GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / net / ixgbe / ixgbe_phy.c
blob6c0d42e33f21770092668b3c3405223c3e55d09b
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
50 /**
51 * ixgbe_identify_phy_generic - Get physical layer module
52 * @hw: pointer to hardware structure
54 * Determines the physical layer module found on the current adapter.
55 **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
58 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59 u32 phy_addr;
61 if (hw->phy.type == ixgbe_phy_unknown) {
62 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63 hw->phy.mdio.prtad = phy_addr;
64 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
65 ixgbe_get_phy_id(hw);
66 hw->phy.type =
67 ixgbe_get_phy_type_from_id(hw->phy.id);
68 status = 0;
69 break;
72 /* clear value if nothing found */
73 hw->phy.mdio.prtad = 0;
74 } else {
75 status = 0;
78 return status;
81 /**
82 * ixgbe_get_phy_id - Get the phy type
83 * @hw: pointer to hardware structure
85 **/
86 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
88 u32 status;
89 u16 phy_id_high = 0;
90 u16 phy_id_low = 0;
92 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
93 &phy_id_high);
95 if (status == 0) {
96 hw->phy.id = (u32)(phy_id_high << 16);
97 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
98 &phy_id_low);
99 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
102 return status;
106 * ixgbe_get_phy_type_from_id - Get the phy type
107 * @hw: pointer to hardware structure
110 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
112 enum ixgbe_phy_type phy_type;
114 switch (phy_id) {
115 case TN1010_PHY_ID:
116 phy_type = ixgbe_phy_tn;
117 break;
118 case QT2022_PHY_ID:
119 phy_type = ixgbe_phy_qt;
120 break;
121 case ATH_PHY_ID:
122 phy_type = ixgbe_phy_nl;
123 break;
124 default:
125 phy_type = ixgbe_phy_unknown;
126 break;
129 return phy_type;
133 * ixgbe_reset_phy_generic - Performs a PHY reset
134 * @hw: pointer to hardware structure
136 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
138 /* Don't reset PHY if it's shut down due to overtemp. */
139 if (!hw->phy.reset_if_overtemp &&
140 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
141 return 0;
144 * Perform soft PHY reset to the PHY_XS.
145 * This will cause a soft reset to the PHY
147 return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
148 MDIO_CTRL1_RESET);
152 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
153 * @hw: pointer to hardware structure
154 * @reg_addr: 32 bit address of PHY register to read
155 * @phy_data: Pointer to read data from PHY register
157 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
158 u32 device_type, u16 *phy_data)
160 u32 command;
161 u32 i;
162 u32 data;
163 s32 status = 0;
164 u16 gssr;
166 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
167 gssr = IXGBE_GSSR_PHY1_SM;
168 else
169 gssr = IXGBE_GSSR_PHY0_SM;
171 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
172 status = IXGBE_ERR_SWFW_SYNC;
174 if (status == 0) {
175 /* Setup and write the address cycle command */
176 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
177 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
178 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
179 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
181 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
184 * Check every 10 usec to see if the address cycle completed.
185 * The MDI Command bit will clear when the operation is
186 * complete
188 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
189 udelay(10);
191 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
193 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
194 break;
197 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
198 hw_dbg(hw, "PHY address command did not complete.\n");
199 status = IXGBE_ERR_PHY;
202 if (status == 0) {
204 * Address cycle complete, setup and write the read
205 * command
207 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
208 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
209 (hw->phy.mdio.prtad <<
210 IXGBE_MSCA_PHY_ADDR_SHIFT) |
211 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
213 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
216 * Check every 10 usec to see if the address cycle
217 * completed. The MDI Command bit will clear when the
218 * operation is complete
220 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
221 udelay(10);
223 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
225 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
226 break;
229 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
230 hw_dbg(hw, "PHY read command didn't complete\n");
231 status = IXGBE_ERR_PHY;
232 } else {
234 * Read operation is complete. Get the data
235 * from MSRWD
237 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
238 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
239 *phy_data = (u16)(data);
243 ixgbe_release_swfw_sync(hw, gssr);
246 return status;
250 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
251 * @hw: pointer to hardware structure
252 * @reg_addr: 32 bit PHY register to write
253 * @device_type: 5 bit device type
254 * @phy_data: Data to write to the PHY register
256 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
257 u32 device_type, u16 phy_data)
259 u32 command;
260 u32 i;
261 s32 status = 0;
262 u16 gssr;
264 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
265 gssr = IXGBE_GSSR_PHY1_SM;
266 else
267 gssr = IXGBE_GSSR_PHY0_SM;
269 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
270 status = IXGBE_ERR_SWFW_SYNC;
272 if (status == 0) {
273 /* Put the data in the MDI single read and write data register*/
274 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
276 /* Setup and write the address cycle command */
277 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
278 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
279 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
280 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
282 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
285 * Check every 10 usec to see if the address cycle completed.
286 * The MDI Command bit will clear when the operation is
287 * complete
289 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
290 udelay(10);
292 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
294 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
295 break;
298 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
299 hw_dbg(hw, "PHY address cmd didn't complete\n");
300 status = IXGBE_ERR_PHY;
303 if (status == 0) {
305 * Address cycle complete, setup and write the write
306 * command
308 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
309 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
310 (hw->phy.mdio.prtad <<
311 IXGBE_MSCA_PHY_ADDR_SHIFT) |
312 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
314 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
317 * Check every 10 usec to see if the address cycle
318 * completed. The MDI Command bit will clear when the
319 * operation is complete
321 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
322 udelay(10);
324 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
326 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
327 break;
330 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
331 hw_dbg(hw, "PHY address cmd didn't complete\n");
332 status = IXGBE_ERR_PHY;
336 ixgbe_release_swfw_sync(hw, gssr);
339 return status;
343 * ixgbe_setup_phy_link_generic - Set and restart autoneg
344 * @hw: pointer to hardware structure
346 * Restart autonegotiation and PHY and waits for completion.
348 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
350 s32 status = IXGBE_NOT_IMPLEMENTED;
351 u32 time_out;
352 u32 max_time_out = 10;
353 u16 autoneg_reg;
356 * Set advertisement settings in PHY based on autoneg_advertised
357 * settings. If autoneg_advertised = 0, then advertise default values
358 * tnx devices cannot be "forced" to a autoneg 10G and fail. But can
359 * for a 1G.
361 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
363 if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
364 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
365 else
366 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
368 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
370 /* Restart PHY autonegotiation and wait for completion */
371 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
373 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
375 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
377 /* Wait for autonegotiation to finish */
378 for (time_out = 0; time_out < max_time_out; time_out++) {
379 udelay(10);
380 /* Restart PHY autonegotiation and wait for completion */
381 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
382 &autoneg_reg);
384 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
385 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
386 status = 0;
387 break;
391 if (time_out == max_time_out)
392 status = IXGBE_ERR_LINK_SETUP;
394 return status;
398 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
399 * @hw: pointer to hardware structure
400 * @speed: new link speed
401 * @autoneg: true if autonegotiation enabled
403 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
404 ixgbe_link_speed speed,
405 bool autoneg,
406 bool autoneg_wait_to_complete)
410 * Clear autoneg_advertised and set new values based on input link
411 * speed.
413 hw->phy.autoneg_advertised = 0;
415 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
416 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
418 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
419 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
421 /* Setup link based on the new speed settings */
422 hw->phy.ops.setup_link(hw);
424 return 0;
428 * ixgbe_reset_phy_nl - Performs a PHY reset
429 * @hw: pointer to hardware structure
431 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
433 u16 phy_offset, control, eword, edata, block_crc;
434 bool end_data = false;
435 u16 list_offset, data_offset;
436 u16 phy_data = 0;
437 s32 ret_val = 0;
438 u32 i;
440 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
442 /* reset the PHY and poll for completion */
443 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
444 (phy_data | MDIO_CTRL1_RESET));
446 for (i = 0; i < 100; i++) {
447 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
448 &phy_data);
449 if ((phy_data & MDIO_CTRL1_RESET) == 0)
450 break;
451 msleep(10);
454 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
455 hw_dbg(hw, "PHY reset did not complete.\n");
456 ret_val = IXGBE_ERR_PHY;
457 goto out;
460 /* Get init offsets */
461 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
462 &data_offset);
463 if (ret_val != 0)
464 goto out;
466 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
467 data_offset++;
468 while (!end_data) {
470 * Read control word from PHY init contents offset
472 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
473 control = (eword & IXGBE_CONTROL_MASK_NL) >>
474 IXGBE_CONTROL_SHIFT_NL;
475 edata = eword & IXGBE_DATA_MASK_NL;
476 switch (control) {
477 case IXGBE_DELAY_NL:
478 data_offset++;
479 hw_dbg(hw, "DELAY: %d MS\n", edata);
480 msleep(edata);
481 break;
482 case IXGBE_DATA_NL:
483 hw_dbg(hw, "DATA:\n");
484 data_offset++;
485 hw->eeprom.ops.read(hw, data_offset++,
486 &phy_offset);
487 for (i = 0; i < edata; i++) {
488 hw->eeprom.ops.read(hw, data_offset, &eword);
489 hw->phy.ops.write_reg(hw, phy_offset,
490 MDIO_MMD_PMAPMD, eword);
491 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
492 phy_offset);
493 data_offset++;
494 phy_offset++;
496 break;
497 case IXGBE_CONTROL_NL:
498 data_offset++;
499 hw_dbg(hw, "CONTROL:\n");
500 if (edata == IXGBE_CONTROL_EOL_NL) {
501 hw_dbg(hw, "EOL\n");
502 end_data = true;
503 } else if (edata == IXGBE_CONTROL_SOL_NL) {
504 hw_dbg(hw, "SOL\n");
505 } else {
506 hw_dbg(hw, "Bad control value\n");
507 ret_val = IXGBE_ERR_PHY;
508 goto out;
510 break;
511 default:
512 hw_dbg(hw, "Bad control type\n");
513 ret_val = IXGBE_ERR_PHY;
514 goto out;
518 out:
519 return ret_val;
523 * ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
524 * the PHY type.
525 * @hw: pointer to hardware structure
527 * Searches for and indentifies the SFP module. Assings appropriate PHY type.
529 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
531 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
532 u32 vendor_oui = 0;
533 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
534 u8 identifier = 0;
535 u8 comp_codes_1g = 0;
536 u8 comp_codes_10g = 0;
537 u8 oui_bytes[3] = {0, 0, 0};
538 u8 cable_tech = 0;
539 u8 cable_spec = 0;
540 u16 enforce_sfp = 0;
542 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
543 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
544 status = IXGBE_ERR_SFP_NOT_PRESENT;
545 goto out;
548 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
549 &identifier);
551 if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
552 status = IXGBE_ERR_SFP_NOT_PRESENT;
553 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
554 if (hw->phy.type != ixgbe_phy_nl) {
555 hw->phy.id = 0;
556 hw->phy.type = ixgbe_phy_unknown;
558 goto out;
561 if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
562 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
563 &comp_codes_1g);
564 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
565 &comp_codes_10g);
566 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
567 &cable_tech);
569 /* ID Module
570 * =========
571 * 0 SFP_DA_CU
572 * 1 SFP_SR
573 * 2 SFP_LR
574 * 3 SFP_DA_CORE0 - 82599-specific
575 * 4 SFP_DA_CORE1 - 82599-specific
576 * 5 SFP_SR/LR_CORE0 - 82599-specific
577 * 6 SFP_SR/LR_CORE1 - 82599-specific
578 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
579 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
580 * 9 SFP_1g_cu_CORE0 - 82599-specific
581 * 10 SFP_1g_cu_CORE1 - 82599-specific
583 if (hw->mac.type == ixgbe_mac_82598EB) {
584 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
585 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
586 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
587 hw->phy.sfp_type = ixgbe_sfp_type_sr;
588 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
589 hw->phy.sfp_type = ixgbe_sfp_type_lr;
590 else
591 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
592 } else if (hw->mac.type == ixgbe_mac_82599EB) {
593 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
594 if (hw->bus.lan_id == 0)
595 hw->phy.sfp_type =
596 ixgbe_sfp_type_da_cu_core0;
597 else
598 hw->phy.sfp_type =
599 ixgbe_sfp_type_da_cu_core1;
600 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
601 hw->phy.ops.read_i2c_eeprom(
602 hw, IXGBE_SFF_CABLE_SPEC_COMP,
603 &cable_spec);
604 if (cable_spec &
605 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
606 if (hw->bus.lan_id == 0)
607 hw->phy.sfp_type =
608 ixgbe_sfp_type_da_act_lmt_core0;
609 else
610 hw->phy.sfp_type =
611 ixgbe_sfp_type_da_act_lmt_core1;
612 } else {
613 hw->phy.sfp_type =
614 ixgbe_sfp_type_unknown;
616 } else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
617 if (hw->bus.lan_id == 0)
618 hw->phy.sfp_type =
619 ixgbe_sfp_type_srlr_core0;
620 else
621 hw->phy.sfp_type =
622 ixgbe_sfp_type_srlr_core1;
623 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
624 if (hw->bus.lan_id == 0)
625 hw->phy.sfp_type =
626 ixgbe_sfp_type_srlr_core0;
627 else
628 hw->phy.sfp_type =
629 ixgbe_sfp_type_srlr_core1;
630 else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE)
631 if (hw->bus.lan_id == 0)
632 hw->phy.sfp_type =
633 ixgbe_sfp_type_1g_cu_core0;
634 else
635 hw->phy.sfp_type =
636 ixgbe_sfp_type_1g_cu_core1;
637 else
638 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
641 if (hw->phy.sfp_type != stored_sfp_type)
642 hw->phy.sfp_setup_needed = true;
644 /* Determine if the SFP+ PHY is dual speed or not. */
645 hw->phy.multispeed_fiber = false;
646 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
647 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
648 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
649 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
650 hw->phy.multispeed_fiber = true;
652 /* Determine PHY vendor */
653 if (hw->phy.type != ixgbe_phy_nl) {
654 hw->phy.id = identifier;
655 hw->phy.ops.read_i2c_eeprom(hw,
656 IXGBE_SFF_VENDOR_OUI_BYTE0,
657 &oui_bytes[0]);
658 hw->phy.ops.read_i2c_eeprom(hw,
659 IXGBE_SFF_VENDOR_OUI_BYTE1,
660 &oui_bytes[1]);
661 hw->phy.ops.read_i2c_eeprom(hw,
662 IXGBE_SFF_VENDOR_OUI_BYTE2,
663 &oui_bytes[2]);
665 vendor_oui =
666 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
667 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
668 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
670 switch (vendor_oui) {
671 case IXGBE_SFF_VENDOR_OUI_TYCO:
672 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
673 hw->phy.type =
674 ixgbe_phy_sfp_passive_tyco;
675 break;
676 case IXGBE_SFF_VENDOR_OUI_FTL:
677 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
678 hw->phy.type = ixgbe_phy_sfp_ftl_active;
679 else
680 hw->phy.type = ixgbe_phy_sfp_ftl;
681 break;
682 case IXGBE_SFF_VENDOR_OUI_AVAGO:
683 hw->phy.type = ixgbe_phy_sfp_avago;
684 break;
685 case IXGBE_SFF_VENDOR_OUI_INTEL:
686 hw->phy.type = ixgbe_phy_sfp_intel;
687 break;
688 default:
689 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
690 hw->phy.type =
691 ixgbe_phy_sfp_passive_unknown;
692 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
693 hw->phy.type =
694 ixgbe_phy_sfp_active_unknown;
695 else
696 hw->phy.type = ixgbe_phy_sfp_unknown;
697 break;
701 /* All passive DA cables are supported */
702 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
703 IXGBE_SFF_DA_ACTIVE_CABLE)) {
704 status = 0;
705 goto out;
708 /* Verify supported 1G SFP modules */
709 if (comp_codes_10g == 0 &&
710 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
711 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0)) {
712 hw->phy.type = ixgbe_phy_sfp_unsupported;
713 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
714 goto out;
717 /* Anything else 82598-based is supported */
718 if (hw->mac.type == ixgbe_mac_82598EB) {
719 status = 0;
720 goto out;
723 /* This is guaranteed to be 82599, no need to check for NULL */
724 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
725 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
726 !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
727 (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1))) {
728 /* Make sure we're a supported PHY type */
729 if (hw->phy.type == ixgbe_phy_sfp_intel) {
730 status = 0;
731 } else {
732 hw_dbg(hw, "SFP+ module not supported\n");
733 hw->phy.type = ixgbe_phy_sfp_unsupported;
734 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
736 } else {
737 status = 0;
741 out:
742 return status;
746 * ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
747 * if it supports a given SFP+ module type, if so it returns the offsets to the
748 * phy init sequence block.
749 * @hw: pointer to hardware structure
750 * @list_offset: offset to the SFP ID list
751 * @data_offset: offset to the SFP data block
753 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
754 u16 *list_offset,
755 u16 *data_offset)
757 u16 sfp_id;
758 u16 sfp_type = hw->phy.sfp_type;
760 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
761 return IXGBE_ERR_SFP_NOT_SUPPORTED;
763 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
764 return IXGBE_ERR_SFP_NOT_PRESENT;
766 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
767 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
768 return IXGBE_ERR_SFP_NOT_SUPPORTED;
771 * Limiting active cables and 1G Phys must be initialized as
772 * SR modules
774 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
775 sfp_type == ixgbe_sfp_type_1g_cu_core0)
776 sfp_type = ixgbe_sfp_type_srlr_core0;
777 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
778 sfp_type == ixgbe_sfp_type_1g_cu_core1)
779 sfp_type = ixgbe_sfp_type_srlr_core1;
781 /* Read offset to PHY init contents */
782 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
784 if ((!*list_offset) || (*list_offset == 0xFFFF))
785 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
787 /* Shift offset to first ID word */
788 (*list_offset)++;
791 * Find the matching SFP ID in the EEPROM
792 * and program the init sequence
794 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
796 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
797 if (sfp_id == sfp_type) {
798 (*list_offset)++;
799 hw->eeprom.ops.read(hw, *list_offset, data_offset);
800 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
801 hw_dbg(hw, "SFP+ module not supported\n");
802 return IXGBE_ERR_SFP_NOT_SUPPORTED;
803 } else {
804 break;
806 } else {
807 (*list_offset) += 2;
808 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
809 return IXGBE_ERR_PHY;
813 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
814 hw_dbg(hw, "No matching SFP+ module found\n");
815 return IXGBE_ERR_SFP_NOT_SUPPORTED;
818 return 0;
822 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
823 * @hw: pointer to hardware structure
824 * @byte_offset: EEPROM byte offset to read
825 * @eeprom_data: value read
827 * Performs byte read operation to SFP module's EEPROM over I2C interface.
829 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
830 u8 *eeprom_data)
832 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
833 IXGBE_I2C_EEPROM_DEV_ADDR,
834 eeprom_data);
838 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
839 * @hw: pointer to hardware structure
840 * @byte_offset: EEPROM byte offset to write
841 * @eeprom_data: value to write
843 * Performs byte write operation to SFP module's EEPROM over I2C interface.
845 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
846 u8 eeprom_data)
848 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
849 IXGBE_I2C_EEPROM_DEV_ADDR,
850 eeprom_data);
854 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
855 * @hw: pointer to hardware structure
856 * @byte_offset: byte offset to read
857 * @data: value read
859 * Performs byte read operation to SFP module's EEPROM over I2C interface at
860 * a specified deivce address.
862 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
863 u8 dev_addr, u8 *data)
865 s32 status = 0;
866 u32 max_retry = 1;
867 u32 retry = 0;
868 bool nack = 1;
870 do {
871 ixgbe_i2c_start(hw);
873 /* Device Address and write indication */
874 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
875 if (status != 0)
876 goto fail;
878 status = ixgbe_get_i2c_ack(hw);
879 if (status != 0)
880 goto fail;
882 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
883 if (status != 0)
884 goto fail;
886 status = ixgbe_get_i2c_ack(hw);
887 if (status != 0)
888 goto fail;
890 ixgbe_i2c_start(hw);
892 /* Device Address and read indication */
893 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
894 if (status != 0)
895 goto fail;
897 status = ixgbe_get_i2c_ack(hw);
898 if (status != 0)
899 goto fail;
901 status = ixgbe_clock_in_i2c_byte(hw, data);
902 if (status != 0)
903 goto fail;
905 status = ixgbe_clock_out_i2c_bit(hw, nack);
906 if (status != 0)
907 goto fail;
909 ixgbe_i2c_stop(hw);
910 break;
912 fail:
913 ixgbe_i2c_bus_clear(hw);
914 retry++;
915 if (retry < max_retry)
916 hw_dbg(hw, "I2C byte read error - Retrying.\n");
917 else
918 hw_dbg(hw, "I2C byte read error.\n");
920 } while (retry < max_retry);
922 return status;
926 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
927 * @hw: pointer to hardware structure
928 * @byte_offset: byte offset to write
929 * @data: value to write
931 * Performs byte write operation to SFP module's EEPROM over I2C interface at
932 * a specified device address.
934 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
935 u8 dev_addr, u8 data)
937 s32 status = 0;
938 u32 max_retry = 1;
939 u32 retry = 0;
941 do {
942 ixgbe_i2c_start(hw);
944 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
945 if (status != 0)
946 goto fail;
948 status = ixgbe_get_i2c_ack(hw);
949 if (status != 0)
950 goto fail;
952 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
953 if (status != 0)
954 goto fail;
956 status = ixgbe_get_i2c_ack(hw);
957 if (status != 0)
958 goto fail;
960 status = ixgbe_clock_out_i2c_byte(hw, data);
961 if (status != 0)
962 goto fail;
964 status = ixgbe_get_i2c_ack(hw);
965 if (status != 0)
966 goto fail;
968 ixgbe_i2c_stop(hw);
969 break;
971 fail:
972 ixgbe_i2c_bus_clear(hw);
973 retry++;
974 if (retry < max_retry)
975 hw_dbg(hw, "I2C byte write error - Retrying.\n");
976 else
977 hw_dbg(hw, "I2C byte write error.\n");
978 } while (retry < max_retry);
980 return status;
984 * ixgbe_i2c_start - Sets I2C start condition
985 * @hw: pointer to hardware structure
987 * Sets I2C start condition (High -> Low on SDA while SCL is High)
989 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
991 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
993 /* Start condition must begin with data and clock high */
994 ixgbe_set_i2c_data(hw, &i2cctl, 1);
995 ixgbe_raise_i2c_clk(hw, &i2cctl);
997 /* Setup time for start condition (4.7us) */
998 udelay(IXGBE_I2C_T_SU_STA);
1000 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1002 /* Hold time for start condition (4us) */
1003 udelay(IXGBE_I2C_T_HD_STA);
1005 ixgbe_lower_i2c_clk(hw, &i2cctl);
1007 /* Minimum low period of clock is 4.7 us */
1008 udelay(IXGBE_I2C_T_LOW);
1013 * ixgbe_i2c_stop - Sets I2C stop condition
1014 * @hw: pointer to hardware structure
1016 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
1018 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1020 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1022 /* Stop condition must begin with data low and clock high */
1023 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1024 ixgbe_raise_i2c_clk(hw, &i2cctl);
1026 /* Setup time for stop condition (4us) */
1027 udelay(IXGBE_I2C_T_SU_STO);
1029 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1031 /* bus free time between stop and start (4.7us)*/
1032 udelay(IXGBE_I2C_T_BUF);
1036 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1037 * @hw: pointer to hardware structure
1038 * @data: data byte to clock in
1040 * Clocks in one byte data via I2C data/clock
1042 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1044 s32 status = 0;
1045 s32 i;
1046 bool bit = 0;
1048 for (i = 7; i >= 0; i--) {
1049 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1050 *data |= bit << i;
1052 if (status != 0)
1053 break;
1056 return status;
1060 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1061 * @hw: pointer to hardware structure
1062 * @data: data byte clocked out
1064 * Clocks out one byte data via I2C data/clock
1066 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1068 s32 status = 0;
1069 s32 i;
1070 u32 i2cctl;
1071 bool bit = 0;
1073 for (i = 7; i >= 0; i--) {
1074 bit = (data >> i) & 0x1;
1075 status = ixgbe_clock_out_i2c_bit(hw, bit);
1077 if (status != 0)
1078 break;
1081 /* Release SDA line (set high) */
1082 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1083 i2cctl |= IXGBE_I2C_DATA_OUT;
1084 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1086 return status;
1090 * ixgbe_get_i2c_ack - Polls for I2C ACK
1091 * @hw: pointer to hardware structure
1093 * Clocks in/out one bit via I2C data/clock
1095 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1097 s32 status;
1098 u32 i = 0;
1099 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1100 u32 timeout = 10;
1101 bool ack = 1;
1103 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1105 if (status != 0)
1106 goto out;
1108 /* Minimum high period of clock is 4us */
1109 udelay(IXGBE_I2C_T_HIGH);
1111 /* Poll for ACK. Note that ACK in I2C spec is
1112 * transition from 1 to 0 */
1113 for (i = 0; i < timeout; i++) {
1114 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1115 ack = ixgbe_get_i2c_data(&i2cctl);
1117 udelay(1);
1118 if (ack == 0)
1119 break;
1122 if (ack == 1) {
1123 hw_dbg(hw, "I2C ack was not received.\n");
1124 status = IXGBE_ERR_I2C;
1127 ixgbe_lower_i2c_clk(hw, &i2cctl);
1129 /* Minimum low period of clock is 4.7 us */
1130 udelay(IXGBE_I2C_T_LOW);
1132 out:
1133 return status;
1137 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1138 * @hw: pointer to hardware structure
1139 * @data: read data value
1141 * Clocks in one bit via I2C data/clock
1143 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1145 s32 status;
1146 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1148 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1150 /* Minimum high period of clock is 4us */
1151 udelay(IXGBE_I2C_T_HIGH);
1153 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1154 *data = ixgbe_get_i2c_data(&i2cctl);
1156 ixgbe_lower_i2c_clk(hw, &i2cctl);
1158 /* Minimum low period of clock is 4.7 us */
1159 udelay(IXGBE_I2C_T_LOW);
1161 return status;
1165 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1166 * @hw: pointer to hardware structure
1167 * @data: data value to write
1169 * Clocks out one bit via I2C data/clock
1171 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1173 s32 status;
1174 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1176 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1177 if (status == 0) {
1178 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1180 /* Minimum high period of clock is 4us */
1181 udelay(IXGBE_I2C_T_HIGH);
1183 ixgbe_lower_i2c_clk(hw, &i2cctl);
1185 /* Minimum low period of clock is 4.7 us.
1186 * This also takes care of the data hold time.
1188 udelay(IXGBE_I2C_T_LOW);
1189 } else {
1190 status = IXGBE_ERR_I2C;
1191 hw_dbg(hw, "I2C data was not set to %X\n", data);
1194 return status;
1197 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1198 * @hw: pointer to hardware structure
1199 * @i2cctl: Current value of I2CCTL register
1201 * Raises the I2C clock line '0'->'1'
1203 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1205 s32 status = 0;
1207 *i2cctl |= IXGBE_I2C_CLK_OUT;
1209 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1211 /* SCL rise time (1000ns) */
1212 udelay(IXGBE_I2C_T_RISE);
1214 return status;
1218 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1219 * @hw: pointer to hardware structure
1220 * @i2cctl: Current value of I2CCTL register
1222 * Lowers the I2C clock line '1'->'0'
1224 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1227 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1229 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1231 /* SCL fall time (300ns) */
1232 udelay(IXGBE_I2C_T_FALL);
1236 * ixgbe_set_i2c_data - Sets the I2C data bit
1237 * @hw: pointer to hardware structure
1238 * @i2cctl: Current value of I2CCTL register
1239 * @data: I2C data value (0 or 1) to set
1241 * Sets the I2C data bit
1243 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1245 s32 status = 0;
1247 if (data)
1248 *i2cctl |= IXGBE_I2C_DATA_OUT;
1249 else
1250 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1252 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1254 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1255 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1257 /* Verify data was set correctly */
1258 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1259 if (data != ixgbe_get_i2c_data(i2cctl)) {
1260 status = IXGBE_ERR_I2C;
1261 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1264 return status;
1268 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1269 * @hw: pointer to hardware structure
1270 * @i2cctl: Current value of I2CCTL register
1272 * Returns the I2C data bit value
1274 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1276 bool data;
1278 if (*i2cctl & IXGBE_I2C_DATA_IN)
1279 data = 1;
1280 else
1281 data = 0;
1283 return data;
1287 * ixgbe_i2c_bus_clear - Clears the I2C bus
1288 * @hw: pointer to hardware structure
1290 * Clears the I2C bus by sending nine clock pulses.
1291 * Used when data line is stuck low.
1293 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1295 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1296 u32 i;
1298 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1300 for (i = 0; i < 9; i++) {
1301 ixgbe_raise_i2c_clk(hw, &i2cctl);
1303 /* Min high period of clock is 4us */
1304 udelay(IXGBE_I2C_T_HIGH);
1306 ixgbe_lower_i2c_clk(hw, &i2cctl);
1308 /* Min low period of clock is 4.7us*/
1309 udelay(IXGBE_I2C_T_LOW);
1312 /* Put the i2c bus back to default state */
1313 ixgbe_i2c_stop(hw);
1317 * ixgbe_check_phy_link_tnx - Determine link and speed status
1318 * @hw: pointer to hardware structure
1320 * Reads the VS1 register to determine if link is up and the current speed for
1321 * the PHY.
1323 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1324 bool *link_up)
1326 s32 status = 0;
1327 u32 time_out;
1328 u32 max_time_out = 10;
1329 u16 phy_link = 0;
1330 u16 phy_speed = 0;
1331 u16 phy_data = 0;
1333 /* Initialize speed and link to default case */
1334 *link_up = false;
1335 *speed = IXGBE_LINK_SPEED_10GB_FULL;
1338 * Check current speed and link status of the PHY register.
1339 * This is a vendor specific register and may have to
1340 * be changed for other copper PHYs.
1342 for (time_out = 0; time_out < max_time_out; time_out++) {
1343 udelay(10);
1344 status = hw->phy.ops.read_reg(hw,
1345 IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1346 MDIO_MMD_VEND1,
1347 &phy_data);
1348 phy_link = phy_data &
1349 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1350 phy_speed = phy_data &
1351 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1352 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1353 *link_up = true;
1354 if (phy_speed ==
1355 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1356 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1357 break;
1361 return status;
1365 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1366 * @hw: pointer to hardware structure
1367 * @firmware_version: pointer to the PHY Firmware Version
1369 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1370 u16 *firmware_version)
1372 s32 status = 0;
1374 status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1375 firmware_version);
1377 return status;
1381 * ixgbe_tn_check_overtemp - Checks if an overtemp occured.
1382 * @hw: pointer to hardware structure
1384 * Checks if the LASI temp alarm status was triggered due to overtemp
1386 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1388 s32 status = 0;
1389 u16 phy_data = 0;
1391 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1392 goto out;
1394 /* Check that the LASI temp alarm status was triggered */
1395 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1396 MDIO_MMD_PMAPMD, &phy_data);
1398 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1399 goto out;
1401 status = IXGBE_ERR_OVERTEMP;
1402 out:
1403 return status;