GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / rrunner.c
blob952420ebb59b98147321ba07af0349d20e5ada64
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
23 * PCI DMA mapping code partly based on work by Francois Romieu.
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <linux/slab.h>
44 #include <net/sock.h>
46 #include <asm/system.h>
47 #include <asm/cache.h>
48 #include <asm/byteorder.h>
49 #include <asm/io.h>
50 #include <asm/irq.h>
51 #include <asm/uaccess.h>
53 #define rr_if_busy(dev) netif_queue_stopped(dev)
54 #define rr_if_running(dev) netif_running(dev)
56 #include "rrunner.h"
58 #define RUN_AT(x) (jiffies + (x))
61 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
62 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
63 MODULE_LICENSE("GPL");
65 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
68 static const struct net_device_ops rr_netdev_ops = {
69 .ndo_open = rr_open,
70 .ndo_stop = rr_close,
71 .ndo_do_ioctl = rr_ioctl,
72 .ndo_start_xmit = rr_start_xmit,
73 .ndo_change_mtu = hippi_change_mtu,
74 .ndo_set_mac_address = hippi_mac_addr,
78 * Implementation notes:
80 * The DMA engine only allows for DMA within physical 64KB chunks of
81 * memory. The current approach of the driver (and stack) is to use
82 * linear blocks of memory for the skbuffs. However, as the data block
83 * is always the first part of the skb and skbs are 2^n aligned so we
84 * are guarantted to get the whole block within one 64KB align 64KB
85 * chunk.
87 * On the long term, relying on being able to allocate 64KB linear
88 * chunks of memory is not feasible and the skb handling code and the
89 * stack will need to know about I/O vectors or something similar.
92 static int __devinit rr_init_one(struct pci_dev *pdev,
93 const struct pci_device_id *ent)
95 struct net_device *dev;
96 static int version_disp;
97 u8 pci_latency;
98 struct rr_private *rrpriv;
99 void *tmpptr;
100 dma_addr_t ring_dma;
101 int ret = -ENOMEM;
103 dev = alloc_hippi_dev(sizeof(struct rr_private));
104 if (!dev)
105 goto out3;
107 ret = pci_enable_device(pdev);
108 if (ret) {
109 ret = -ENODEV;
110 goto out2;
113 rrpriv = netdev_priv(dev);
115 SET_NETDEV_DEV(dev, &pdev->dev);
117 if (pci_request_regions(pdev, "rrunner")) {
118 ret = -EIO;
119 goto out;
122 pci_set_drvdata(pdev, dev);
124 rrpriv->pci_dev = pdev;
126 spin_lock_init(&rrpriv->lock);
128 dev->irq = pdev->irq;
129 dev->netdev_ops = &rr_netdev_ops;
131 dev->base_addr = pci_resource_start(pdev, 0);
133 /* display version info if adapter is found */
134 if (!version_disp) {
135 /* set display flag to TRUE so that */
136 /* we only display this string ONCE */
137 version_disp = 1;
138 printk(version);
141 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
142 if (pci_latency <= 0x58){
143 pci_latency = 0x58;
144 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
147 pci_set_master(pdev);
149 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
150 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
151 dev->base_addr, dev->irq, pci_latency);
154 * Remap the regs into kernel space.
157 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
159 if (!rrpriv->regs){
160 printk(KERN_ERR "%s: Unable to map I/O register, "
161 "RoadRunner will be disabled.\n", dev->name);
162 ret = -EIO;
163 goto out;
166 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
167 rrpriv->tx_ring = tmpptr;
168 rrpriv->tx_ring_dma = ring_dma;
170 if (!tmpptr) {
171 ret = -ENOMEM;
172 goto out;
175 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
176 rrpriv->rx_ring = tmpptr;
177 rrpriv->rx_ring_dma = ring_dma;
179 if (!tmpptr) {
180 ret = -ENOMEM;
181 goto out;
184 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
185 rrpriv->evt_ring = tmpptr;
186 rrpriv->evt_ring_dma = ring_dma;
188 if (!tmpptr) {
189 ret = -ENOMEM;
190 goto out;
194 * Don't access any register before this point!
196 #ifdef __BIG_ENDIAN
197 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
198 &rrpriv->regs->HostCtrl);
199 #endif
201 * Need to add a case for little-endian 64-bit hosts here.
204 rr_init(dev);
206 dev->base_addr = 0;
208 ret = register_netdev(dev);
209 if (ret)
210 goto out;
211 return 0;
213 out:
214 if (rrpriv->rx_ring)
215 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
216 rrpriv->rx_ring_dma);
217 if (rrpriv->tx_ring)
218 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
219 rrpriv->tx_ring_dma);
220 if (rrpriv->regs)
221 iounmap(rrpriv->regs);
222 if (pdev) {
223 pci_release_regions(pdev);
224 pci_set_drvdata(pdev, NULL);
226 out2:
227 free_netdev(dev);
228 out3:
229 return ret;
232 static void __devexit rr_remove_one (struct pci_dev *pdev)
234 struct net_device *dev = pci_get_drvdata(pdev);
236 if (dev) {
237 struct rr_private *rr = netdev_priv(dev);
239 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
240 printk(KERN_ERR "%s: trying to unload running NIC\n",
241 dev->name);
242 writel(HALT_NIC, &rr->regs->HostCtrl);
245 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
246 rr->evt_ring_dma);
247 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
248 rr->rx_ring_dma);
249 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
250 rr->tx_ring_dma);
251 unregister_netdev(dev);
252 iounmap(rr->regs);
253 free_netdev(dev);
254 pci_release_regions(pdev);
255 pci_disable_device(pdev);
256 pci_set_drvdata(pdev, NULL);
262 * Commands are considered to be slow, thus there is no reason to
263 * inline this.
265 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
267 struct rr_regs __iomem *regs;
268 u32 idx;
270 regs = rrpriv->regs;
272 * This is temporary - it will go away in the final version.
273 * We probably also want to make this function inline.
275 if (readl(&regs->HostCtrl) & NIC_HALTED){
276 printk("issuing command for halted NIC, code 0x%x, "
277 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
278 if (readl(&regs->Mode) & FATAL_ERR)
279 printk("error codes Fail1 %02x, Fail2 %02x\n",
280 readl(&regs->Fail1), readl(&regs->Fail2));
283 idx = rrpriv->info->cmd_ctrl.pi;
285 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
286 wmb();
288 idx = (idx - 1) % CMD_RING_ENTRIES;
289 rrpriv->info->cmd_ctrl.pi = idx;
290 wmb();
292 if (readl(&regs->Mode) & FATAL_ERR)
293 printk("error code %02x\n", readl(&regs->Fail1));
298 * Reset the board in a sensible manner. The NIC is already halted
299 * when we get here and a spin-lock is held.
301 static int rr_reset(struct net_device *dev)
303 struct rr_private *rrpriv;
304 struct rr_regs __iomem *regs;
305 u32 start_pc;
306 int i;
308 rrpriv = netdev_priv(dev);
309 regs = rrpriv->regs;
311 rr_load_firmware(dev);
313 writel(0x01000000, &regs->TX_state);
314 writel(0xff800000, &regs->RX_state);
315 writel(0, &regs->AssistState);
316 writel(CLEAR_INTA, &regs->LocalCtrl);
317 writel(0x01, &regs->BrkPt);
318 writel(0, &regs->Timer);
319 writel(0, &regs->TimerRef);
320 writel(RESET_DMA, &regs->DmaReadState);
321 writel(RESET_DMA, &regs->DmaWriteState);
322 writel(0, &regs->DmaWriteHostHi);
323 writel(0, &regs->DmaWriteHostLo);
324 writel(0, &regs->DmaReadHostHi);
325 writel(0, &regs->DmaReadHostLo);
326 writel(0, &regs->DmaReadLen);
327 writel(0, &regs->DmaWriteLen);
328 writel(0, &regs->DmaWriteLcl);
329 writel(0, &regs->DmaWriteIPchecksum);
330 writel(0, &regs->DmaReadLcl);
331 writel(0, &regs->DmaReadIPchecksum);
332 writel(0, &regs->PciState);
333 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
334 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
335 #elif (BITS_PER_LONG == 64)
336 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
337 #else
338 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
339 #endif
342 writel(0xffffffff, &regs->MbEvent);
343 writel(0, &regs->Event);
345 writel(0, &regs->TxPi);
346 writel(0, &regs->IpRxPi);
348 writel(0, &regs->EvtCon);
349 writel(0, &regs->EvtPrd);
351 rrpriv->info->evt_ctrl.pi = 0;
353 for (i = 0; i < CMD_RING_ENTRIES; i++)
354 writel(0, &regs->CmdRing[i]);
357 * Why 32 ? is this not cache line size dependent?
359 writel(RBURST_64|WBURST_64, &regs->PciState);
360 wmb();
362 start_pc = rr_read_eeprom_word(rrpriv,
363 offsetof(struct eeprom, rncd_info.FwStart));
365 #if (DEBUG > 1)
366 printk("%s: Executing firmware at address 0x%06x\n",
367 dev->name, start_pc);
368 #endif
370 writel(start_pc + 0x800, &regs->Pc);
371 wmb();
372 udelay(5);
374 writel(start_pc, &regs->Pc);
375 wmb();
377 return 0;
382 * Read a string from the EEPROM.
384 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
385 unsigned long offset,
386 unsigned char *buf,
387 unsigned long length)
389 struct rr_regs __iomem *regs = rrpriv->regs;
390 u32 misc, io, host, i;
392 io = readl(&regs->ExtIo);
393 writel(0, &regs->ExtIo);
394 misc = readl(&regs->LocalCtrl);
395 writel(0, &regs->LocalCtrl);
396 host = readl(&regs->HostCtrl);
397 writel(host | HALT_NIC, &regs->HostCtrl);
398 mb();
400 for (i = 0; i < length; i++){
401 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
402 mb();
403 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
404 mb();
407 writel(host, &regs->HostCtrl);
408 writel(misc, &regs->LocalCtrl);
409 writel(io, &regs->ExtIo);
410 mb();
411 return i;
416 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
417 * it to our CPU byte-order.
419 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
420 size_t offset)
422 __be32 word;
424 if ((rr_read_eeprom(rrpriv, offset,
425 (unsigned char *)&word, 4) == 4))
426 return be32_to_cpu(word);
427 return 0;
432 * Write a string to the EEPROM.
434 * This is only called when the firmware is not running.
436 static unsigned int write_eeprom(struct rr_private *rrpriv,
437 unsigned long offset,
438 unsigned char *buf,
439 unsigned long length)
441 struct rr_regs __iomem *regs = rrpriv->regs;
442 u32 misc, io, data, i, j, ready, error = 0;
444 io = readl(&regs->ExtIo);
445 writel(0, &regs->ExtIo);
446 misc = readl(&regs->LocalCtrl);
447 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
448 mb();
450 for (i = 0; i < length; i++){
451 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
452 mb();
453 data = buf[i] << 24;
455 * Only try to write the data if it is not the same
456 * value already.
458 if ((readl(&regs->WinData) & 0xff000000) != data){
459 writel(data, &regs->WinData);
460 ready = 0;
461 j = 0;
462 mb();
463 while(!ready){
464 udelay(20);
465 if ((readl(&regs->WinData) & 0xff000000) ==
466 data)
467 ready = 1;
468 mb();
469 if (j++ > 5000){
470 printk("data mismatch: %08x, "
471 "WinData %08x\n", data,
472 readl(&regs->WinData));
473 ready = 1;
474 error = 1;
480 writel(misc, &regs->LocalCtrl);
481 writel(io, &regs->ExtIo);
482 mb();
484 return error;
488 static int __devinit rr_init(struct net_device *dev)
490 struct rr_private *rrpriv;
491 struct rr_regs __iomem *regs;
492 u32 sram_size, rev;
494 rrpriv = netdev_priv(dev);
495 regs = rrpriv->regs;
497 rev = readl(&regs->FwRev);
498 rrpriv->fw_rev = rev;
499 if (rev > 0x00020024)
500 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
501 ((rev >> 8) & 0xff), (rev & 0xff));
502 else if (rev >= 0x00020000) {
503 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
504 "later is recommended)\n", (rev >> 16),
505 ((rev >> 8) & 0xff), (rev & 0xff));
506 }else{
507 printk(" Firmware revision too old: %i.%i.%i, please "
508 "upgrade to 2.0.37 or later.\n",
509 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
512 #if (DEBUG > 2)
513 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
514 #endif
517 * Read the hardware address from the eeprom. The HW address
518 * is not really necessary for HIPPI but awfully convenient.
519 * The pointer arithmetic to put it in dev_addr is ugly, but
520 * Donald Becker does it this way for the GigE version of this
521 * card and it's shorter and more portable than any
522 * other method I've seen. -VAL
525 *(__be16 *)(dev->dev_addr) =
526 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
527 *(__be32 *)(dev->dev_addr+2) =
528 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
530 printk(" MAC: %pM\n", dev->dev_addr);
532 sram_size = rr_read_eeprom_word(rrpriv, 8);
533 printk(" SRAM size 0x%06x\n", sram_size);
535 return 0;
539 static int rr_init1(struct net_device *dev)
541 struct rr_private *rrpriv;
542 struct rr_regs __iomem *regs;
543 unsigned long myjif, flags;
544 struct cmd cmd;
545 u32 hostctrl;
546 int ecode = 0;
547 short i;
549 rrpriv = netdev_priv(dev);
550 regs = rrpriv->regs;
552 spin_lock_irqsave(&rrpriv->lock, flags);
554 hostctrl = readl(&regs->HostCtrl);
555 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
556 wmb();
558 if (hostctrl & PARITY_ERR){
559 printk("%s: Parity error halting NIC - this is serious!\n",
560 dev->name);
561 spin_unlock_irqrestore(&rrpriv->lock, flags);
562 ecode = -EFAULT;
563 goto error;
566 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
567 set_infoaddr(regs, rrpriv->info_dma);
569 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
570 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
571 rrpriv->info->evt_ctrl.mode = 0;
572 rrpriv->info->evt_ctrl.pi = 0;
573 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
575 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
576 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
577 rrpriv->info->cmd_ctrl.mode = 0;
578 rrpriv->info->cmd_ctrl.pi = 15;
580 for (i = 0; i < CMD_RING_ENTRIES; i++) {
581 writel(0, &regs->CmdRing[i]);
584 for (i = 0; i < TX_RING_ENTRIES; i++) {
585 rrpriv->tx_ring[i].size = 0;
586 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
587 rrpriv->tx_skbuff[i] = NULL;
589 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
590 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
591 rrpriv->info->tx_ctrl.mode = 0;
592 rrpriv->info->tx_ctrl.pi = 0;
593 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
596 * Set dirty_tx before we start receiving interrupts, otherwise
597 * the interrupt handler might think it is supposed to process
598 * tx ints before we are up and running, which may cause a null
599 * pointer access in the int handler.
601 rrpriv->tx_full = 0;
602 rrpriv->cur_rx = 0;
603 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
605 rr_reset(dev);
607 /* Tuning values */
608 writel(0x5000, &regs->ConRetry);
609 writel(0x100, &regs->ConRetryTmr);
610 writel(0x500000, &regs->ConTmout);
611 writel(0x60, &regs->IntrTmr);
612 writel(0x500000, &regs->TxDataMvTimeout);
613 writel(0x200000, &regs->RxDataMvTimeout);
614 writel(0x80, &regs->WriteDmaThresh);
615 writel(0x80, &regs->ReadDmaThresh);
617 rrpriv->fw_running = 0;
618 wmb();
620 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
621 writel(hostctrl, &regs->HostCtrl);
622 wmb();
624 spin_unlock_irqrestore(&rrpriv->lock, flags);
626 for (i = 0; i < RX_RING_ENTRIES; i++) {
627 struct sk_buff *skb;
628 dma_addr_t addr;
630 rrpriv->rx_ring[i].mode = 0;
631 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
632 if (!skb) {
633 printk(KERN_WARNING "%s: Unable to allocate memory "
634 "for receive ring - halting NIC\n", dev->name);
635 ecode = -ENOMEM;
636 goto error;
638 rrpriv->rx_skbuff[i] = skb;
639 addr = pci_map_single(rrpriv->pci_dev, skb->data,
640 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
642 * Sanity test to see if we conflict with the DMA
643 * limitations of the Roadrunner.
645 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
646 printk("skb alloc error\n");
648 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
649 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
652 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
653 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
654 rrpriv->rx_ctrl[4].mode = 8;
655 rrpriv->rx_ctrl[4].pi = 0;
656 wmb();
657 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
659 udelay(1000);
662 * Now start the FirmWare.
664 cmd.code = C_START_FW;
665 cmd.ring = 0;
666 cmd.index = 0;
668 rr_issue_cmd(rrpriv, &cmd);
671 * Give the FirmWare time to chew on the `get running' command.
673 myjif = jiffies + 5 * HZ;
674 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
675 cpu_relax();
677 netif_start_queue(dev);
679 return ecode;
681 error:
683 * We might have gotten here because we are out of memory,
684 * make sure we release everything we allocated before failing
686 for (i = 0; i < RX_RING_ENTRIES; i++) {
687 struct sk_buff *skb = rrpriv->rx_skbuff[i];
689 if (skb) {
690 pci_unmap_single(rrpriv->pci_dev,
691 rrpriv->rx_ring[i].addr.addrlo,
692 dev->mtu + HIPPI_HLEN,
693 PCI_DMA_FROMDEVICE);
694 rrpriv->rx_ring[i].size = 0;
695 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
696 dev_kfree_skb(skb);
697 rrpriv->rx_skbuff[i] = NULL;
700 return ecode;
705 * All events are considered to be slow (RX/TX ints do not generate
706 * events) and are handled here, outside the main interrupt handler,
707 * to reduce the size of the handler.
709 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
711 struct rr_private *rrpriv;
712 struct rr_regs __iomem *regs;
713 u32 tmp;
715 rrpriv = netdev_priv(dev);
716 regs = rrpriv->regs;
718 while (prodidx != eidx){
719 switch (rrpriv->evt_ring[eidx].code){
720 case E_NIC_UP:
721 tmp = readl(&regs->FwRev);
722 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
723 "up and running\n", dev->name,
724 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
725 rrpriv->fw_running = 1;
726 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
727 wmb();
728 break;
729 case E_LINK_ON:
730 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
731 break;
732 case E_LINK_OFF:
733 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
734 break;
735 case E_RX_IDLE:
736 printk(KERN_WARNING "%s: RX data not moving\n",
737 dev->name);
738 goto drop;
739 case E_WATCHDOG:
740 printk(KERN_INFO "%s: The watchdog is here to see "
741 "us\n", dev->name);
742 break;
743 case E_INTERN_ERR:
744 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
745 dev->name);
746 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
747 &regs->HostCtrl);
748 wmb();
749 break;
750 case E_HOST_ERR:
751 printk(KERN_ERR "%s: Host software error\n",
752 dev->name);
753 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
754 &regs->HostCtrl);
755 wmb();
756 break;
758 * TX events.
760 case E_CON_REJ:
761 printk(KERN_WARNING "%s: Connection rejected\n",
762 dev->name);
763 dev->stats.tx_aborted_errors++;
764 break;
765 case E_CON_TMOUT:
766 printk(KERN_WARNING "%s: Connection timeout\n",
767 dev->name);
768 break;
769 case E_DISC_ERR:
770 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
771 dev->name);
772 dev->stats.tx_aborted_errors++;
773 break;
774 case E_INT_PRTY:
775 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
776 dev->name);
777 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
778 &regs->HostCtrl);
779 wmb();
780 break;
781 case E_TX_IDLE:
782 printk(KERN_WARNING "%s: Transmitter idle\n",
783 dev->name);
784 break;
785 case E_TX_LINK_DROP:
786 printk(KERN_WARNING "%s: Link lost during transmit\n",
787 dev->name);
788 dev->stats.tx_aborted_errors++;
789 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
790 &regs->HostCtrl);
791 wmb();
792 break;
793 case E_TX_INV_RNG:
794 printk(KERN_ERR "%s: Invalid send ring block\n",
795 dev->name);
796 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
797 &regs->HostCtrl);
798 wmb();
799 break;
800 case E_TX_INV_BUF:
801 printk(KERN_ERR "%s: Invalid send buffer address\n",
802 dev->name);
803 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
804 &regs->HostCtrl);
805 wmb();
806 break;
807 case E_TX_INV_DSC:
808 printk(KERN_ERR "%s: Invalid descriptor address\n",
809 dev->name);
810 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
811 &regs->HostCtrl);
812 wmb();
813 break;
815 * RX events.
817 case E_RX_RNG_OUT:
818 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
819 break;
821 case E_RX_PAR_ERR:
822 printk(KERN_WARNING "%s: Receive parity error\n",
823 dev->name);
824 goto drop;
825 case E_RX_LLRC_ERR:
826 printk(KERN_WARNING "%s: Receive LLRC error\n",
827 dev->name);
828 goto drop;
829 case E_PKT_LN_ERR:
830 printk(KERN_WARNING "%s: Receive packet length "
831 "error\n", dev->name);
832 goto drop;
833 case E_DTA_CKSM_ERR:
834 printk(KERN_WARNING "%s: Data checksum error\n",
835 dev->name);
836 goto drop;
837 case E_SHT_BST:
838 printk(KERN_WARNING "%s: Unexpected short burst "
839 "error\n", dev->name);
840 goto drop;
841 case E_STATE_ERR:
842 printk(KERN_WARNING "%s: Recv. state transition"
843 " error\n", dev->name);
844 goto drop;
845 case E_UNEXP_DATA:
846 printk(KERN_WARNING "%s: Unexpected data error\n",
847 dev->name);
848 goto drop;
849 case E_LST_LNK_ERR:
850 printk(KERN_WARNING "%s: Link lost error\n",
851 dev->name);
852 goto drop;
853 case E_FRM_ERR:
854 printk(KERN_WARNING "%s: Framming Error\n",
855 dev->name);
856 goto drop;
857 case E_FLG_SYN_ERR:
858 printk(KERN_WARNING "%s: Flag sync. lost during "
859 "packet\n", dev->name);
860 goto drop;
861 case E_RX_INV_BUF:
862 printk(KERN_ERR "%s: Invalid receive buffer "
863 "address\n", dev->name);
864 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
865 &regs->HostCtrl);
866 wmb();
867 break;
868 case E_RX_INV_DSC:
869 printk(KERN_ERR "%s: Invalid receive descriptor "
870 "address\n", dev->name);
871 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
872 &regs->HostCtrl);
873 wmb();
874 break;
875 case E_RNG_BLK:
876 printk(KERN_ERR "%s: Invalid ring block\n",
877 dev->name);
878 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
879 &regs->HostCtrl);
880 wmb();
881 break;
882 drop:
883 /* Label packet to be dropped.
884 * Actual dropping occurs in rx
885 * handling.
887 * The index of packet we get to drop is
888 * the index of the packet following
889 * the bad packet. -kbf
892 u16 index = rrpriv->evt_ring[eidx].index;
893 index = (index + (RX_RING_ENTRIES - 1)) %
894 RX_RING_ENTRIES;
895 rrpriv->rx_ring[index].mode |=
896 (PACKET_BAD | PACKET_END);
898 break;
899 default:
900 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
901 dev->name, rrpriv->evt_ring[eidx].code);
903 eidx = (eidx + 1) % EVT_RING_ENTRIES;
906 rrpriv->info->evt_ctrl.pi = eidx;
907 wmb();
908 return eidx;
912 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
914 struct rr_private *rrpriv = netdev_priv(dev);
915 struct rr_regs __iomem *regs = rrpriv->regs;
917 do {
918 struct rx_desc *desc;
919 u32 pkt_len;
921 desc = &(rrpriv->rx_ring[index]);
922 pkt_len = desc->size;
923 #if (DEBUG > 2)
924 printk("index %i, rxlimit %i\n", index, rxlimit);
925 printk("len %x, mode %x\n", pkt_len, desc->mode);
926 #endif
927 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
928 dev->stats.rx_dropped++;
929 goto defer;
932 if (pkt_len > 0){
933 struct sk_buff *skb, *rx_skb;
935 rx_skb = rrpriv->rx_skbuff[index];
937 if (pkt_len < PKT_COPY_THRESHOLD) {
938 skb = alloc_skb(pkt_len, GFP_ATOMIC);
939 if (skb == NULL){
940 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
941 dev->stats.rx_dropped++;
942 goto defer;
943 } else {
944 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
945 desc->addr.addrlo,
946 pkt_len,
947 PCI_DMA_FROMDEVICE);
949 memcpy(skb_put(skb, pkt_len),
950 rx_skb->data, pkt_len);
952 pci_dma_sync_single_for_device(rrpriv->pci_dev,
953 desc->addr.addrlo,
954 pkt_len,
955 PCI_DMA_FROMDEVICE);
957 }else{
958 struct sk_buff *newskb;
960 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
961 GFP_ATOMIC);
962 if (newskb){
963 dma_addr_t addr;
965 pci_unmap_single(rrpriv->pci_dev,
966 desc->addr.addrlo, dev->mtu +
967 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
968 skb = rx_skb;
969 skb_put(skb, pkt_len);
970 rrpriv->rx_skbuff[index] = newskb;
971 addr = pci_map_single(rrpriv->pci_dev,
972 newskb->data,
973 dev->mtu + HIPPI_HLEN,
974 PCI_DMA_FROMDEVICE);
975 set_rraddr(&desc->addr, addr);
976 } else {
977 printk("%s: Out of memory, deferring "
978 "packet\n", dev->name);
979 dev->stats.rx_dropped++;
980 goto defer;
983 skb->protocol = hippi_type_trans(skb, dev);
985 netif_rx(skb); /* send it up */
987 dev->stats.rx_packets++;
988 dev->stats.rx_bytes += pkt_len;
990 defer:
991 desc->mode = 0;
992 desc->size = dev->mtu + HIPPI_HLEN;
994 if ((index & 7) == 7)
995 writel(index, &regs->IpRxPi);
997 index = (index + 1) % RX_RING_ENTRIES;
998 } while(index != rxlimit);
1000 rrpriv->cur_rx = index;
1001 wmb();
1005 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1007 struct rr_private *rrpriv;
1008 struct rr_regs __iomem *regs;
1009 struct net_device *dev = (struct net_device *)dev_id;
1010 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1012 rrpriv = netdev_priv(dev);
1013 regs = rrpriv->regs;
1015 if (!(readl(&regs->HostCtrl) & RR_INT))
1016 return IRQ_NONE;
1018 spin_lock(&rrpriv->lock);
1020 prodidx = readl(&regs->EvtPrd);
1021 txcsmr = (prodidx >> 8) & 0xff;
1022 rxlimit = (prodidx >> 16) & 0xff;
1023 prodidx &= 0xff;
1025 #if (DEBUG > 2)
1026 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1027 prodidx, rrpriv->info->evt_ctrl.pi);
1028 #endif
1030 * Order here is important. We must handle events
1031 * before doing anything else in order to catch
1032 * such things as LLRC errors, etc -kbf
1035 eidx = rrpriv->info->evt_ctrl.pi;
1036 if (prodidx != eidx)
1037 eidx = rr_handle_event(dev, prodidx, eidx);
1039 rxindex = rrpriv->cur_rx;
1040 if (rxindex != rxlimit)
1041 rx_int(dev, rxlimit, rxindex);
1043 txcon = rrpriv->dirty_tx;
1044 if (txcsmr != txcon) {
1045 do {
1046 /* Due to occational firmware TX producer/consumer out
1047 * of sync. error need to check entry in ring -kbf
1049 if(rrpriv->tx_skbuff[txcon]){
1050 struct tx_desc *desc;
1051 struct sk_buff *skb;
1053 desc = &(rrpriv->tx_ring[txcon]);
1054 skb = rrpriv->tx_skbuff[txcon];
1056 dev->stats.tx_packets++;
1057 dev->stats.tx_bytes += skb->len;
1059 pci_unmap_single(rrpriv->pci_dev,
1060 desc->addr.addrlo, skb->len,
1061 PCI_DMA_TODEVICE);
1062 dev_kfree_skb_irq(skb);
1064 rrpriv->tx_skbuff[txcon] = NULL;
1065 desc->size = 0;
1066 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1067 desc->mode = 0;
1069 txcon = (txcon + 1) % TX_RING_ENTRIES;
1070 } while (txcsmr != txcon);
1071 wmb();
1073 rrpriv->dirty_tx = txcon;
1074 if (rrpriv->tx_full && rr_if_busy(dev) &&
1075 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1076 != rrpriv->dirty_tx)){
1077 rrpriv->tx_full = 0;
1078 netif_wake_queue(dev);
1082 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1083 writel(eidx, &regs->EvtCon);
1084 wmb();
1086 spin_unlock(&rrpriv->lock);
1087 return IRQ_HANDLED;
1090 static inline void rr_raz_tx(struct rr_private *rrpriv,
1091 struct net_device *dev)
1093 int i;
1095 for (i = 0; i < TX_RING_ENTRIES; i++) {
1096 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1098 if (skb) {
1099 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1101 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1102 skb->len, PCI_DMA_TODEVICE);
1103 desc->size = 0;
1104 set_rraddr(&desc->addr, 0);
1105 dev_kfree_skb(skb);
1106 rrpriv->tx_skbuff[i] = NULL;
1112 static inline void rr_raz_rx(struct rr_private *rrpriv,
1113 struct net_device *dev)
1115 int i;
1117 for (i = 0; i < RX_RING_ENTRIES; i++) {
1118 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1120 if (skb) {
1121 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1123 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1124 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1125 desc->size = 0;
1126 set_rraddr(&desc->addr, 0);
1127 dev_kfree_skb(skb);
1128 rrpriv->rx_skbuff[i] = NULL;
1133 static void rr_timer(unsigned long data)
1135 struct net_device *dev = (struct net_device *)data;
1136 struct rr_private *rrpriv = netdev_priv(dev);
1137 struct rr_regs __iomem *regs = rrpriv->regs;
1138 unsigned long flags;
1140 if (readl(&regs->HostCtrl) & NIC_HALTED){
1141 printk("%s: Restarting nic\n", dev->name);
1142 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1143 memset(rrpriv->info, 0, sizeof(struct rr_info));
1144 wmb();
1146 rr_raz_tx(rrpriv, dev);
1147 rr_raz_rx(rrpriv, dev);
1149 if (rr_init1(dev)) {
1150 spin_lock_irqsave(&rrpriv->lock, flags);
1151 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1152 &regs->HostCtrl);
1153 spin_unlock_irqrestore(&rrpriv->lock, flags);
1156 rrpriv->timer.expires = RUN_AT(5*HZ);
1157 add_timer(&rrpriv->timer);
1161 static int rr_open(struct net_device *dev)
1163 struct rr_private *rrpriv = netdev_priv(dev);
1164 struct pci_dev *pdev = rrpriv->pci_dev;
1165 struct rr_regs __iomem *regs;
1166 int ecode = 0;
1167 unsigned long flags;
1168 dma_addr_t dma_addr;
1170 regs = rrpriv->regs;
1172 if (rrpriv->fw_rev < 0x00020000) {
1173 printk(KERN_WARNING "%s: trying to configure device with "
1174 "obsolete firmware\n", dev->name);
1175 ecode = -EBUSY;
1176 goto error;
1179 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1180 256 * sizeof(struct ring_ctrl),
1181 &dma_addr);
1182 if (!rrpriv->rx_ctrl) {
1183 ecode = -ENOMEM;
1184 goto error;
1186 rrpriv->rx_ctrl_dma = dma_addr;
1187 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1189 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1190 &dma_addr);
1191 if (!rrpriv->info) {
1192 ecode = -ENOMEM;
1193 goto error;
1195 rrpriv->info_dma = dma_addr;
1196 memset(rrpriv->info, 0, sizeof(struct rr_info));
1197 wmb();
1199 spin_lock_irqsave(&rrpriv->lock, flags);
1200 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1201 readl(&regs->HostCtrl);
1202 spin_unlock_irqrestore(&rrpriv->lock, flags);
1204 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1205 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1206 dev->name, dev->irq);
1207 ecode = -EAGAIN;
1208 goto error;
1211 if ((ecode = rr_init1(dev)))
1212 goto error;
1214 /* Set the timer to switch to check for link beat and perhaps switch
1215 to an alternate media type. */
1216 init_timer(&rrpriv->timer);
1217 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1218 rrpriv->timer.data = (unsigned long)dev;
1219 rrpriv->timer.function = &rr_timer; /* timer handler */
1220 add_timer(&rrpriv->timer);
1222 netif_start_queue(dev);
1224 return ecode;
1226 error:
1227 spin_lock_irqsave(&rrpriv->lock, flags);
1228 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1229 spin_unlock_irqrestore(&rrpriv->lock, flags);
1231 if (rrpriv->info) {
1232 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1233 rrpriv->info_dma);
1234 rrpriv->info = NULL;
1236 if (rrpriv->rx_ctrl) {
1237 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1238 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1239 rrpriv->rx_ctrl = NULL;
1242 netif_stop_queue(dev);
1244 return ecode;
1248 static void rr_dump(struct net_device *dev)
1250 struct rr_private *rrpriv;
1251 struct rr_regs __iomem *regs;
1252 u32 index, cons;
1253 short i;
1254 int len;
1256 rrpriv = netdev_priv(dev);
1257 regs = rrpriv->regs;
1259 printk("%s: dumping NIC TX rings\n", dev->name);
1261 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1262 readl(&regs->RxPrd), readl(&regs->TxPrd),
1263 readl(&regs->EvtPrd), readl(&regs->TxPi),
1264 rrpriv->info->tx_ctrl.pi);
1266 printk("Error code 0x%x\n", readl(&regs->Fail1));
1268 index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1269 cons = rrpriv->dirty_tx;
1270 printk("TX ring index %i, TX consumer %i\n",
1271 index, cons);
1273 if (rrpriv->tx_skbuff[index]){
1274 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1275 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1276 for (i = 0; i < len; i++){
1277 if (!(i & 7))
1278 printk("\n");
1279 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1281 printk("\n");
1284 if (rrpriv->tx_skbuff[cons]){
1285 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1286 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1287 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1288 rrpriv->tx_ring[cons].mode,
1289 rrpriv->tx_ring[cons].size,
1290 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1291 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1292 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1293 for (i = 0; i < len; i++){
1294 if (!(i & 7))
1295 printk("\n");
1296 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1298 printk("\n");
1301 printk("dumping TX ring info:\n");
1302 for (i = 0; i < TX_RING_ENTRIES; i++)
1303 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1304 rrpriv->tx_ring[i].mode,
1305 rrpriv->tx_ring[i].size,
1306 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1311 static int rr_close(struct net_device *dev)
1313 struct rr_private *rrpriv;
1314 struct rr_regs __iomem *regs;
1315 unsigned long flags;
1316 u32 tmp;
1317 short i;
1319 netif_stop_queue(dev);
1321 rrpriv = netdev_priv(dev);
1322 regs = rrpriv->regs;
1325 * Lock to make sure we are not cleaning up while another CPU
1326 * is handling interrupts.
1328 spin_lock_irqsave(&rrpriv->lock, flags);
1330 tmp = readl(&regs->HostCtrl);
1331 if (tmp & NIC_HALTED){
1332 printk("%s: NIC already halted\n", dev->name);
1333 rr_dump(dev);
1334 }else{
1335 tmp |= HALT_NIC | RR_CLEAR_INT;
1336 writel(tmp, &regs->HostCtrl);
1337 readl(&regs->HostCtrl);
1340 rrpriv->fw_running = 0;
1342 del_timer_sync(&rrpriv->timer);
1344 writel(0, &regs->TxPi);
1345 writel(0, &regs->IpRxPi);
1347 writel(0, &regs->EvtCon);
1348 writel(0, &regs->EvtPrd);
1350 for (i = 0; i < CMD_RING_ENTRIES; i++)
1351 writel(0, &regs->CmdRing[i]);
1353 rrpriv->info->tx_ctrl.entries = 0;
1354 rrpriv->info->cmd_ctrl.pi = 0;
1355 rrpriv->info->evt_ctrl.pi = 0;
1356 rrpriv->rx_ctrl[4].entries = 0;
1358 rr_raz_tx(rrpriv, dev);
1359 rr_raz_rx(rrpriv, dev);
1361 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1362 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1363 rrpriv->rx_ctrl = NULL;
1365 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1366 rrpriv->info, rrpriv->info_dma);
1367 rrpriv->info = NULL;
1369 free_irq(dev->irq, dev);
1370 spin_unlock_irqrestore(&rrpriv->lock, flags);
1372 return 0;
1376 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1377 struct net_device *dev)
1379 struct rr_private *rrpriv = netdev_priv(dev);
1380 struct rr_regs __iomem *regs = rrpriv->regs;
1381 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1382 struct ring_ctrl *txctrl;
1383 unsigned long flags;
1384 u32 index, len = skb->len;
1385 u32 *ifield;
1386 struct sk_buff *new_skb;
1388 if (readl(&regs->Mode) & FATAL_ERR)
1389 printk("error codes Fail1 %02x, Fail2 %02x\n",
1390 readl(&regs->Fail1), readl(&regs->Fail2));
1393 * We probably need to deal with tbusy here to prevent overruns.
1396 if (skb_headroom(skb) < 8){
1397 printk("incoming skb too small - reallocating\n");
1398 if (!(new_skb = dev_alloc_skb(len + 8))) {
1399 dev_kfree_skb(skb);
1400 netif_wake_queue(dev);
1401 return NETDEV_TX_OK;
1403 skb_reserve(new_skb, 8);
1404 skb_put(new_skb, len);
1405 skb_copy_from_linear_data(skb, new_skb->data, len);
1406 dev_kfree_skb(skb);
1407 skb = new_skb;
1410 ifield = (u32 *)skb_push(skb, 8);
1412 ifield[0] = 0;
1413 ifield[1] = hcb->ifield;
1416 * We don't need the lock before we are actually going to start
1417 * fiddling with the control blocks.
1419 spin_lock_irqsave(&rrpriv->lock, flags);
1421 txctrl = &rrpriv->info->tx_ctrl;
1423 index = txctrl->pi;
1425 rrpriv->tx_skbuff[index] = skb;
1426 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1427 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1428 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1429 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1430 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1431 wmb();
1432 writel(txctrl->pi, &regs->TxPi);
1434 if (txctrl->pi == rrpriv->dirty_tx){
1435 rrpriv->tx_full = 1;
1436 netif_stop_queue(dev);
1439 spin_unlock_irqrestore(&rrpriv->lock, flags);
1441 return NETDEV_TX_OK;
1446 * Read the firmware out of the EEPROM and put it into the SRAM
1447 * (or from user space - later)
1449 * This operation requires the NIC to be halted and is performed with
1450 * interrupts disabled and with the spinlock hold.
1452 static int rr_load_firmware(struct net_device *dev)
1454 struct rr_private *rrpriv;
1455 struct rr_regs __iomem *regs;
1456 size_t eptr, segptr;
1457 int i, j;
1458 u32 localctrl, sptr, len, tmp;
1459 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1461 rrpriv = netdev_priv(dev);
1462 regs = rrpriv->regs;
1464 if (dev->flags & IFF_UP)
1465 return -EBUSY;
1467 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1468 printk("%s: Trying to load firmware to a running NIC.\n",
1469 dev->name);
1470 return -EBUSY;
1473 localctrl = readl(&regs->LocalCtrl);
1474 writel(0, &regs->LocalCtrl);
1476 writel(0, &regs->EvtPrd);
1477 writel(0, &regs->RxPrd);
1478 writel(0, &regs->TxPrd);
1481 * First wipe the entire SRAM, otherwise we might run into all
1482 * kinds of trouble ... sigh, this took almost all afternoon
1483 * to track down ;-(
1485 io = readl(&regs->ExtIo);
1486 writel(0, &regs->ExtIo);
1487 sram_size = rr_read_eeprom_word(rrpriv, 8);
1489 for (i = 200; i < sram_size / 4; i++){
1490 writel(i * 4, &regs->WinBase);
1491 mb();
1492 writel(0, &regs->WinData);
1493 mb();
1495 writel(io, &regs->ExtIo);
1496 mb();
1498 eptr = rr_read_eeprom_word(rrpriv,
1499 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1500 eptr = ((eptr & 0x1fffff) >> 3);
1502 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1503 p2len = (p2len << 2);
1504 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1505 p2size = ((p2size & 0x1fffff) >> 3);
1507 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1508 printk("%s: eptr is invalid\n", dev->name);
1509 goto out;
1512 revision = rr_read_eeprom_word(rrpriv,
1513 offsetof(struct eeprom, manf.HeaderFmt));
1515 if (revision != 1){
1516 printk("%s: invalid firmware format (%i)\n",
1517 dev->name, revision);
1518 goto out;
1521 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1522 eptr +=4;
1523 #if (DEBUG > 1)
1524 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1525 #endif
1527 for (i = 0; i < nr_seg; i++){
1528 sptr = rr_read_eeprom_word(rrpriv, eptr);
1529 eptr += 4;
1530 len = rr_read_eeprom_word(rrpriv, eptr);
1531 eptr += 4;
1532 segptr = rr_read_eeprom_word(rrpriv, eptr);
1533 segptr = ((segptr & 0x1fffff) >> 3);
1534 eptr += 4;
1535 #if (DEBUG > 1)
1536 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1537 dev->name, i, sptr, len, segptr);
1538 #endif
1539 for (j = 0; j < len; j++){
1540 tmp = rr_read_eeprom_word(rrpriv, segptr);
1541 writel(sptr, &regs->WinBase);
1542 mb();
1543 writel(tmp, &regs->WinData);
1544 mb();
1545 segptr += 4;
1546 sptr += 4;
1550 out:
1551 writel(localctrl, &regs->LocalCtrl);
1552 mb();
1553 return 0;
1557 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1559 struct rr_private *rrpriv;
1560 unsigned char *image, *oldimage;
1561 unsigned long flags;
1562 unsigned int i;
1563 int error = -EOPNOTSUPP;
1565 rrpriv = netdev_priv(dev);
1567 switch(cmd){
1568 case SIOCRRGFW:
1569 if (!capable(CAP_SYS_RAWIO)){
1570 return -EPERM;
1573 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1574 if (!image){
1575 printk(KERN_ERR "%s: Unable to allocate memory "
1576 "for EEPROM image\n", dev->name);
1577 return -ENOMEM;
1581 if (rrpriv->fw_running){
1582 printk("%s: Firmware already running\n", dev->name);
1583 error = -EPERM;
1584 goto gf_out;
1587 spin_lock_irqsave(&rrpriv->lock, flags);
1588 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1589 spin_unlock_irqrestore(&rrpriv->lock, flags);
1590 if (i != EEPROM_BYTES){
1591 printk(KERN_ERR "%s: Error reading EEPROM\n",
1592 dev->name);
1593 error = -EFAULT;
1594 goto gf_out;
1596 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1597 if (error)
1598 error = -EFAULT;
1599 gf_out:
1600 kfree(image);
1601 return error;
1603 case SIOCRRPFW:
1604 if (!capable(CAP_SYS_RAWIO)){
1605 return -EPERM;
1608 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1609 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1610 if (!image || !oldimage) {
1611 printk(KERN_ERR "%s: Unable to allocate memory "
1612 "for EEPROM image\n", dev->name);
1613 error = -ENOMEM;
1614 goto wf_out;
1617 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1618 if (error) {
1619 error = -EFAULT;
1620 goto wf_out;
1623 if (rrpriv->fw_running){
1624 printk("%s: Firmware already running\n", dev->name);
1625 error = -EPERM;
1626 goto wf_out;
1629 printk("%s: Updating EEPROM firmware\n", dev->name);
1631 spin_lock_irqsave(&rrpriv->lock, flags);
1632 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1633 if (error)
1634 printk(KERN_ERR "%s: Error writing EEPROM\n",
1635 dev->name);
1637 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1638 spin_unlock_irqrestore(&rrpriv->lock, flags);
1640 if (i != EEPROM_BYTES)
1641 printk(KERN_ERR "%s: Error reading back EEPROM "
1642 "image\n", dev->name);
1644 error = memcmp(image, oldimage, EEPROM_BYTES);
1645 if (error){
1646 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1647 dev->name);
1648 error = -EFAULT;
1650 wf_out:
1651 kfree(oldimage);
1652 kfree(image);
1653 return error;
1655 case SIOCRRID:
1656 return put_user(0x52523032, (int __user *)rq->ifr_data);
1657 default:
1658 return error;
1662 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1663 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1664 PCI_ANY_ID, PCI_ANY_ID, },
1665 { 0,}
1667 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1669 static struct pci_driver rr_driver = {
1670 .name = "rrunner",
1671 .id_table = rr_pci_tbl,
1672 .probe = rr_init_one,
1673 .remove = __devexit_p(rr_remove_one),
1676 static int __init rr_init_module(void)
1678 return pci_register_driver(&rr_driver);
1681 static void __exit rr_cleanup_module(void)
1683 pci_unregister_driver(&rr_driver);
1686 module_init(rr_init_module);
1687 module_exit(rr_cleanup_module);