GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / mtd / nand / omap2.c
blob03848a0987bd80cff6c48b3fb7492e8ed4826e07
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #define CONFIG_MTD_NAND_OMAP_HWECC
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
23 #include <plat/dma.h>
24 #include <plat/gpmc.h>
25 #include <plat/nand.h>
27 #define DRIVER_NAME "omap2-nand"
29 #define NAND_Ecc_P1e (1 << 0)
30 #define NAND_Ecc_P2e (1 << 1)
31 #define NAND_Ecc_P4e (1 << 2)
32 #define NAND_Ecc_P8e (1 << 3)
33 #define NAND_Ecc_P16e (1 << 4)
34 #define NAND_Ecc_P32e (1 << 5)
35 #define NAND_Ecc_P64e (1 << 6)
36 #define NAND_Ecc_P128e (1 << 7)
37 #define NAND_Ecc_P256e (1 << 8)
38 #define NAND_Ecc_P512e (1 << 9)
39 #define NAND_Ecc_P1024e (1 << 10)
40 #define NAND_Ecc_P2048e (1 << 11)
42 #define NAND_Ecc_P1o (1 << 16)
43 #define NAND_Ecc_P2o (1 << 17)
44 #define NAND_Ecc_P4o (1 << 18)
45 #define NAND_Ecc_P8o (1 << 19)
46 #define NAND_Ecc_P16o (1 << 20)
47 #define NAND_Ecc_P32o (1 << 21)
48 #define NAND_Ecc_P64o (1 << 22)
49 #define NAND_Ecc_P128o (1 << 23)
50 #define NAND_Ecc_P256o (1 << 24)
51 #define NAND_Ecc_P512o (1 << 25)
52 #define NAND_Ecc_P1024o (1 << 26)
53 #define NAND_Ecc_P2048o (1 << 27)
55 #define TF(value) (value ? 1 : 0)
57 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
58 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
59 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
60 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
61 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
62 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
63 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
64 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
66 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
67 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
68 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
69 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
70 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
71 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
72 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
73 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
75 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
76 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
77 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
78 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
79 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
80 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
81 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
82 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
84 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
85 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
86 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
87 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
88 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
89 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
90 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
91 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
93 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
94 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
96 #ifdef CONFIG_MTD_PARTITIONS
97 static const char *part_probes[] = { "cmdlinepart", NULL };
98 #endif
100 #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH
101 static int use_prefetch = 1;
103 /* "modprobe ... use_prefetch=0" etc */
104 module_param(use_prefetch, bool, 0);
105 MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH");
107 #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
108 static int use_dma = 1;
110 /* "modprobe ... use_dma=0" etc */
111 module_param(use_dma, bool, 0);
112 MODULE_PARM_DESC(use_dma, "enable/disable use of DMA");
113 #else
114 const int use_dma;
115 #endif
116 #else
117 const int use_prefetch;
118 const int use_dma;
119 #endif
121 struct omap_nand_info {
122 struct nand_hw_control controller;
123 struct omap_nand_platform_data *pdata;
124 struct mtd_info mtd;
125 struct mtd_partition *parts;
126 struct nand_chip nand;
127 struct platform_device *pdev;
129 int gpmc_cs;
130 unsigned long phys_base;
131 struct completion comp;
132 int dma_ch;
136 * omap_hwcontrol - hardware specific access to control-lines
137 * @mtd: MTD device structure
138 * @cmd: command to device
139 * @ctrl:
140 * NAND_NCE: bit 0 -> don't care
141 * NAND_CLE: bit 1 -> Command Latch
142 * NAND_ALE: bit 2 -> Address Latch
144 * NOTE: boards may use different bits for these!!
146 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
148 struct omap_nand_info *info = container_of(mtd,
149 struct omap_nand_info, mtd);
151 if (cmd != NAND_CMD_NONE) {
152 if (ctrl & NAND_CLE)
153 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
155 else if (ctrl & NAND_ALE)
156 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
158 else /* NAND_NCE */
159 gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
164 * omap_read_buf8 - read data from NAND controller into buffer
165 * @mtd: MTD device structure
166 * @buf: buffer to store date
167 * @len: number of bytes to read
169 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
171 struct nand_chip *nand = mtd->priv;
173 ioread8_rep(nand->IO_ADDR_R, buf, len);
177 * omap_write_buf8 - write buffer to NAND controller
178 * @mtd: MTD device structure
179 * @buf: data buffer
180 * @len: number of bytes to write
182 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
184 struct omap_nand_info *info = container_of(mtd,
185 struct omap_nand_info, mtd);
186 u_char *p = (u_char *)buf;
187 u32 status = 0;
189 while (len--) {
190 iowrite8(*p++, info->nand.IO_ADDR_W);
191 /* wait until buffer is available for write */
192 do {
193 status = gpmc_read_status(GPMC_STATUS_BUFFER);
194 } while (!status);
199 * omap_read_buf16 - read data from NAND controller into buffer
200 * @mtd: MTD device structure
201 * @buf: buffer to store date
202 * @len: number of bytes to read
204 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
206 struct nand_chip *nand = mtd->priv;
208 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
212 * omap_write_buf16 - write buffer to NAND controller
213 * @mtd: MTD device structure
214 * @buf: data buffer
215 * @len: number of bytes to write
217 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
219 struct omap_nand_info *info = container_of(mtd,
220 struct omap_nand_info, mtd);
221 u16 *p = (u16 *) buf;
222 u32 status = 0;
223 len >>= 1;
225 while (len--) {
226 iowrite16(*p++, info->nand.IO_ADDR_W);
227 /* wait until buffer is available for write */
228 do {
229 status = gpmc_read_status(GPMC_STATUS_BUFFER);
230 } while (!status);
235 * omap_read_buf_pref - read data from NAND controller into buffer
236 * @mtd: MTD device structure
237 * @buf: buffer to store date
238 * @len: number of bytes to read
240 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
242 struct omap_nand_info *info = container_of(mtd,
243 struct omap_nand_info, mtd);
244 uint32_t r_count = 0;
245 int ret = 0;
246 u32 *p = (u32 *)buf;
248 /* take care of subpage reads */
249 if (len % 4) {
250 if (info->nand.options & NAND_BUSWIDTH_16)
251 omap_read_buf16(mtd, buf, len % 4);
252 else
253 omap_read_buf8(mtd, buf, len % 4);
254 p = (u32 *) (buf + len % 4);
255 len -= len % 4;
258 /* configure and start prefetch transfer */
259 ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0);
260 if (ret) {
261 /* PFPW engine is busy, use cpu copy method */
262 if (info->nand.options & NAND_BUSWIDTH_16)
263 omap_read_buf16(mtd, buf, len);
264 else
265 omap_read_buf8(mtd, buf, len);
266 } else {
267 p = (u32 *) buf;
268 do {
269 r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
270 r_count = r_count >> 2;
271 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
272 p += r_count;
273 len -= r_count << 2;
274 } while (len);
275 /* disable and stop the PFPW engine */
276 gpmc_prefetch_reset(info->gpmc_cs);
281 * omap_write_buf_pref - write buffer to NAND controller
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
286 static void omap_write_buf_pref(struct mtd_info *mtd,
287 const u_char *buf, int len)
289 struct omap_nand_info *info = container_of(mtd,
290 struct omap_nand_info, mtd);
291 uint32_t pref_count = 0, w_count = 0;
292 int i = 0, ret = 0;
293 u16 *p;
295 /* take care of subpage writes */
296 if (len % 2 != 0) {
297 writeb(*buf, info->nand.IO_ADDR_W);
298 p = (u16 *)(buf + 1);
299 len--;
302 /* configure and start prefetch transfer */
303 ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1);
304 if (ret) {
305 /* PFPW engine is busy, use cpu copy method */
306 if (info->nand.options & NAND_BUSWIDTH_16)
307 omap_write_buf16(mtd, buf, len);
308 else
309 omap_write_buf8(mtd, buf, len);
310 } else {
311 p = (u16 *) buf;
312 while (len) {
313 w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
314 w_count = w_count >> 1;
315 for (i = 0; (i < w_count) && len; i++, len -= 2)
316 iowrite16(*p++, info->nand.IO_ADDR_W);
318 /* wait for data to flushed-out before reset the prefetch */
319 do {
320 pref_count = gpmc_read_status(GPMC_PREFETCH_COUNT);
321 } while (pref_count);
322 /* disable and stop the PFPW engine */
323 gpmc_prefetch_reset(info->gpmc_cs);
327 #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
329 * omap_nand_dma_cb: callback on the completion of dma transfer
330 * @lch: logical channel
331 * @ch_satuts: channel status
332 * @data: pointer to completion data structure
334 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
336 complete((struct completion *) data);
340 * omap_nand_dma_transfer: configer and start dma transfer
341 * @mtd: MTD device structure
342 * @addr: virtual address in RAM of source/destination
343 * @len: number of data bytes to be transferred
344 * @is_write: flag for read/write operation
346 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
347 unsigned int len, int is_write)
349 struct omap_nand_info *info = container_of(mtd,
350 struct omap_nand_info, mtd);
351 uint32_t prefetch_status = 0;
352 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
353 DMA_FROM_DEVICE;
354 dma_addr_t dma_addr;
355 int ret;
357 /* The fifo depth is 64 bytes. We have a sync at each frame and frame
358 * length is 64 bytes.
360 int buf_len = len >> 6;
362 if (addr >= high_memory) {
363 struct page *p1;
365 if (((size_t)addr & PAGE_MASK) !=
366 ((size_t)(addr + len - 1) & PAGE_MASK))
367 goto out_copy;
368 p1 = vmalloc_to_page(addr);
369 if (!p1)
370 goto out_copy;
371 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
374 dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
375 if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
376 dev_err(&info->pdev->dev,
377 "Couldn't DMA map a %d byte buffer\n", len);
378 goto out_copy;
381 if (is_write) {
382 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
383 info->phys_base, 0, 0);
384 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
385 dma_addr, 0, 0);
386 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
387 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
388 OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
389 } else {
390 omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
391 info->phys_base, 0, 0);
392 omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
393 dma_addr, 0, 0);
394 omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
395 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
396 OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
398 /* configure and start prefetch transfer */
399 ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write);
400 if (ret)
401 /* PFPW engine is busy, use cpu copy methode */
402 goto out_copy;
404 init_completion(&info->comp);
406 omap_start_dma(info->dma_ch);
408 /* setup and start DMA using dma_addr */
409 wait_for_completion(&info->comp);
411 do {
412 prefetch_status = gpmc_read_status(GPMC_PREFETCH_COUNT);
413 } while (prefetch_status);
414 /* disable and stop the PFPW engine */
415 gpmc_prefetch_reset(info->gpmc_cs);
417 dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
418 return 0;
420 out_copy:
421 if (info->nand.options & NAND_BUSWIDTH_16)
422 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
423 : omap_write_buf16(mtd, (u_char *) addr, len);
424 else
425 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
426 : omap_write_buf8(mtd, (u_char *) addr, len);
427 return 0;
429 #else
430 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {}
431 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
432 unsigned int len, int is_write)
434 return 0;
436 #endif
439 * omap_read_buf_dma_pref - read data from NAND controller into buffer
440 * @mtd: MTD device structure
441 * @buf: buffer to store date
442 * @len: number of bytes to read
444 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
446 if (len <= mtd->oobsize)
447 omap_read_buf_pref(mtd, buf, len);
448 else
449 /* start transfer in DMA mode */
450 omap_nand_dma_transfer(mtd, buf, len, 0x0);
454 * omap_write_buf_dma_pref - write buffer to NAND controller
455 * @mtd: MTD device structure
456 * @buf: data buffer
457 * @len: number of bytes to write
459 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
460 const u_char *buf, int len)
462 if (len <= mtd->oobsize)
463 omap_write_buf_pref(mtd, buf, len);
464 else
465 /* start transfer in DMA mode */
466 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
470 * omap_verify_buf - Verify chip data against buffer
471 * @mtd: MTD device structure
472 * @buf: buffer containing the data to compare
473 * @len: number of bytes to compare
475 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
477 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
478 mtd);
479 u16 *p = (u16 *) buf;
481 len >>= 1;
482 while (len--) {
483 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
484 return -EFAULT;
487 return 0;
490 #ifdef CONFIG_MTD_NAND_OMAP_HWECC
493 * gen_true_ecc - This function will generate true ECC value
494 * @ecc_buf: buffer to store ecc code
496 * This generated true ECC value can be used when correcting
497 * data read from NAND flash memory core
499 static void gen_true_ecc(u8 *ecc_buf)
501 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
502 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
504 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
505 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
506 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
507 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
508 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
509 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
513 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
514 * @ecc_data1: ecc code from nand spare area
515 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
516 * @page_data: page data
518 * This function compares two ECC's and indicates if there is an error.
519 * If the error can be corrected it will be corrected to the buffer.
521 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
522 u8 *ecc_data2, /* read from register */
523 u8 *page_data)
525 uint i;
526 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
527 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
528 u8 ecc_bit[24];
529 u8 ecc_sum = 0;
530 u8 find_bit = 0;
531 uint find_byte = 0;
532 int isEccFF;
534 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
536 gen_true_ecc(ecc_data1);
537 gen_true_ecc(ecc_data2);
539 for (i = 0; i <= 2; i++) {
540 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
541 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
544 for (i = 0; i < 8; i++) {
545 tmp0_bit[i] = *ecc_data1 % 2;
546 *ecc_data1 = *ecc_data1 / 2;
549 for (i = 0; i < 8; i++) {
550 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
551 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
554 for (i = 0; i < 8; i++) {
555 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
556 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
559 for (i = 0; i < 8; i++) {
560 comp0_bit[i] = *ecc_data2 % 2;
561 *ecc_data2 = *ecc_data2 / 2;
564 for (i = 0; i < 8; i++) {
565 comp1_bit[i] = *(ecc_data2 + 1) % 2;
566 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
569 for (i = 0; i < 8; i++) {
570 comp2_bit[i] = *(ecc_data2 + 2) % 2;
571 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
574 for (i = 0; i < 6; i++)
575 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
577 for (i = 0; i < 8; i++)
578 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
580 for (i = 0; i < 8; i++)
581 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
583 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
584 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
586 for (i = 0; i < 24; i++)
587 ecc_sum += ecc_bit[i];
589 switch (ecc_sum) {
590 case 0:
591 /* Not reached because this function is not called if
592 * ECC values are equal
594 return 0;
596 case 1:
597 /* Uncorrectable error */
598 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
599 return -1;
601 case 11:
602 /* UN-Correctable error */
603 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
604 return -1;
606 case 12:
607 /* Correctable error */
608 find_byte = (ecc_bit[23] << 8) +
609 (ecc_bit[21] << 7) +
610 (ecc_bit[19] << 6) +
611 (ecc_bit[17] << 5) +
612 (ecc_bit[15] << 4) +
613 (ecc_bit[13] << 3) +
614 (ecc_bit[11] << 2) +
615 (ecc_bit[9] << 1) +
616 ecc_bit[7];
618 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
620 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
621 "offset: %d, bit: %d\n", find_byte, find_bit);
623 page_data[find_byte] ^= (1 << find_bit);
625 return 0;
626 default:
627 if (isEccFF) {
628 if (ecc_data2[0] == 0 &&
629 ecc_data2[1] == 0 &&
630 ecc_data2[2] == 0)
631 return 0;
633 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
634 return -1;
639 * omap_correct_data - Compares the ECC read with HW generated ECC
640 * @mtd: MTD device structure
641 * @dat: page data
642 * @read_ecc: ecc read from nand flash
643 * @calc_ecc: ecc read from HW ECC registers
645 * Compares the ecc read from nand spare area with ECC registers values
646 * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
647 * and correction.
649 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
650 u_char *read_ecc, u_char *calc_ecc)
652 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
653 mtd);
654 int blockCnt = 0, i = 0, ret = 0;
656 /* Ex NAND_ECC_HW12_2048 */
657 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
658 (info->nand.ecc.size == 2048))
659 blockCnt = 4;
660 else
661 blockCnt = 1;
663 for (i = 0; i < blockCnt; i++) {
664 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
665 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
666 if (ret < 0)
667 return ret;
669 read_ecc += 3;
670 calc_ecc += 3;
671 dat += 512;
673 return 0;
677 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
678 * @mtd: MTD device structure
679 * @dat: The pointer to data on which ecc is computed
680 * @ecc_code: The ecc_code buffer
682 * Using noninverted ECC can be considered ugly since writing a blank
683 * page ie. padding will clear the ECC bytes. This is no problem as long
684 * nobody is trying to write data on the seemingly unused page. Reading
685 * an erased page will produce an ECC mismatch between generated and read
686 * ECC bytes that has to be dealt with separately.
688 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
689 u_char *ecc_code)
691 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
692 mtd);
693 return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
697 * omap_enable_hwecc - This function enables the hardware ecc functionality
698 * @mtd: MTD device structure
699 * @mode: Read/Write mode
701 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
703 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
704 mtd);
705 struct nand_chip *chip = mtd->priv;
706 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
708 gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
711 #endif
714 * omap_wait - wait until the command is done
715 * @mtd: MTD device structure
716 * @chip: NAND Chip structure
718 * Wait function is called during Program and erase operations and
719 * the way it is called from MTD layer, we should wait till the NAND
720 * chip is ready after the programming/erase operation has completed.
722 * Erase can take up to 400ms and program up to 20ms according to
723 * general NAND and SmartMedia specs
725 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
727 struct nand_chip *this = mtd->priv;
728 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
729 mtd);
730 unsigned long timeo = jiffies;
731 int status = NAND_STATUS_FAIL, state = this->state;
733 if (state == FL_ERASING)
734 timeo += (HZ * 400) / 1000;
735 else
736 timeo += (HZ * 20) / 1000;
738 gpmc_nand_write(info->gpmc_cs,
739 GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
740 while (time_before(jiffies, timeo)) {
741 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
742 if (status & NAND_STATUS_READY)
743 break;
744 cond_resched();
746 return status;
750 * omap_dev_ready - calls the platform specific dev_ready function
751 * @mtd: MTD device structure
753 static int omap_dev_ready(struct mtd_info *mtd)
755 unsigned int val = 0;
756 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
757 mtd);
759 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
760 if ((val & 0x100) == 0x100) {
761 /* Clear IRQ Interrupt */
762 val |= 0x100;
763 val &= ~(0x0);
764 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
765 } else {
766 unsigned int cnt = 0;
767 while (cnt++ < 0x1FF) {
768 if ((val & 0x100) == 0x100)
769 return 0;
770 val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
774 return 1;
777 static int __devinit omap_nand_probe(struct platform_device *pdev)
779 struct omap_nand_info *info;
780 struct omap_nand_platform_data *pdata;
781 int err;
783 pdata = pdev->dev.platform_data;
784 if (pdata == NULL) {
785 dev_err(&pdev->dev, "platform data missing\n");
786 return -ENODEV;
789 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
790 if (!info)
791 return -ENOMEM;
793 platform_set_drvdata(pdev, info);
795 spin_lock_init(&info->controller.lock);
796 init_waitqueue_head(&info->controller.wq);
798 info->pdev = pdev;
800 info->gpmc_cs = pdata->cs;
801 info->phys_base = pdata->phys_base;
803 info->mtd.priv = &info->nand;
804 info->mtd.name = dev_name(&pdev->dev);
805 info->mtd.owner = THIS_MODULE;
807 info->nand.options |= pdata->devsize ? NAND_BUSWIDTH_16 : 0;
808 info->nand.options |= NAND_SKIP_BBTSCAN;
810 /* NAND write protect off */
811 gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
813 if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
814 pdev->dev.driver->name)) {
815 err = -EBUSY;
816 goto out_free_info;
819 info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
820 if (!info->nand.IO_ADDR_R) {
821 err = -ENOMEM;
822 goto out_release_mem_region;
825 info->nand.controller = &info->controller;
827 info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
828 info->nand.cmd_ctrl = omap_hwcontrol;
831 * If RDY/BSY line is connected to OMAP then use the omap ready
832 * funcrtion and the generic nand_wait function which reads the status
833 * register after monitoring the RDY/BSY line.Otherwise use a standard
834 * chip delay which is slightly more than tR (AC Timing) of the NAND
835 * device and read status register until you get a failure or success
837 if (pdata->dev_ready) {
838 info->nand.dev_ready = omap_dev_ready;
839 info->nand.chip_delay = 0;
840 } else {
841 info->nand.waitfunc = omap_wait;
842 info->nand.chip_delay = 50;
845 if (use_prefetch) {
847 info->nand.read_buf = omap_read_buf_pref;
848 info->nand.write_buf = omap_write_buf_pref;
849 if (use_dma) {
850 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
851 omap_nand_dma_cb, &info->comp, &info->dma_ch);
852 if (err < 0) {
853 info->dma_ch = -1;
854 printk(KERN_WARNING "DMA request failed."
855 " Non-dma data transfer mode\n");
856 } else {
857 omap_set_dma_dest_burst_mode(info->dma_ch,
858 OMAP_DMA_DATA_BURST_16);
859 omap_set_dma_src_burst_mode(info->dma_ch,
860 OMAP_DMA_DATA_BURST_16);
862 info->nand.read_buf = omap_read_buf_dma_pref;
863 info->nand.write_buf = omap_write_buf_dma_pref;
866 } else {
867 if (info->nand.options & NAND_BUSWIDTH_16) {
868 info->nand.read_buf = omap_read_buf16;
869 info->nand.write_buf = omap_write_buf16;
870 } else {
871 info->nand.read_buf = omap_read_buf8;
872 info->nand.write_buf = omap_write_buf8;
875 info->nand.verify_buf = omap_verify_buf;
877 #ifdef CONFIG_MTD_NAND_OMAP_HWECC
878 info->nand.ecc.bytes = 3;
879 info->nand.ecc.size = 512;
880 info->nand.ecc.calculate = omap_calculate_ecc;
881 info->nand.ecc.hwctl = omap_enable_hwecc;
882 info->nand.ecc.correct = omap_correct_data;
883 info->nand.ecc.mode = NAND_ECC_HW;
885 #else
886 info->nand.ecc.mode = NAND_ECC_SOFT;
887 #endif
889 /* DIP switches on some boards change between 8 and 16 bit
890 * bus widths for flash. Try the other width if the first try fails.
892 if (nand_scan(&info->mtd, 1)) {
893 info->nand.options ^= NAND_BUSWIDTH_16;
894 if (nand_scan(&info->mtd, 1)) {
895 err = -ENXIO;
896 goto out_release_mem_region;
900 #ifdef CONFIG_MTD_PARTITIONS
901 err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
902 if (err > 0)
903 add_mtd_partitions(&info->mtd, info->parts, err);
904 else if (pdata->parts)
905 add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
906 else
907 #endif
908 add_mtd_device(&info->mtd);
910 platform_set_drvdata(pdev, &info->mtd);
912 return 0;
914 out_release_mem_region:
915 release_mem_region(info->phys_base, NAND_IO_SIZE);
916 out_free_info:
917 kfree(info);
919 return err;
922 static int omap_nand_remove(struct platform_device *pdev)
924 struct mtd_info *mtd = platform_get_drvdata(pdev);
925 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
926 mtd);
928 platform_set_drvdata(pdev, NULL);
929 if (use_dma)
930 omap_free_dma(info->dma_ch);
932 /* Release NAND device, its internal structures and partitions */
933 nand_release(&info->mtd);
934 iounmap(info->nand.IO_ADDR_R);
935 kfree(&info->mtd);
936 return 0;
939 static struct platform_driver omap_nand_driver = {
940 .probe = omap_nand_probe,
941 .remove = omap_nand_remove,
942 .driver = {
943 .name = DRIVER_NAME,
944 .owner = THIS_MODULE,
948 static int __init omap_nand_init(void)
950 printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
952 /* This check is required if driver is being
953 * loaded run time as a module
955 if ((1 == use_dma) && (0 == use_prefetch)) {
956 printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 "
957 "without use_prefetch'. Prefetch will not be"
958 " used in either mode (mpu or dma)\n");
960 return platform_driver_register(&omap_nand_driver);
963 static void __exit omap_nand_exit(void)
965 platform_driver_unregister(&omap_nand_driver);
968 module_init(omap_nand_init);
969 module_exit(omap_nand_exit);
971 MODULE_ALIAS(DRIVER_NAME);
972 MODULE_LICENSE("GPL");
973 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");