;
4124 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4125 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4126 if (status != VXGE_HW_OK)
4127 goto vpath_open_exit7;
4129 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4132 vpath->fifoh->tx_intr_num =
4133 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4134 VXGE_HW_VPATH_INTR_TX;
4136 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4137 VXGE_HW_BLOCK_SIZE);
4139 if (vpath->stats_block == NULL) {
4140 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4141 goto vpath_open_exit8;
4144 vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
4145 stats_block->memblock;
4146 memset(vpath->hw_stats, 0,
4147 sizeof(struct vxge_hw_vpath_stats_hw_info));
4149 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4150 vpath->hw_stats;
4152 vpath->hw_stats_sav =
4153 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4154 memset(vpath->hw_stats_sav, 0,
4155 sizeof(struct vxge_hw_vpath_stats_hw_info));
4157 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4159 status = vxge_hw_vpath_stats_enable(vp);
4160 if (status != VXGE_HW_OK)
4161 goto vpath_open_exit8;
4163 list_add(&vp->item, &vpath->vpath_handles);
4165 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4167 *vpath_handle = vp;
4169 attr->fifo_attr.userdata = vpath->fifoh;
4170 attr->ring_attr.userdata = vpath->ringh;
4172 return VXGE_HW_OK;
4174 vpath_open_exit8:
4175 if (vpath->ringh != NULL)
4176 __vxge_hw_ring_delete(vp);
4177 vpath_open_exit7:
4178 if (vpath->fifoh != NULL)
4179 __vxge_hw_fifo_delete(vp);
4180 vpath_open_exit6:
4181 vfree(vp);
4182 vpath_open_exit2:
4183 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4184 vpath_open_exit1:
4186 return status;
4190 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4191 * (vpath) open
4192 * @vp: Handle got from previous vpath open
4194 * This function is used to close access to virtual path opened
4195 * earlier.
4197 void
4198 vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4200 struct __vxge_hw_virtualpath *vpath = NULL;
4201 u64 new_count, val64, val164;
4202 struct __vxge_hw_ring *ring;
4204 vpath = vp->vpath;
4205 ring = vpath->ringh;
4207 new_count = readq(&vpath->vp_reg->rxdmem_size);
4208 new_count &= 0x1fff;
4209 val164 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count));
4211 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4212 &vpath->vp_reg->prc_rxd_doorbell);
4213 readl(&vpath->vp_reg->prc_rxd_doorbell);
4215 val164 /= 2;
4216 val64 = readq(&vpath->vp_reg->prc_cfg6);
4217 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4218 val64 &= 0x1ff;
4221 * Each RxD is of 4 qwords
4223 new_count -= (val64 + 1);
4224 val64 = min(val164, new_count) / 4;
4226 ring->rxds_limit = min(ring->rxds_limit, val64);
4227 if (ring->rxds_limit < 4)
4228 ring->rxds_limit = 4;
4232 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4233 * This function is used to close access to virtual path opened
4234 * earlier.
4236 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4238 struct __vxge_hw_virtualpath *vpath = NULL;
4239 struct __vxge_hw_device *devh = NULL;
4240 u32 vp_id = vp->vpath->vp_id;
4241 u32 is_empty = TRUE;
4242 enum vxge_hw_status status = VXGE_HW_OK;
4244 vpath = vp->vpath;
4245 devh = vpath->hldev;
4247 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4248 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4249 goto vpath_close_exit;
4252 list_del(&vp->item);
4254 if (!list_empty(&vpath->vpath_handles)) {
4255 list_add(&vp->item, &vpath->vpath_handles);
4256 is_empty = FALSE;
4259 if (!is_empty) {
4260 status = VXGE_HW_FAIL;
4261 goto vpath_close_exit;
4264 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4266 if (vpath->ringh != NULL)
4267 __vxge_hw_ring_delete(vp);
4269 if (vpath->fifoh != NULL)
4270 __vxge_hw_fifo_delete(vp);
4272 if (vpath->stats_block != NULL)
4273 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
4275 vfree(vp);
4277 __vxge_hw_vp_terminate(devh, vp_id);
4279 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4281 vpath_close_exit:
4282 return status;
4286 * vxge_hw_vpath_reset - Resets vpath
4287 * This function is used to request a reset of vpath
4289 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
4291 enum vxge_hw_status status;
4292 u32 vp_id;
4293 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4295 vp_id = vpath->vp_id;
4297 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4298 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4299 goto exit;
4302 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
4303 if (status == VXGE_HW_OK)
4304 vpath->sw_stats->soft_reset_cnt++;
4305 exit:
4306 return status;
4310 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
4311 * This function poll's for the vpath reset completion and re initializes
4312 * the vpath.
4314 enum vxge_hw_status
4315 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
4317 struct __vxge_hw_virtualpath *vpath = NULL;
4318 enum vxge_hw_status status;
4319 struct __vxge_hw_device *hldev;
4320 u32 vp_id;
4322 vp_id = vp->vpath->vp_id;
4323 vpath = vp->vpath;
4324 hldev = vpath->hldev;
4326 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4327 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4328 goto exit;
4331 status = __vxge_hw_vpath_reset_check(vpath);
4332 if (status != VXGE_HW_OK)
4333 goto exit;
4335 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
4336 if (status != VXGE_HW_OK)
4337 goto exit;
4339 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4340 if (status != VXGE_HW_OK)
4341 goto exit;
4343 if (vpath->ringh != NULL)
4344 __vxge_hw_vpath_prc_configure(hldev, vp_id);
4346 memset(vpath->hw_stats, 0,
4347 sizeof(struct vxge_hw_vpath_stats_hw_info));
4349 memset(vpath->hw_stats_sav, 0,
4350 sizeof(struct vxge_hw_vpath_stats_hw_info));
4352 writeq(vpath->stats_block->dma_addr,
4353 &vpath->vp_reg->stats_cfg);
4355 status = vxge_hw_vpath_stats_enable(vp);
4357 exit:
4358 return status;
4362 * vxge_hw_vpath_enable - Enable vpath.
4363 * This routine clears the vpath reset thereby enabling a vpath
4364 * to start forwarding frames and generating interrupts.
4366 void
4367 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
4369 struct __vxge_hw_device *hldev;
4370 u64 val64;
4372 hldev = vp->vpath->hldev;
4374 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
4375 1 << (16 - vp->vpath->vp_id));
4377 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4378 &hldev->common_reg->cmn_rsthdlr_cfg1);
4382 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4383 * Enable the DMA vpath statistics. The function is to be called to re-enable
4384 * the adapter to update stats into the host memory
4386 enum vxge_hw_status
4387 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4389 enum vxge_hw_status status = VXGE_HW_OK;
4390 struct __vxge_hw_virtualpath *vpath;
4392 vpath = vp->vpath;
4394 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4395 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4396 goto exit;
4399 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4400 sizeof(struct vxge_hw_vpath_stats_hw_info));
4402 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4403 exit:
4404 return status;
4408 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
4409 * and offset and perform an operation
4411 enum vxge_hw_status
4412 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
4413 u32 operation, u32 offset, u64 *stat)
4415 u64 val64;
4416 enum vxge_hw_status status = VXGE_HW_OK;
4417 struct vxge_hw_vpath_reg __iomem *vp_reg;
4419 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4420 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4421 goto vpath_stats_access_exit;
4424 vp_reg = vpath->vp_reg;
4426 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
4427 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
4428 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
4430 status = __vxge_hw_pio_mem_write64(val64,
4431 &vp_reg->xmac_stats_access_cmd,
4432 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
4433 vpath->hldev->config.device_poll_millis);
4435 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
4436 *stat = readq(&vp_reg->xmac_stats_access_data);
4437 else
4438 *stat = 0;
4440 vpath_stats_access_exit:
4441 return status;
4445 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
4447 enum vxge_hw_status
4448 __vxge_hw_vpath_xmac_tx_stats_get(
4449 struct __vxge_hw_virtualpath *vpath,
4450 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
4452 u64 *val64;
4453 int i;
4454 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
4455 enum vxge_hw_status status = VXGE_HW_OK;
4457 val64 = (u64 *) vpath_tx_stats;
4459 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4460 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4461 goto exit;
4464 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
4465 status = __vxge_hw_vpath_stats_access(vpath,
4466 VXGE_HW_STATS_OP_READ,
4467 offset, val64);
4468 if (status != VXGE_HW_OK)
4469 goto exit;
4470 offset++;
4471 val64++;
4473 exit:
4474 return status;
4478 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
4480 enum vxge_hw_status
4481 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
4482 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
4484 u64 *val64;
4485 enum vxge_hw_status status = VXGE_HW_OK;
4486 int i;
4487 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
4488 val64 = (u64 *) vpath_rx_stats;
4490 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4491 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4492 goto exit;
4494 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
4495 status = __vxge_hw_vpath_stats_access(vpath,
4496 VXGE_HW_STATS_OP_READ,
4497 offset >> 3, val64);
4498 if (status != VXGE_HW_OK)
4499 goto exit;
4501 offset += 8;
4502 val64++;
4504 exit:
4505 return status;
4509 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
4511 enum vxge_hw_status __vxge_hw_vpath_stats_get(
4512 struct __vxge_hw_virtualpath *vpath,
4513 struct vxge_hw_vpath_stats_hw_info *hw_stats)
4515 u64 val64;
4516 enum vxge_hw_status status = VXGE_HW_OK;
4517 struct vxge_hw_vpath_reg __iomem *vp_reg;
4519 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4520 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4521 goto exit;
4523 vp_reg = vpath->vp_reg;
4525 val64 = readq(&vp_reg->vpath_debug_stats0);
4526 hw_stats->ini_num_mwr_sent =
4527 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
4529 val64 = readq(&vp_reg->vpath_debug_stats1);
4530 hw_stats->ini_num_mrd_sent =
4531 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
4533 val64 = readq(&vp_reg->vpath_debug_stats2);
4534 hw_stats->ini_num_cpl_rcvd =
4535 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
4537 val64 = readq(&vp_reg->vpath_debug_stats3);
4538 hw_stats->ini_num_mwr_byte_sent =
4539 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
4541 val64 = readq(&vp_reg->vpath_debug_stats4);
4542 hw_stats->ini_num_cpl_byte_rcvd =
4543 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
4545 val64 = readq(&vp_reg->vpath_debug_stats5);
4546 hw_stats->wrcrdtarb_xoff =
4547 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
4549 val64 = readq(&vp_reg->vpath_debug_stats6);
4550 hw_stats->rdcrdtarb_xoff =
4551 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
4553 val64 = readq(&vp_reg->vpath_genstats_count01);
4554 hw_stats->vpath_genstats_count0 =
4555 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
4556 val64);
4558 val64 = readq(&vp_reg->vpath_genstats_count01);
4559 hw_stats->vpath_genstats_count1 =
4560 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
4561 val64);
4563 val64 = readq(&vp_reg->vpath_genstats_count23);
4564 hw_stats->vpath_genstats_count2 =
4565 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
4566 val64);
4568 val64 = readq(&vp_reg->vpath_genstats_count01);
4569 hw_stats->vpath_genstats_count3 =
4570 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
4571 val64);
4573 val64 = readq(&vp_reg->vpath_genstats_count4);
4574 hw_stats->vpath_genstats_count4 =
4575 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
4576 val64);
4578 val64 = readq(&vp_reg->vpath_genstats_count5);
4579 hw_stats->vpath_genstats_count5 =
4580 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
4581 val64);
4583 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
4584 if (status != VXGE_HW_OK)
4585 goto exit;
4587 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
4588 if (status != VXGE_HW_OK)
4589 goto exit;
4591 VXGE_HW_VPATH_STATS_PIO_READ(
4592 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
4594 hw_stats->prog_event_vnum0 =
4595 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
4597 hw_stats->prog_event_vnum1 =
4598 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
4600 VXGE_HW_VPATH_STATS_PIO_READ(
4601 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
4603 hw_stats->prog_event_vnum2 =
4604 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
4606 hw_stats->prog_event_vnum3 =
4607 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
4609 val64 = readq(&vp_reg->rx_multi_cast_stats);
4610 hw_stats->rx_multi_cast_frame_discard =
4611 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
4613 val64 = readq(&vp_reg->rx_frm_transferred);
4614 hw_stats->rx_frm_transferred =
4615 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
4617 val64 = readq(&vp_reg->rxd_returned);
4618 hw_stats->rxd_returned =
4619 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
4621 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
4622 hw_stats->rx_mpa_len_fail_frms =
4623 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
4624 hw_stats->rx_mpa_mrk_fail_frms =
4625 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
4626 hw_stats->rx_mpa_crc_fail_frms =
4627 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
4629 val64 = readq(&vp_reg->dbg_stats_rx_fau);
4630 hw_stats->rx_permitted_frms =
4631 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
4632 hw_stats->rx_vp_reset_discarded_frms =
4633 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
4634 hw_stats->rx_wol_frms =
4635 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
4637 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
4638 hw_stats->tx_vp_reset_discarded_frms =
4639 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
4640 val64);
4641 exit:
4642 return status;
4646 * __vxge_hw_blockpool_create - Create block pool
4649 enum vxge_hw_status
4650 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
4651 struct __vxge_hw_blockpool *blockpool,
4652 u32 pool_size,
4653 u32 pool_max)
4655 u32 i;
4656 struct __vxge_hw_blockpool_entry *entry = NULL;
4657 void *memblock;
4658 dma_addr_t dma_addr;
4659 struct pci_dev *dma_handle;
4660 struct pci_dev *acc_handle;
4661 enum vxge_hw_status status = VXGE_HW_OK;
4663 if (blockpool == NULL) {
4664 status = VXGE_HW_FAIL;
4665 goto blockpool_create_exit;
4668 blockpool->hldev = hldev;
4669 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
4670 blockpool->pool_size = 0;
4671 blockpool->pool_max = pool_max;
4672 blockpool->req_out = 0;
4674 INIT_LIST_HEAD(&blockpool->free_block_list);
4675 INIT_LIST_HEAD(&blockpool->free_entry_list);
4677 for (i = 0; i < pool_size + pool_max; i++) {
4678 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4679 GFP_KERNEL);
4680 if (entry == NULL) {
4681 __vxge_hw_blockpool_destroy(blockpool);
4682 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4683 goto blockpool_create_exit;
4685 list_add(&entry->item, &blockpool->free_entry_list);
4688 for (i = 0; i < pool_size; i++) {
4690 memblock = vxge_os_dma_malloc(
4691 hldev->pdev,
4692 VXGE_HW_BLOCK_SIZE,
4693 &dma_handle,
4694 &acc_handle);
4696 if (memblock == NULL) {
4697 __vxge_hw_blockpool_destroy(blockpool);
4698 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4699 goto blockpool_create_exit;
4702 dma_addr = pci_map_single(hldev->pdev, memblock,
4703 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
4705 if (unlikely(pci_dma_mapping_error(hldev->pdev,
4706 dma_addr))) {
4708 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
4709 __vxge_hw_blockpool_destroy(blockpool);
4710 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4711 goto blockpool_create_exit;
4714 if (!list_empty(&blockpool->free_entry_list))
4715 entry = (struct __vxge_hw_blockpool_entry *)
4716 list_first_entry(&blockpool->free_entry_list,
4717 struct __vxge_hw_blockpool_entry,
4718 item);
4720 if (entry == NULL)
4721 entry =
4722 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4723 GFP_KERNEL);
4724 if (entry != NULL) {
4725 list_del(&entry->item);
4726 entry->length = VXGE_HW_BLOCK_SIZE;
4727 entry->memblock = memblock;
4728 entry->dma_addr = dma_addr;
4729 entry->acc_handle = acc_handle;
4730 entry->dma_handle = dma_handle;
4731 list_add(&entry->item,
4732 &blockpool->free_block_list);
4733 blockpool->pool_size++;
4734 } else {
4735 __vxge_hw_blockpool_destroy(blockpool);
4736 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4737 goto blockpool_create_exit;
4741 blockpool_create_exit:
4742 return status;
4746 * __vxge_hw_blockpool_destroy - Deallocates the block pool
4749 void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
4752 struct __vxge_hw_device *hldev;
4753 struct list_head *p, *n;
4754 u16 ret;
4756 if (blockpool == NULL) {
4757 ret = 1;
4758 goto exit;
4761 hldev = blockpool->hldev;
4763 list_for_each_safe(p, n, &blockpool->free_block_list) {
4765 pci_unmap_single(hldev->pdev,
4766 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4767 ((struct __vxge_hw_blockpool_entry *)p)->length,
4768 PCI_DMA_BIDIRECTIONAL);
4770 vxge_os_dma_free(hldev->pdev,
4771 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4772 &((struct __vxge_hw_blockpool_entry *) p)->acc_handle);
4774 list_del(
4775 &((struct __vxge_hw_blockpool_entry *)p)->item);
4776 kfree(p);
4777 blockpool->pool_size--;
4780 list_for_each_safe(p, n, &blockpool->free_entry_list) {
4781 list_del(
4782 &((struct __vxge_hw_blockpool_entry *)p)->item);
4783 kfree((void *)p);
4785 ret = 0;
4786 exit:
4787 return;
4791 * __vxge_hw_blockpool_blocks_add - Request additional blocks
4793 static
4794 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
4796 u32 nreq = 0, i;
4798 if ((blockpool->pool_size + blockpool->req_out) <
4799 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
4800 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
4801 blockpool->req_out += nreq;
4804 for (i = 0; i < nreq; i++)
4805 vxge_os_dma_malloc_async(
4806 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4807 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
4811 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
4813 static
4814 void __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
4816 struct list_head *p, *n;
4818 list_for_each_safe(p, n, &blockpool->free_block_list) {
4820 if (blockpool->pool_size < blockpool->pool_max)
4821 break;
4823 pci_unmap_single(
4824 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4825 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4826 ((struct __vxge_hw_blockpool_entry *)p)->length,
4827 PCI_DMA_BIDIRECTIONAL);
4829 vxge_os_dma_free(
4830 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4831 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4832 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
4834 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
4836 list_add(p, &blockpool->free_entry_list);
4838 blockpool->pool_size--;
4844 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
4845 * Adds a block to block pool
4847 void vxge_hw_blockpool_block_add(
4848 struct __vxge_hw_device *devh,
4849 void *block_addr,
4850 u32 length,
4851 struct pci_dev *dma_h,
4852 struct pci_dev *acc_handle)
4854 struct __vxge_hw_blockpool *blockpool;
4855 struct __vxge_hw_blockpool_entry *entry = NULL;
4856 dma_addr_t dma_addr;
4857 enum vxge_hw_status status = VXGE_HW_OK;
4858 u32 req_out;
4860 blockpool = &devh->block_pool;
4862 if (block_addr == NULL) {
4863 blockpool->req_out--;
4864 status = VXGE_HW_FAIL;
4865 goto exit;
4868 dma_addr = pci_map_single(devh->pdev, block_addr, length,
4869 PCI_DMA_BIDIRECTIONAL);
4871 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
4873 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
4874 blockpool->req_out--;
4875 status = VXGE_HW_FAIL;
4876 goto exit;
4880 if (!list_empty(&blockpool->free_entry_list))
4881 entry = (struct __vxge_hw_blockpool_entry *)
4882 list_first_entry(&blockpool->free_entry_list,
4883 struct __vxge_hw_blockpool_entry,
4884 item);
4886 if (entry == NULL)
4887 entry = (struct __vxge_hw_blockpool_entry *)
4888 vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
4889 else
4890 list_del(&entry->item);
4892 if (entry != NULL) {
4893 entry->length = length;
4894 entry->memblock = block_addr;
4895 entry->dma_addr = dma_addr;
4896 entry->acc_handle = acc_handle;
4897 entry->dma_handle = dma_h;
4898 list_add(&entry->item, &blockpool->free_block_list);
4899 blockpool->pool_size++;
4900 status = VXGE_HW_OK;
4901 } else
4902 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4904 blockpool->req_out--;
4906 req_out = blockpool->req_out;
4907 exit:
4908 return;
4912 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
4913 * Allocates a block of memory of given size, either from block pool
4914 * or by calling vxge_os_dma_malloc()
4916 void *
4917 __vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
4918 struct vxge_hw_mempool_dma *dma_object)
4920 struct __vxge_hw_blockpool_entry *entry = NULL;
4921 struct __vxge_hw_blockpool *blockpool;
4922 void *memblock = NULL;
4923 enum vxge_hw_status status = VXGE_HW_OK;
4925 blockpool = &devh->block_pool;
4927 if (size != blockpool->block_size) {
4929 memblock = vxge_os_dma_malloc(devh->pdev, size,
4930 &dma_object->handle,
4931 &dma_object->acc_handle);
4933 if (memblock == NULL) {
4934 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4935 goto exit;
4938 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
4939 PCI_DMA_BIDIRECTIONAL);
4941 if (unlikely(pci_dma_mapping_error(devh->pdev,
4942 dma_object->addr))) {
4943 vxge_os_dma_free(devh->pdev, memblock,
4944 &dma_object->acc_handle);
4945 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4946 goto exit;
4949 } else {
4951 if (!list_empty(&blockpool->free_block_list))
4952 entry = (struct __vxge_hw_blockpool_entry *)
4953 list_first_entry(&blockpool->free_block_list,
4954 struct __vxge_hw_blockpool_entry,
4955 item);
4957 if (entry != NULL) {
4958 list_del(&entry->item);
4959 dma_object->addr = entry->dma_addr;
4960 dma_object->handle = entry->dma_handle;
4961 dma_object->acc_handle = entry->acc_handle;
4962 memblock = entry->memblock;
4964 list_add(&entry->item,
4965 &blockpool->free_entry_list);
4966 blockpool->pool_size--;
4969 if (memblock != NULL)
4970 __vxge_hw_blockpool_blocks_add(blockpool);
4972 exit:
4973 return memblock;
4977 * __vxge_hw_blockpool_free - Frees the memory allcoated with
4978 __vxge_hw_blockpool_malloc
4980 void
4981 __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
4982 void *memblock, u32 size,
4983 struct vxge_hw_mempool_dma *dma_object)
4985 struct __vxge_hw_blockpool_entry *entry = NULL;
4986 struct __vxge_hw_blockpool *blockpool;
4987 enum vxge_hw_status status = VXGE_HW_OK;
4989 blockpool = &devh->block_pool;
4991 if (size != blockpool->block_size) {
4992 pci_unmap_single(devh->pdev, dma_object->addr, size,
4993 PCI_DMA_BIDIRECTIONAL);
4994 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
4995 } else {
4997 if (!list_empty(&blockpool->free_entry_list))
4998 entry = (struct __vxge_hw_blockpool_entry *)
4999 list_first_entry(&blockpool->free_entry_list,
5000 struct __vxge_hw_blockpool_entry,
5001 item);
5003 if (entry == NULL)
5004 entry = (struct __vxge_hw_blockpool_entry *)
5005 vmalloc(sizeof(
5006 struct __vxge_hw_blockpool_entry));
5007 else
5008 list_del(&entry->item);
5010 if (entry != NULL) {
5011 entry->length = size;
5012 entry->memblock = memblock;
5013 entry->dma_addr = dma_object->addr;
5014 entry->acc_handle = dma_object->acc_handle;
5015 entry->dma_handle = dma_object->handle;
5016 list_add(&entry->item,
5017 &blockpool->free_block_list);
5018 blockpool->pool_size++;
5019 status = VXGE_HW_OK;
5020 } else
5021 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5023 if (status == VXGE_HW_OK)
5024 __vxge_hw_blockpool_blocks_remove(blockpool);
5029 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
5030 * This function allocates a block from block pool or from the system
5032 struct __vxge_hw_blockpool_entry *
5033 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
5035 struct __vxge_hw_blockpool_entry *entry = NULL;
5036 struct __vxge_hw_blockpool *blockpool;
5038 blockpool = &devh->block_pool;
5040 if (size == blockpool->block_size) {
5042 if (!list_empty(&blockpool->free_block_list))
5043 entry = (struct __vxge_hw_blockpool_entry *)
5044 list_first_entry(&blockpool->free_block_list,
5045 struct __vxge_hw_blockpool_entry,
5046 item);
5048 if (entry != NULL) {
5049 list_del(&entry->item);
5050 blockpool->pool_size--;
5054 if (entry != NULL)
5055 __vxge_hw_blockpool_blocks_add(blockpool);
5057 return entry;
5061 * __vxge_hw_blockpool_block_free - Frees a block from block pool
5062 * @devh: Hal device
5063 * @entry: Entry of block to be freed
5065 * This function frees a block from block pool
5067 void
5068 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
5069 struct __vxge_hw_blockpool_entry *entry)
5071 struct __vxge_hw_blockpool *blockpool;
5073 blockpool = &devh->block_pool;
5075 if (entry->length == blockpool->block_size) {
5076 list_add(&entry->item, &blockpool->free_block_list);
5077 blockpool->pool_size++;
5080 __vxge_hw_blockpool_blocks_remove(blockpool);