GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / sfc / nic.c
blobf595d920c7c46b323f0a778e58c0984a19839be6
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
17 #include "bitfield.h"
18 #include "efx.h"
19 #include "nic.h"
20 #include "regs.h"
21 #include "io.h"
22 #include "workarounds.h"
24 /**************************************************************************
26 * Configurable values
28 **************************************************************************
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
36 * goes idle.
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
44 /* RX FIFO XOFF watermark
46 * When the amount of the RX FIFO increases used increases past this
47 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
48 * This also has an effect on RX/TX arbitration
50 int efx_nic_rx_xoff_thresh = -1;
51 module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
52 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
54 /* RX FIFO XON watermark
56 * When the amount of the RX FIFO used decreases below this
57 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
58 * This also has an effect on RX/TX arbitration
60 int efx_nic_rx_xon_thresh = -1;
61 module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
62 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
64 /* If EFX_MAX_INT_ERRORS internal errors occur within
65 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
66 * disable it.
68 #define EFX_INT_ERROR_EXPIRE 3600
69 #define EFX_MAX_INT_ERRORS 5
71 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
73 #define EFX_FLUSH_INTERVAL 10
74 #define EFX_FLUSH_POLL_COUNT 100
76 /* Size and alignment of special buffers (4KB) */
77 #define EFX_BUF_SIZE 4096
79 /* Depth of RX flush request fifo */
80 #define EFX_RX_FLUSH_COUNT 4
82 /* Generated event code for efx_generate_test_event() */
83 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
84 (0x00010100 + (_channel)->channel)
86 /* Generated event code for efx_generate_fill_event() */
87 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
88 (0x00010200 + (_channel)->channel)
90 /**************************************************************************
92 * Solarstorm hardware access
94 **************************************************************************/
96 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
97 unsigned int index)
99 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
100 value, index);
103 /* Read the current event from the event queue */
104 static inline efx_qword_t *efx_event(struct efx_channel *channel,
105 unsigned int index)
107 return (((efx_qword_t *) (channel->eventq.addr)) + index);
110 /* See if an event is present
112 * We check both the high and low dword of the event for all ones. We
113 * wrote all ones when we cleared the event, and no valid event can
114 * have all ones in either its high or low dwords. This approach is
115 * robust against reordering.
117 * Note that using a single 64-bit comparison is incorrect; even
118 * though the CPU read will be atomic, the DMA write may not be.
120 static inline int efx_event_present(efx_qword_t *event)
122 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
123 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
126 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
127 const efx_oword_t *mask)
129 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
130 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
133 int efx_nic_test_registers(struct efx_nic *efx,
134 const struct efx_nic_register_test *regs,
135 size_t n_regs)
137 unsigned address = 0, i, j;
138 efx_oword_t mask, imask, original, reg, buf;
140 /* Falcon should be in loopback to isolate the XMAC from the PHY */
141 WARN_ON(!LOOPBACK_INTERNAL(efx));
143 for (i = 0; i < n_regs; ++i) {
144 address = regs[i].address;
145 mask = imask = regs[i].mask;
146 EFX_INVERT_OWORD(imask);
148 efx_reado(efx, &original, address);
150 /* bit sweep on and off */
151 for (j = 0; j < 128; j++) {
152 if (!EFX_EXTRACT_OWORD32(mask, j, j))
153 continue;
155 /* Test this testable bit can be set in isolation */
156 EFX_AND_OWORD(reg, original, mask);
157 EFX_SET_OWORD32(reg, j, j, 1);
159 efx_writeo(efx, &reg, address);
160 efx_reado(efx, &buf, address);
162 if (efx_masked_compare_oword(&reg, &buf, &mask))
163 goto fail;
165 /* Test this testable bit can be cleared in isolation */
166 EFX_OR_OWORD(reg, original, mask);
167 EFX_SET_OWORD32(reg, j, j, 0);
169 efx_writeo(efx, &reg, address);
170 efx_reado(efx, &buf, address);
172 if (efx_masked_compare_oword(&reg, &buf, &mask))
173 goto fail;
176 efx_writeo(efx, &original, address);
179 return 0;
181 fail:
182 netif_err(efx, hw, efx->net_dev,
183 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
184 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
185 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
186 return -EIO;
189 /**************************************************************************
191 * Special buffer handling
192 * Special buffers are used for event queues and the TX and RX
193 * descriptor rings.
195 *************************************************************************/
198 * Initialise a special buffer
200 * This will define a buffer (previously allocated via
201 * efx_alloc_special_buffer()) in the buffer table, allowing
202 * it to be used for event queues, descriptor rings etc.
204 static void
205 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
207 efx_qword_t buf_desc;
208 int index;
209 dma_addr_t dma_addr;
210 int i;
212 EFX_BUG_ON_PARANOID(!buffer->addr);
214 /* Write buffer descriptors to NIC */
215 for (i = 0; i < buffer->entries; i++) {
216 index = buffer->index + i;
217 dma_addr = buffer->dma_addr + (i * 4096);
218 netif_dbg(efx, probe, efx->net_dev,
219 "mapping special buffer %d at %llx\n",
220 index, (unsigned long long)dma_addr);
221 EFX_POPULATE_QWORD_3(buf_desc,
222 FRF_AZ_BUF_ADR_REGION, 0,
223 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
224 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
225 efx_write_buf_tbl(efx, &buf_desc, index);
229 /* Unmaps a buffer and clears the buffer table entries */
230 static void
231 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
233 efx_oword_t buf_tbl_upd;
234 unsigned int start = buffer->index;
235 unsigned int end = (buffer->index + buffer->entries - 1);
237 if (!buffer->entries)
238 return;
240 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
241 buffer->index, buffer->index + buffer->entries - 1);
243 EFX_POPULATE_OWORD_4(buf_tbl_upd,
244 FRF_AZ_BUF_UPD_CMD, 0,
245 FRF_AZ_BUF_CLR_CMD, 1,
246 FRF_AZ_BUF_CLR_END_ID, end,
247 FRF_AZ_BUF_CLR_START_ID, start);
248 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
252 * Allocate a new special buffer
254 * This allocates memory for a new buffer, clears it and allocates a
255 * new buffer ID range. It does not write into the buffer table.
257 * This call will allocate 4KB buffers, since 8KB buffers can't be
258 * used for event queues and descriptor rings.
260 static int efx_alloc_special_buffer(struct efx_nic *efx,
261 struct efx_special_buffer *buffer,
262 unsigned int len)
264 len = ALIGN(len, EFX_BUF_SIZE);
266 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
267 &buffer->dma_addr);
268 if (!buffer->addr)
269 return -ENOMEM;
270 buffer->len = len;
271 buffer->entries = len / EFX_BUF_SIZE;
272 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
274 /* All zeros is a potentially valid event so memset to 0xff */
275 memset(buffer->addr, 0xff, len);
277 /* Select new buffer ID */
278 buffer->index = efx->next_buffer_table;
279 efx->next_buffer_table += buffer->entries;
281 netif_dbg(efx, probe, efx->net_dev,
282 "allocating special buffers %d-%d at %llx+%x "
283 "(virt %p phys %llx)\n", buffer->index,
284 buffer->index + buffer->entries - 1,
285 (u64)buffer->dma_addr, len,
286 buffer->addr, (u64)virt_to_phys(buffer->addr));
288 return 0;
291 static void
292 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
294 if (!buffer->addr)
295 return;
297 netif_dbg(efx, hw, efx->net_dev,
298 "deallocating special buffers %d-%d at %llx+%x "
299 "(virt %p phys %llx)\n", buffer->index,
300 buffer->index + buffer->entries - 1,
301 (u64)buffer->dma_addr, buffer->len,
302 buffer->addr, (u64)virt_to_phys(buffer->addr));
304 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
305 buffer->dma_addr);
306 buffer->addr = NULL;
307 buffer->entries = 0;
310 /**************************************************************************
312 * Generic buffer handling
313 * These buffers are used for interrupt status and MAC stats
315 **************************************************************************/
317 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
318 unsigned int len)
320 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
321 &buffer->dma_addr);
322 if (!buffer->addr)
323 return -ENOMEM;
324 buffer->len = len;
325 memset(buffer->addr, 0, len);
326 return 0;
329 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
331 if (buffer->addr) {
332 pci_free_consistent(efx->pci_dev, buffer->len,
333 buffer->addr, buffer->dma_addr);
334 buffer->addr = NULL;
338 /**************************************************************************
340 * TX path
342 **************************************************************************/
344 /* Returns a pointer to the specified transmit descriptor in the TX
345 * descriptor queue belonging to the specified channel.
347 static inline efx_qword_t *
348 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
350 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
353 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
354 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
356 unsigned write_ptr;
357 efx_dword_t reg;
359 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
360 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
361 efx_writed_page(tx_queue->efx, &reg,
362 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
366 /* For each entry inserted into the software descriptor ring, create a
367 * descriptor in the hardware TX descriptor ring (in host memory), and
368 * write a doorbell.
370 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
373 struct efx_tx_buffer *buffer;
374 efx_qword_t *txd;
375 unsigned write_ptr;
377 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
379 do {
380 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
381 buffer = &tx_queue->buffer[write_ptr];
382 txd = efx_tx_desc(tx_queue, write_ptr);
383 ++tx_queue->write_count;
385 /* Create TX descriptor ring entry */
386 EFX_POPULATE_QWORD_4(*txd,
387 FSF_AZ_TX_KER_CONT, buffer->continuation,
388 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
389 FSF_AZ_TX_KER_BUF_REGION, 0,
390 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
391 } while (tx_queue->write_count != tx_queue->insert_count);
393 wmb(); /* Ensure descriptors are written before they are fetched */
394 efx_notify_tx_desc(tx_queue);
397 /* Allocate hardware resources for a TX queue */
398 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
400 struct efx_nic *efx = tx_queue->efx;
401 BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
402 EFX_TXQ_SIZE & EFX_TXQ_MASK);
403 return efx_alloc_special_buffer(efx, &tx_queue->txd,
404 EFX_TXQ_SIZE * sizeof(efx_qword_t));
407 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
409 efx_oword_t tx_desc_ptr;
410 struct efx_nic *efx = tx_queue->efx;
412 tx_queue->flushed = FLUSH_NONE;
414 /* Pin TX descriptor ring */
415 efx_init_special_buffer(efx, &tx_queue->txd);
417 /* Push TX descriptor ring to card */
418 EFX_POPULATE_OWORD_10(tx_desc_ptr,
419 FRF_AZ_TX_DESCQ_EN, 1,
420 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
421 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
422 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
423 FRF_AZ_TX_DESCQ_EVQ_ID,
424 tx_queue->channel->channel,
425 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
426 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
427 FRF_AZ_TX_DESCQ_SIZE,
428 __ffs(tx_queue->txd.entries),
429 FRF_AZ_TX_DESCQ_TYPE, 0,
430 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
432 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
433 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
434 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
435 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
436 !csum);
439 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
440 tx_queue->queue);
442 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
443 efx_oword_t reg;
445 /* Only 128 bits in this register */
446 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
448 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
449 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
450 clear_bit_le(tx_queue->queue, (void *)&reg);
451 else
452 set_bit_le(tx_queue->queue, (void *)&reg);
453 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
457 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
459 struct efx_nic *efx = tx_queue->efx;
460 efx_oword_t tx_flush_descq;
462 tx_queue->flushed = FLUSH_PENDING;
464 /* Post a flush command */
465 EFX_POPULATE_OWORD_2(tx_flush_descq,
466 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
467 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
468 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
471 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
473 struct efx_nic *efx = tx_queue->efx;
474 efx_oword_t tx_desc_ptr;
476 /* The queue should have been flushed */
477 WARN_ON(tx_queue->flushed != FLUSH_DONE);
479 /* Remove TX descriptor ring from card */
480 EFX_ZERO_OWORD(tx_desc_ptr);
481 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
482 tx_queue->queue);
484 /* Unpin TX descriptor ring */
485 efx_fini_special_buffer(efx, &tx_queue->txd);
488 /* Free buffers backing TX queue */
489 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
491 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
494 /**************************************************************************
496 * RX path
498 **************************************************************************/
500 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
501 static inline efx_qword_t *
502 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
504 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
507 /* This creates an entry in the RX descriptor queue */
508 static inline void
509 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
511 struct efx_rx_buffer *rx_buf;
512 efx_qword_t *rxd;
514 rxd = efx_rx_desc(rx_queue, index);
515 rx_buf = efx_rx_buffer(rx_queue, index);
516 EFX_POPULATE_QWORD_3(*rxd,
517 FSF_AZ_RX_KER_BUF_SIZE,
518 rx_buf->len -
519 rx_queue->efx->type->rx_buffer_padding,
520 FSF_AZ_RX_KER_BUF_REGION, 0,
521 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
524 /* This writes to the RX_DESC_WPTR register for the specified receive
525 * descriptor ring.
527 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
529 efx_dword_t reg;
530 unsigned write_ptr;
532 while (rx_queue->notified_count != rx_queue->added_count) {
533 efx_build_rx_desc(rx_queue,
534 rx_queue->notified_count &
535 EFX_RXQ_MASK);
536 ++rx_queue->notified_count;
539 wmb();
540 write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
541 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
542 efx_writed_page(rx_queue->efx, &reg,
543 FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
546 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
548 struct efx_nic *efx = rx_queue->efx;
549 BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
550 EFX_RXQ_SIZE & EFX_RXQ_MASK);
551 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
552 EFX_RXQ_SIZE * sizeof(efx_qword_t));
555 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
557 efx_oword_t rx_desc_ptr;
558 struct efx_nic *efx = rx_queue->efx;
559 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
560 bool iscsi_digest_en = is_b0;
562 netif_dbg(efx, hw, efx->net_dev,
563 "RX queue %d ring in special buffers %d-%d\n",
564 rx_queue->queue, rx_queue->rxd.index,
565 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
567 rx_queue->flushed = FLUSH_NONE;
569 /* Pin RX descriptor ring */
570 efx_init_special_buffer(efx, &rx_queue->rxd);
572 /* Push RX descriptor ring to card */
573 EFX_POPULATE_OWORD_10(rx_desc_ptr,
574 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
575 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
576 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
577 FRF_AZ_RX_DESCQ_EVQ_ID,
578 rx_queue->channel->channel,
579 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
580 FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
581 FRF_AZ_RX_DESCQ_SIZE,
582 __ffs(rx_queue->rxd.entries),
583 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
584 /* For >=B0 this is scatter so disable */
585 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
586 FRF_AZ_RX_DESCQ_EN, 1);
587 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
588 rx_queue->queue);
591 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
593 struct efx_nic *efx = rx_queue->efx;
594 efx_oword_t rx_flush_descq;
596 rx_queue->flushed = FLUSH_PENDING;
598 /* Post a flush command */
599 EFX_POPULATE_OWORD_2(rx_flush_descq,
600 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
601 FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
602 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
605 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
607 efx_oword_t rx_desc_ptr;
608 struct efx_nic *efx = rx_queue->efx;
610 /* The queue should already have been flushed */
611 WARN_ON(rx_queue->flushed != FLUSH_DONE);
613 /* Remove RX descriptor ring from card */
614 EFX_ZERO_OWORD(rx_desc_ptr);
615 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
616 rx_queue->queue);
618 /* Unpin RX descriptor ring */
619 efx_fini_special_buffer(efx, &rx_queue->rxd);
622 /* Free buffers backing RX queue */
623 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
625 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
628 /**************************************************************************
630 * Event queue processing
631 * Event queues are processed by per-channel tasklets.
633 **************************************************************************/
635 /* Update a channel's event queue's read pointer (RPTR) register
637 * This writes the EVQ_RPTR_REG register for the specified channel's
638 * event queue.
640 void efx_nic_eventq_read_ack(struct efx_channel *channel)
642 efx_dword_t reg;
643 struct efx_nic *efx = channel->efx;
645 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
646 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
647 channel->channel);
650 /* Use HW to insert a SW defined event */
651 void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
653 efx_oword_t drv_ev_reg;
655 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
656 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
657 drv_ev_reg.u32[0] = event->u32[0];
658 drv_ev_reg.u32[1] = event->u32[1];
659 drv_ev_reg.u32[2] = 0;
660 drv_ev_reg.u32[3] = 0;
661 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
662 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
665 /* Handle a transmit completion event
667 * The NIC batches TX completion events; the message we receive is of
668 * the form "complete all TX events up to this index".
670 static int
671 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
673 unsigned int tx_ev_desc_ptr;
674 unsigned int tx_ev_q_label;
675 struct efx_tx_queue *tx_queue;
676 struct efx_nic *efx = channel->efx;
677 int tx_packets = 0;
679 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
680 /* Transmit completion */
681 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
682 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
683 tx_queue = &efx->tx_queue[tx_ev_q_label];
684 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
685 EFX_TXQ_MASK);
686 channel->irq_mod_score += tx_packets;
687 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
688 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
689 /* Rewrite the FIFO write pointer */
690 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
691 tx_queue = &efx->tx_queue[tx_ev_q_label];
693 if (efx_dev_registered(efx))
694 netif_tx_lock(efx->net_dev);
695 efx_notify_tx_desc(tx_queue);
696 if (efx_dev_registered(efx))
697 netif_tx_unlock(efx->net_dev);
698 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
699 EFX_WORKAROUND_10727(efx)) {
700 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
701 } else {
702 netif_err(efx, tx_err, efx->net_dev,
703 "channel %d unexpected TX event "
704 EFX_QWORD_FMT"\n", channel->channel,
705 EFX_QWORD_VAL(*event));
708 return tx_packets;
711 /* Detect errors included in the rx_evt_pkt_ok bit. */
712 static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
713 const efx_qword_t *event,
714 bool *rx_ev_pkt_ok,
715 bool *discard)
717 struct efx_nic *efx = rx_queue->efx;
718 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
719 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
720 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
721 bool rx_ev_other_err, rx_ev_pause_frm;
722 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
723 unsigned rx_ev_pkt_type;
725 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
726 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
727 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
728 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
729 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
730 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
731 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
732 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
733 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
734 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
735 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
736 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
737 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
738 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
739 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
741 /* Every error apart from tobe_disc and pause_frm */
742 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
743 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
744 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
746 /* Count errors that are not in MAC stats. Ignore expected
747 * checksum errors during self-test. */
748 if (rx_ev_frm_trunc)
749 ++rx_queue->channel->n_rx_frm_trunc;
750 else if (rx_ev_tobe_disc)
751 ++rx_queue->channel->n_rx_tobe_disc;
752 else if (!efx->loopback_selftest) {
753 if (rx_ev_ip_hdr_chksum_err)
754 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
755 else if (rx_ev_tcp_udp_chksum_err)
756 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
759 /* The frame must be discarded if any of these are true. */
760 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
761 rx_ev_tobe_disc | rx_ev_pause_frm);
763 /* TOBE_DISC is expected on unicast mismatches; don't print out an
764 * error message. FRM_TRUNC indicates RXDP dropped the packet due
765 * to a FIFO overflow.
767 #ifdef EFX_ENABLE_DEBUG
768 if (rx_ev_other_err && net_ratelimit()) {
769 netif_dbg(efx, rx_err, efx->net_dev,
770 " RX queue %d unexpected RX event "
771 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
772 rx_queue->queue, EFX_QWORD_VAL(*event),
773 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
774 rx_ev_ip_hdr_chksum_err ?
775 " [IP_HDR_CHKSUM_ERR]" : "",
776 rx_ev_tcp_udp_chksum_err ?
777 " [TCP_UDP_CHKSUM_ERR]" : "",
778 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
779 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
780 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
781 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
782 rx_ev_pause_frm ? " [PAUSE]" : "");
784 #endif
787 /* Handle receive events that are not in-order. */
788 static void
789 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
791 struct efx_nic *efx = rx_queue->efx;
792 unsigned expected, dropped;
794 expected = rx_queue->removed_count & EFX_RXQ_MASK;
795 dropped = (index - expected) & EFX_RXQ_MASK;
796 netif_info(efx, rx_err, efx->net_dev,
797 "dropped %d events (index=%d expected=%d)\n",
798 dropped, index, expected);
800 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
801 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
804 /* Handle a packet received event
806 * The NIC gives a "discard" flag if it's a unicast packet with the
807 * wrong destination address
808 * Also "is multicast" and "matches multicast filter" flags can be used to
809 * discard non-matching multicast packets.
811 static void
812 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
814 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
815 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
816 unsigned expected_ptr;
817 bool rx_ev_pkt_ok, discard = false, checksummed;
818 struct efx_rx_queue *rx_queue;
819 struct efx_nic *efx = channel->efx;
821 /* Basic packet information */
822 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
823 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
824 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
825 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
826 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
827 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
828 channel->channel);
830 rx_queue = &efx->rx_queue[channel->channel];
832 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
833 expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
834 if (unlikely(rx_ev_desc_ptr != expected_ptr))
835 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
837 if (likely(rx_ev_pkt_ok)) {
838 /* If packet is marked as OK and packet type is TCP/IP or
839 * UDP/IP, then we can rely on the hardware checksum.
841 checksummed =
842 likely(efx->rx_checksum_enabled) &&
843 (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
844 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
845 } else {
846 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
847 checksummed = false;
850 /* Detect multicast packets that didn't match the filter */
851 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
852 if (rx_ev_mcast_pkt) {
853 unsigned int rx_ev_mcast_hash_match =
854 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
856 if (unlikely(!rx_ev_mcast_hash_match)) {
857 ++channel->n_rx_mcast_mismatch;
858 discard = true;
862 channel->irq_mod_score += 2;
864 /* Handle received packet */
865 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
866 checksummed, discard);
869 static void
870 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
872 struct efx_nic *efx = channel->efx;
873 unsigned code;
875 code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
876 if (code == EFX_CHANNEL_MAGIC_TEST(channel))
877 ++channel->magic_count;
878 else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
879 /* The queue must be empty, so we won't receive any rx
880 * events, so efx_process_channel() won't refill the
881 * queue. Refill it here */
882 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
883 else
884 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
885 "generated event "EFX_QWORD_FMT"\n",
886 channel->channel, EFX_QWORD_VAL(*event));
889 /* Global events are basically PHY events */
890 static void
891 efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
893 struct efx_nic *efx = channel->efx;
894 bool handled = false;
896 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
897 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
898 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
899 /* Ignored */
900 handled = true;
903 if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
904 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
905 efx->xmac_poll_required = true;
906 handled = true;
909 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
910 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
911 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
912 netif_err(efx, rx_err, efx->net_dev,
913 "channel %d seen global RX_RESET event. Resetting.\n",
914 channel->channel);
916 atomic_inc(&efx->rx_reset);
917 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
918 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
919 handled = true;
922 if (!handled)
923 netif_err(efx, hw, efx->net_dev,
924 "channel %d unknown global event "
925 EFX_QWORD_FMT "\n", channel->channel,
926 EFX_QWORD_VAL(*event));
929 static void
930 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
932 struct efx_nic *efx = channel->efx;
933 unsigned int ev_sub_code;
934 unsigned int ev_sub_data;
936 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
937 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
939 switch (ev_sub_code) {
940 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
941 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
942 channel->channel, ev_sub_data);
943 break;
944 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
945 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
946 channel->channel, ev_sub_data);
947 break;
948 case FSE_AZ_EVQ_INIT_DONE_EV:
949 netif_dbg(efx, hw, efx->net_dev,
950 "channel %d EVQ %d initialised\n",
951 channel->channel, ev_sub_data);
952 break;
953 case FSE_AZ_SRM_UPD_DONE_EV:
954 netif_vdbg(efx, hw, efx->net_dev,
955 "channel %d SRAM update done\n", channel->channel);
956 break;
957 case FSE_AZ_WAKE_UP_EV:
958 netif_vdbg(efx, hw, efx->net_dev,
959 "channel %d RXQ %d wakeup event\n",
960 channel->channel, ev_sub_data);
961 break;
962 case FSE_AZ_TIMER_EV:
963 netif_vdbg(efx, hw, efx->net_dev,
964 "channel %d RX queue %d timer expired\n",
965 channel->channel, ev_sub_data);
966 break;
967 case FSE_AA_RX_RECOVER_EV:
968 netif_err(efx, rx_err, efx->net_dev,
969 "channel %d seen DRIVER RX_RESET event. "
970 "Resetting.\n", channel->channel);
971 atomic_inc(&efx->rx_reset);
972 efx_schedule_reset(efx,
973 EFX_WORKAROUND_6555(efx) ?
974 RESET_TYPE_RX_RECOVERY :
975 RESET_TYPE_DISABLE);
976 break;
977 case FSE_BZ_RX_DSC_ERROR_EV:
978 netif_err(efx, rx_err, efx->net_dev,
979 "RX DMA Q %d reports descriptor fetch error."
980 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
981 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
982 break;
983 case FSE_BZ_TX_DSC_ERROR_EV:
984 netif_err(efx, tx_err, efx->net_dev,
985 "TX DMA Q %d reports descriptor fetch error."
986 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
987 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
988 break;
989 default:
990 netif_vdbg(efx, hw, efx->net_dev,
991 "channel %d unknown driver event code %d "
992 "data %04x\n", channel->channel, ev_sub_code,
993 ev_sub_data);
994 break;
998 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1000 unsigned int read_ptr;
1001 efx_qword_t event, *p_event;
1002 int ev_code;
1003 int tx_packets = 0;
1004 int spent = 0;
1006 read_ptr = channel->eventq_read_ptr;
1008 for (;;) {
1009 p_event = efx_event(channel, read_ptr);
1010 event = *p_event;
1012 if (!efx_event_present(&event))
1013 /* End of events */
1014 break;
1016 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1017 "channel %d event is "EFX_QWORD_FMT"\n",
1018 channel->channel, EFX_QWORD_VAL(event));
1020 /* Clear this event by marking it all ones */
1021 EFX_SET_QWORD(*p_event);
1023 /* Increment read pointer */
1024 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1026 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1028 switch (ev_code) {
1029 case FSE_AZ_EV_CODE_RX_EV:
1030 efx_handle_rx_event(channel, &event);
1031 if (++spent == budget)
1032 goto out;
1033 break;
1034 case FSE_AZ_EV_CODE_TX_EV:
1035 tx_packets += efx_handle_tx_event(channel, &event);
1036 if (tx_packets >= EFX_TXQ_SIZE) {
1037 spent = budget;
1038 goto out;
1040 break;
1041 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1042 efx_handle_generated_event(channel, &event);
1043 break;
1044 case FSE_AZ_EV_CODE_GLOBAL_EV:
1045 efx_handle_global_event(channel, &event);
1046 break;
1047 case FSE_AZ_EV_CODE_DRIVER_EV:
1048 efx_handle_driver_event(channel, &event);
1049 break;
1050 case FSE_CZ_EV_CODE_MCDI_EV:
1051 efx_mcdi_process_event(channel, &event);
1052 break;
1053 default:
1054 netif_err(channel->efx, hw, channel->efx->net_dev,
1055 "channel %d unknown event type %d (data "
1056 EFX_QWORD_FMT ")\n", channel->channel,
1057 ev_code, EFX_QWORD_VAL(event));
1061 out:
1062 channel->eventq_read_ptr = read_ptr;
1063 return spent;
1067 /* Allocate buffer table entries for event queue */
1068 int efx_nic_probe_eventq(struct efx_channel *channel)
1070 struct efx_nic *efx = channel->efx;
1071 BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1072 EFX_EVQ_SIZE & EFX_EVQ_MASK);
1073 return efx_alloc_special_buffer(efx, &channel->eventq,
1074 EFX_EVQ_SIZE * sizeof(efx_qword_t));
1077 void efx_nic_init_eventq(struct efx_channel *channel)
1079 efx_oword_t reg;
1080 struct efx_nic *efx = channel->efx;
1082 netif_dbg(efx, hw, efx->net_dev,
1083 "channel %d event queue in special buffers %d-%d\n",
1084 channel->channel, channel->eventq.index,
1085 channel->eventq.index + channel->eventq.entries - 1);
1087 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1088 EFX_POPULATE_OWORD_3(reg,
1089 FRF_CZ_TIMER_Q_EN, 1,
1090 FRF_CZ_HOST_NOTIFY_MODE, 0,
1091 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1092 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1095 /* Pin event queue buffer */
1096 efx_init_special_buffer(efx, &channel->eventq);
1098 /* Fill event queue with all ones (i.e. empty events) */
1099 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1101 /* Push event queue to card */
1102 EFX_POPULATE_OWORD_3(reg,
1103 FRF_AZ_EVQ_EN, 1,
1104 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1105 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1106 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1107 channel->channel);
1109 efx->type->push_irq_moderation(channel);
1112 void efx_nic_fini_eventq(struct efx_channel *channel)
1114 efx_oword_t reg;
1115 struct efx_nic *efx = channel->efx;
1117 /* Remove event queue from card */
1118 EFX_ZERO_OWORD(reg);
1119 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1120 channel->channel);
1121 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1122 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1124 /* Unpin event queue */
1125 efx_fini_special_buffer(efx, &channel->eventq);
1128 /* Free buffers backing event queue */
1129 void efx_nic_remove_eventq(struct efx_channel *channel)
1131 efx_free_special_buffer(channel->efx, &channel->eventq);
1135 void efx_nic_generate_test_event(struct efx_channel *channel)
1137 unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1138 efx_qword_t test_event;
1140 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1141 FSE_AZ_EV_CODE_DRV_GEN_EV,
1142 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1143 efx_generate_event(channel, &test_event);
1146 void efx_nic_generate_fill_event(struct efx_channel *channel)
1148 unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
1149 efx_qword_t test_event;
1151 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1152 FSE_AZ_EV_CODE_DRV_GEN_EV,
1153 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1154 efx_generate_event(channel, &test_event);
1157 /**************************************************************************
1159 * Flush handling
1161 **************************************************************************/
1164 static void efx_poll_flush_events(struct efx_nic *efx)
1166 struct efx_channel *channel = &efx->channel[0];
1167 struct efx_tx_queue *tx_queue;
1168 struct efx_rx_queue *rx_queue;
1169 unsigned int read_ptr = channel->eventq_read_ptr;
1170 unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1172 do {
1173 efx_qword_t *event = efx_event(channel, read_ptr);
1174 int ev_code, ev_sub_code, ev_queue;
1175 bool ev_failed;
1177 if (!efx_event_present(event))
1178 break;
1180 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1181 ev_sub_code = EFX_QWORD_FIELD(*event,
1182 FSF_AZ_DRIVER_EV_SUBCODE);
1183 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1184 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1185 ev_queue = EFX_QWORD_FIELD(*event,
1186 FSF_AZ_DRIVER_EV_SUBDATA);
1187 if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1188 tx_queue = efx->tx_queue + ev_queue;
1189 tx_queue->flushed = FLUSH_DONE;
1191 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1192 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1193 ev_queue = EFX_QWORD_FIELD(
1194 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1195 ev_failed = EFX_QWORD_FIELD(
1196 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1197 if (ev_queue < efx->n_rx_channels) {
1198 rx_queue = efx->rx_queue + ev_queue;
1199 rx_queue->flushed =
1200 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1204 /* We're about to destroy the queue anyway, so
1205 * it's ok to throw away every non-flush event */
1206 EFX_SET_QWORD(*event);
1208 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1209 } while (read_ptr != end_ptr);
1211 channel->eventq_read_ptr = read_ptr;
1214 /* Handle tx and rx flushes at the same time, since they run in
1215 * parallel in the hardware and there's no reason for us to
1216 * serialise them */
1217 int efx_nic_flush_queues(struct efx_nic *efx)
1219 struct efx_rx_queue *rx_queue;
1220 struct efx_tx_queue *tx_queue;
1221 int i, tx_pending, rx_pending;
1223 /* If necessary prepare the hardware for flushing */
1224 efx->type->prepare_flush(efx);
1226 /* Flush all tx queues in parallel */
1227 efx_for_each_tx_queue(tx_queue, efx)
1228 efx_flush_tx_queue(tx_queue);
1230 /* The hardware supports four concurrent rx flushes, each of which may
1231 * need to be retried if there is an outstanding descriptor fetch */
1232 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1233 rx_pending = tx_pending = 0;
1234 efx_for_each_rx_queue(rx_queue, efx) {
1235 if (rx_queue->flushed == FLUSH_PENDING)
1236 ++rx_pending;
1238 efx_for_each_rx_queue(rx_queue, efx) {
1239 if (rx_pending == EFX_RX_FLUSH_COUNT)
1240 break;
1241 if (rx_queue->flushed == FLUSH_FAILED ||
1242 rx_queue->flushed == FLUSH_NONE) {
1243 efx_flush_rx_queue(rx_queue);
1244 ++rx_pending;
1247 efx_for_each_tx_queue(tx_queue, efx) {
1248 if (tx_queue->flushed != FLUSH_DONE)
1249 ++tx_pending;
1252 if (rx_pending == 0 && tx_pending == 0)
1253 return 0;
1255 msleep(EFX_FLUSH_INTERVAL);
1256 efx_poll_flush_events(efx);
1259 /* Mark the queues as all flushed. We're going to return failure
1260 * leading to a reset, or fake up success anyway */
1261 efx_for_each_tx_queue(tx_queue, efx) {
1262 if (tx_queue->flushed != FLUSH_DONE)
1263 netif_err(efx, hw, efx->net_dev,
1264 "tx queue %d flush command timed out\n",
1265 tx_queue->queue);
1266 tx_queue->flushed = FLUSH_DONE;
1268 efx_for_each_rx_queue(rx_queue, efx) {
1269 if (rx_queue->flushed != FLUSH_DONE)
1270 netif_err(efx, hw, efx->net_dev,
1271 "rx queue %d flush command timed out\n",
1272 rx_queue->queue);
1273 rx_queue->flushed = FLUSH_DONE;
1276 return -ETIMEDOUT;
1279 /**************************************************************************
1281 * Hardware interrupts
1282 * The hardware interrupt handler does very little work; all the event
1283 * queue processing is carried out by per-channel tasklets.
1285 **************************************************************************/
1287 /* Enable/disable/generate interrupts */
1288 static inline void efx_nic_interrupts(struct efx_nic *efx,
1289 bool enabled, bool force)
1291 efx_oword_t int_en_reg_ker;
1293 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1294 FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1295 FRF_AZ_KER_INT_KER, force,
1296 FRF_AZ_DRV_INT_EN_KER, enabled);
1297 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1300 void efx_nic_enable_interrupts(struct efx_nic *efx)
1302 struct efx_channel *channel;
1304 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1305 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1307 /* Enable interrupts */
1308 efx_nic_interrupts(efx, true, false);
1310 /* Force processing of all the channels to get the EVQ RPTRs up to
1311 date */
1312 efx_for_each_channel(channel, efx)
1313 efx_schedule_channel(channel);
1316 void efx_nic_disable_interrupts(struct efx_nic *efx)
1318 /* Disable interrupts */
1319 efx_nic_interrupts(efx, false, false);
1322 /* Generate a test interrupt
1323 * Interrupt must already have been enabled, otherwise nasty things
1324 * may happen.
1326 void efx_nic_generate_interrupt(struct efx_nic *efx)
1328 efx_nic_interrupts(efx, true, true);
1331 /* Process a fatal interrupt
1332 * Disable bus mastering ASAP and schedule a reset
1334 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1336 struct falcon_nic_data *nic_data = efx->nic_data;
1337 efx_oword_t *int_ker = efx->irq_status.addr;
1338 efx_oword_t fatal_intr;
1339 int error, mem_perr;
1341 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1342 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1344 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1345 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1346 EFX_OWORD_VAL(fatal_intr),
1347 error ? "disabling bus mastering" : "no recognised error");
1349 /* If this is a memory parity error dump which blocks are offending */
1350 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1351 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1352 if (mem_perr) {
1353 efx_oword_t reg;
1354 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1355 netif_err(efx, hw, efx->net_dev,
1356 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1357 EFX_OWORD_VAL(reg));
1360 /* Disable both devices */
1361 pci_clear_master(efx->pci_dev);
1362 if (efx_nic_is_dual_func(efx))
1363 pci_clear_master(nic_data->pci_dev2);
1364 efx_nic_disable_interrupts(efx);
1366 /* Count errors and reset or disable the NIC accordingly */
1367 if (efx->int_error_count == 0 ||
1368 time_after(jiffies, efx->int_error_expire)) {
1369 efx->int_error_count = 0;
1370 efx->int_error_expire =
1371 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1373 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1374 netif_err(efx, hw, efx->net_dev,
1375 "SYSTEM ERROR - reset scheduled\n");
1376 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1377 } else {
1378 netif_err(efx, hw, efx->net_dev,
1379 "SYSTEM ERROR - max number of errors seen."
1380 "NIC will be disabled\n");
1381 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1384 return IRQ_HANDLED;
1387 /* Handle a legacy interrupt
1388 * Acknowledges the interrupt and schedule event queue processing.
1390 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1392 struct efx_nic *efx = dev_id;
1393 efx_oword_t *int_ker = efx->irq_status.addr;
1394 irqreturn_t result = IRQ_NONE;
1395 struct efx_channel *channel;
1396 efx_dword_t reg;
1397 u32 queues;
1398 int syserr;
1400 /* Read the ISR which also ACKs the interrupts */
1401 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1402 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1404 /* Check to see if we have a serious error condition */
1405 if (queues & (1U << efx->fatal_irq_level)) {
1406 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1407 if (unlikely(syserr))
1408 return efx_nic_fatal_interrupt(efx);
1411 if (queues != 0) {
1412 if (EFX_WORKAROUND_15783(efx))
1413 efx->irq_zero_count = 0;
1415 /* Schedule processing of any interrupting queues */
1416 efx_for_each_channel(channel, efx) {
1417 if (queues & 1)
1418 efx_schedule_channel(channel);
1419 queues >>= 1;
1421 result = IRQ_HANDLED;
1423 } else if (EFX_WORKAROUND_15783(efx)) {
1424 efx_qword_t *event;
1426 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1427 * because this might be a shared interrupt. */
1428 if (efx->irq_zero_count++ == 0)
1429 result = IRQ_HANDLED;
1431 /* Ensure we schedule or rearm all event queues */
1432 efx_for_each_channel(channel, efx) {
1433 event = efx_event(channel, channel->eventq_read_ptr);
1434 if (efx_event_present(event))
1435 efx_schedule_channel(channel);
1436 else
1437 efx_nic_eventq_read_ack(channel);
1441 if (result == IRQ_HANDLED) {
1442 efx->last_irq_cpu = raw_smp_processor_id();
1443 netif_vdbg(efx, intr, efx->net_dev,
1444 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1445 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1448 return result;
1451 /* Handle an MSI interrupt
1453 * Handle an MSI hardware interrupt. This routine schedules event
1454 * queue processing. No interrupt acknowledgement cycle is necessary.
1455 * Also, we never need to check that the interrupt is for us, since
1456 * MSI interrupts cannot be shared.
1458 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1460 struct efx_channel *channel = dev_id;
1461 struct efx_nic *efx = channel->efx;
1462 efx_oword_t *int_ker = efx->irq_status.addr;
1463 int syserr;
1465 efx->last_irq_cpu = raw_smp_processor_id();
1466 netif_vdbg(efx, intr, efx->net_dev,
1467 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1468 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1470 /* Check to see if we have a serious error condition */
1471 if (channel->channel == efx->fatal_irq_level) {
1472 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1473 if (unlikely(syserr))
1474 return efx_nic_fatal_interrupt(efx);
1477 /* Schedule processing of the channel */
1478 efx_schedule_channel(channel);
1480 return IRQ_HANDLED;
1484 /* Setup RSS indirection table.
1485 * This maps from the hash value of the packet to RXQ
1487 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1489 size_t i = 0;
1490 efx_dword_t dword;
1492 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1493 return;
1495 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1496 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1498 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1499 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1500 efx->rx_indir_table[i]);
1501 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1505 /* Hook interrupt handler(s)
1506 * Try MSI and then legacy interrupts.
1508 int efx_nic_init_interrupt(struct efx_nic *efx)
1510 struct efx_channel *channel;
1511 int rc;
1513 if (!EFX_INT_MODE_USE_MSI(efx)) {
1514 irq_handler_t handler;
1515 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1516 handler = efx_legacy_interrupt;
1517 else
1518 handler = falcon_legacy_interrupt_a1;
1520 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1521 efx->name, efx);
1522 if (rc) {
1523 netif_err(efx, drv, efx->net_dev,
1524 "failed to hook legacy IRQ %d\n",
1525 efx->pci_dev->irq);
1526 goto fail1;
1528 return 0;
1531 /* Hook MSI or MSI-X interrupt */
1532 efx_for_each_channel(channel, efx) {
1533 rc = request_irq(channel->irq, efx_msi_interrupt,
1534 IRQF_PROBE_SHARED, /* Not shared */
1535 channel->name, channel);
1536 if (rc) {
1537 netif_err(efx, drv, efx->net_dev,
1538 "failed to hook IRQ %d\n", channel->irq);
1539 goto fail2;
1543 return 0;
1545 fail2:
1546 efx_for_each_channel(channel, efx)
1547 free_irq(channel->irq, channel);
1548 fail1:
1549 return rc;
1552 void efx_nic_fini_interrupt(struct efx_nic *efx)
1554 struct efx_channel *channel;
1555 efx_oword_t reg;
1557 /* Disable MSI/MSI-X interrupts */
1558 efx_for_each_channel(channel, efx) {
1559 if (channel->irq)
1560 free_irq(channel->irq, channel);
1563 /* ACK legacy interrupt */
1564 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1565 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1566 else
1567 falcon_irq_ack_a1(efx);
1569 /* Disable legacy interrupt */
1570 if (efx->legacy_irq)
1571 free_irq(efx->legacy_irq, efx);
1574 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1576 efx_oword_t altera_build;
1577 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1578 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1581 void efx_nic_init_common(struct efx_nic *efx)
1583 efx_oword_t temp;
1585 /* Set positions of descriptor caches in SRAM. */
1586 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1587 efx->type->tx_dc_base / 8);
1588 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1589 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1590 efx->type->rx_dc_base / 8);
1591 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1593 /* Set TX descriptor cache size. */
1594 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1595 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1596 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1598 /* Set RX descriptor cache size. Set low watermark to size-8, as
1599 * this allows most efficient prefetching.
1601 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1602 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1603 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1604 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1605 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1607 /* Program INT_KER address */
1608 EFX_POPULATE_OWORD_2(temp,
1609 FRF_AZ_NORM_INT_VEC_DIS_KER,
1610 EFX_INT_MODE_USE_MSI(efx),
1611 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1612 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1614 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1615 /* Use an interrupt level unused by event queues */
1616 efx->fatal_irq_level = 0x1f;
1617 else
1618 /* Use a valid MSI-X vector */
1619 efx->fatal_irq_level = 0;
1621 /* Enable all the genuinely fatal interrupts. (They are still
1622 * masked by the overall interrupt mask, controlled by
1623 * falcon_interrupts()).
1625 * Note: All other fatal interrupts are enabled
1627 EFX_POPULATE_OWORD_3(temp,
1628 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1629 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1630 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1631 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1632 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1633 EFX_INVERT_OWORD(temp);
1634 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1636 efx_nic_push_rx_indir_table(efx);
1638 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1639 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1641 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1642 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1643 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1644 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1645 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
1646 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1647 /* Enable SW_EV to inherit in char driver - assume harmless here */
1648 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1649 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1650 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1651 /* Disable hardware watchdog which can misfire */
1652 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1653 /* Squash TX of packets of 16 bytes or less */
1654 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1655 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1656 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1659 /* Register dump */
1661 #define REGISTER_REVISION_A 1
1662 #define REGISTER_REVISION_B 2
1663 #define REGISTER_REVISION_C 3
1664 #define REGISTER_REVISION_Z 3 /* latest revision */
1666 struct efx_nic_reg {
1667 u32 offset:24;
1668 u32 min_revision:2, max_revision:2;
1671 #define REGISTER(name, min_rev, max_rev) { \
1672 FR_ ## min_rev ## max_rev ## _ ## name, \
1673 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1675 #define REGISTER_AA(name) REGISTER(name, A, A)
1676 #define REGISTER_AB(name) REGISTER(name, A, B)
1677 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1678 #define REGISTER_BB(name) REGISTER(name, B, B)
1679 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1680 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1682 static const struct efx_nic_reg efx_nic_regs[] = {
1683 REGISTER_AZ(ADR_REGION),
1684 REGISTER_AZ(INT_EN_KER),
1685 REGISTER_BZ(INT_EN_CHAR),
1686 REGISTER_AZ(INT_ADR_KER),
1687 REGISTER_BZ(INT_ADR_CHAR),
1688 /* INT_ACK_KER is WO */
1689 /* INT_ISR0 is RC */
1690 REGISTER_AZ(HW_INIT),
1691 REGISTER_CZ(USR_EV_CFG),
1692 REGISTER_AB(EE_SPI_HCMD),
1693 REGISTER_AB(EE_SPI_HADR),
1694 REGISTER_AB(EE_SPI_HDATA),
1695 REGISTER_AB(EE_BASE_PAGE),
1696 REGISTER_AB(EE_VPD_CFG0),
1697 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1698 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1699 /* PCIE_CORE_INDIRECT is indirect */
1700 REGISTER_AB(NIC_STAT),
1701 REGISTER_AB(GPIO_CTL),
1702 REGISTER_AB(GLB_CTL),
1703 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1704 REGISTER_BZ(DP_CTRL),
1705 REGISTER_AZ(MEM_STAT),
1706 REGISTER_AZ(CS_DEBUG),
1707 REGISTER_AZ(ALTERA_BUILD),
1708 REGISTER_AZ(CSR_SPARE),
1709 REGISTER_AB(PCIE_SD_CTL0123),
1710 REGISTER_AB(PCIE_SD_CTL45),
1711 REGISTER_AB(PCIE_PCS_CTL_STAT),
1712 /* DEBUG_DATA_OUT is not used */
1713 /* DRV_EV is WO */
1714 REGISTER_AZ(EVQ_CTL),
1715 REGISTER_AZ(EVQ_CNT1),
1716 REGISTER_AZ(EVQ_CNT2),
1717 REGISTER_AZ(BUF_TBL_CFG),
1718 REGISTER_AZ(SRM_RX_DC_CFG),
1719 REGISTER_AZ(SRM_TX_DC_CFG),
1720 REGISTER_AZ(SRM_CFG),
1721 /* BUF_TBL_UPD is WO */
1722 REGISTER_AZ(SRM_UPD_EVQ),
1723 REGISTER_AZ(SRAM_PARITY),
1724 REGISTER_AZ(RX_CFG),
1725 REGISTER_BZ(RX_FILTER_CTL),
1726 /* RX_FLUSH_DESCQ is WO */
1727 REGISTER_AZ(RX_DC_CFG),
1728 REGISTER_AZ(RX_DC_PF_WM),
1729 REGISTER_BZ(RX_RSS_TKEY),
1730 /* RX_NODESC_DROP is RC */
1731 REGISTER_AA(RX_SELF_RST),
1732 /* RX_DEBUG, RX_PUSH_DROP are not used */
1733 REGISTER_CZ(RX_RSS_IPV6_REG1),
1734 REGISTER_CZ(RX_RSS_IPV6_REG2),
1735 REGISTER_CZ(RX_RSS_IPV6_REG3),
1736 /* TX_FLUSH_DESCQ is WO */
1737 REGISTER_AZ(TX_DC_CFG),
1738 REGISTER_AA(TX_CHKSM_CFG),
1739 REGISTER_AZ(TX_CFG),
1740 /* TX_PUSH_DROP is not used */
1741 REGISTER_AZ(TX_RESERVED),
1742 REGISTER_BZ(TX_PACE),
1743 /* TX_PACE_DROP_QID is RC */
1744 REGISTER_BB(TX_VLAN),
1745 REGISTER_BZ(TX_IPFIL_PORTEN),
1746 REGISTER_AB(MD_TXD),
1747 REGISTER_AB(MD_RXD),
1748 REGISTER_AB(MD_CS),
1749 REGISTER_AB(MD_PHY_ADR),
1750 REGISTER_AB(MD_ID),
1751 /* MD_STAT is RC */
1752 REGISTER_AB(MAC_STAT_DMA),
1753 REGISTER_AB(MAC_CTRL),
1754 REGISTER_BB(GEN_MODE),
1755 REGISTER_AB(MAC_MC_HASH_REG0),
1756 REGISTER_AB(MAC_MC_HASH_REG1),
1757 REGISTER_AB(GM_CFG1),
1758 REGISTER_AB(GM_CFG2),
1759 /* GM_IPG and GM_HD are not used */
1760 REGISTER_AB(GM_MAX_FLEN),
1761 /* GM_TEST is not used */
1762 REGISTER_AB(GM_ADR1),
1763 REGISTER_AB(GM_ADR2),
1764 REGISTER_AB(GMF_CFG0),
1765 REGISTER_AB(GMF_CFG1),
1766 REGISTER_AB(GMF_CFG2),
1767 REGISTER_AB(GMF_CFG3),
1768 REGISTER_AB(GMF_CFG4),
1769 REGISTER_AB(GMF_CFG5),
1770 REGISTER_BB(TX_SRC_MAC_CTL),
1771 REGISTER_AB(XM_ADR_LO),
1772 REGISTER_AB(XM_ADR_HI),
1773 REGISTER_AB(XM_GLB_CFG),
1774 REGISTER_AB(XM_TX_CFG),
1775 REGISTER_AB(XM_RX_CFG),
1776 REGISTER_AB(XM_MGT_INT_MASK),
1777 REGISTER_AB(XM_FC),
1778 REGISTER_AB(XM_PAUSE_TIME),
1779 REGISTER_AB(XM_TX_PARAM),
1780 REGISTER_AB(XM_RX_PARAM),
1781 /* XM_MGT_INT_MSK (note no 'A') is RC */
1782 REGISTER_AB(XX_PWR_RST),
1783 REGISTER_AB(XX_SD_CTL),
1784 REGISTER_AB(XX_TXDRV_CTL),
1785 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1786 /* XX_CORE_STAT is partly RC */
1789 struct efx_nic_reg_table {
1790 u32 offset:24;
1791 u32 min_revision:2, max_revision:2;
1792 u32 step:6, rows:21;
1795 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1796 offset, \
1797 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1798 step, rows \
1800 #define REGISTER_TABLE(name, min_rev, max_rev) \
1801 REGISTER_TABLE_DIMENSIONS( \
1802 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1803 min_rev, max_rev, \
1804 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1805 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1806 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1807 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1808 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1809 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1810 #define REGISTER_TABLE_BB_CZ(name) \
1811 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1812 FR_BZ_ ## name ## _STEP, \
1813 FR_BB_ ## name ## _ROWS), \
1814 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1815 FR_BZ_ ## name ## _STEP, \
1816 FR_CZ_ ## name ## _ROWS)
1817 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1819 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1820 /* DRIVER is not used */
1821 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1822 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1823 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1824 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1825 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1826 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1827 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1828 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1829 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1830 /* The register buffer is allocated with slab, so we can't
1831 * reasonably read all of the buffer table (up to 8MB!).
1832 * However this driver will only use a few entries. Reading
1833 * 1K entries allows for some expansion of queue count and
1834 * size before we need to change the version. */
1835 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1836 A, A, 8, 1024),
1837 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1838 B, Z, 8, 1024),
1839 /* RX_FILTER_TBL{0,1} is huge and not used by this driver */
1840 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1841 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1842 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1843 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1844 /* TX_FILTER_TBL0 is huge and not used by this driver */
1845 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1846 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1847 /* MSIX_PBA_TABLE is not mapped */
1848 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1851 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1853 const struct efx_nic_reg *reg;
1854 const struct efx_nic_reg_table *table;
1855 size_t len = 0;
1857 for (reg = efx_nic_regs;
1858 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1859 reg++)
1860 if (efx->type->revision >= reg->min_revision &&
1861 efx->type->revision <= reg->max_revision)
1862 len += sizeof(efx_oword_t);
1864 for (table = efx_nic_reg_tables;
1865 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1866 table++)
1867 if (efx->type->revision >= table->min_revision &&
1868 efx->type->revision <= table->max_revision)
1869 len += table->rows * min_t(size_t, table->step, 16);
1871 return len;
1874 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1876 const struct efx_nic_reg *reg;
1877 const struct efx_nic_reg_table *table;
1879 for (reg = efx_nic_regs;
1880 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1881 reg++) {
1882 if (efx->type->revision >= reg->min_revision &&
1883 efx->type->revision <= reg->max_revision) {
1884 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1885 buf += sizeof(efx_oword_t);
1889 for (table = efx_nic_reg_tables;
1890 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1891 table++) {
1892 size_t size, i;
1894 if (!(efx->type->revision >= table->min_revision &&
1895 efx->type->revision <= table->max_revision))
1896 continue;
1898 size = min_t(size_t, table->step, 16);
1900 for (i = 0; i < table->rows; i++) {
1901 switch (table->step) {
1902 case 4: /* 32-bit register or SRAM */
1903 efx_readd_table(efx, buf, table->offset, i);
1904 break;
1905 case 8: /* 64-bit SRAM */
1906 efx_sram_readq(efx,
1907 efx->membase + table->offset,
1908 buf, i);
1909 break;
1910 case 16: /* 128-bit register */
1911 efx_reado_table(efx, buf, table->offset, i);
1912 break;
1913 case 32: /* 128-bit register, interleaved */
1914 efx_reado_table(efx, buf, table->offset, 2 * i);
1915 break;
1916 default:
1917 WARN_ON(1);
1918 return;
1920 buf += size;