GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / mmc / core / core.c
blob812a013e920c6e6f12776feaaa55ae0ecdde410b
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/host.h>
28 #include <linux/mmc/mmc.h>
29 #include <linux/mmc/sd.h>
31 #include "core.h"
32 #include "bus.h"
33 #include "host.h"
34 #include "sdio_bus.h"
36 #include "mmc_ops.h"
37 #include "sd_ops.h"
38 #include "sdio_ops.h"
40 static struct workqueue_struct *workqueue;
43 * Enabling software CRCs on the data blocks can be a significant (30%)
44 * performance cost, and for other reasons may not always be desired.
45 * So we allow it it to be disabled.
47 int use_spi_crc = 1;
48 module_param(use_spi_crc, bool, 0);
51 * We normally treat cards as removed during suspend if they are not
52 * known to be on a non-removable bus, to avoid the risk of writing
53 * back data to a different card after resume. Allow this to be
54 * overridden if necessary.
56 #ifdef CONFIG_MMC_UNSAFE_RESUME
57 int mmc_assume_removable;
58 #else
59 int mmc_assume_removable = 1;
60 #endif
61 module_param_named(removable, mmc_assume_removable, bool, 0644);
62 MODULE_PARM_DESC(
63 removable,
64 "MMC/SD cards are removable and may be removed during suspend");
67 * Internal function. Schedule delayed work in the MMC work queue.
69 static int mmc_schedule_delayed_work(struct delayed_work *work,
70 unsigned long delay)
72 return queue_delayed_work(workqueue, work, delay);
76 * Internal function. Flush all scheduled work from the MMC work queue.
78 static void mmc_flush_scheduled_work(void)
80 flush_workqueue(workqueue);
83 /**
84 * mmc_request_done - finish processing an MMC request
85 * @host: MMC host which completed request
86 * @mrq: MMC request which request
88 * MMC drivers should call this function when they have completed
89 * their processing of a request.
91 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
93 struct mmc_command *cmd = mrq->cmd;
94 int err = cmd->error;
96 if (err && cmd->retries && mmc_host_is_spi(host)) {
97 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
98 cmd->retries = 0;
101 if (err && cmd->retries) {
102 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
103 mmc_hostname(host), cmd->opcode, err);
105 cmd->retries--;
106 cmd->error = 0;
107 host->ops->request(host, mrq);
108 } else {
109 led_trigger_event(host->led, LED_OFF);
111 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
112 mmc_hostname(host), cmd->opcode, err,
113 cmd->resp[0], cmd->resp[1],
114 cmd->resp[2], cmd->resp[3]);
116 if (mrq->data) {
117 pr_debug("%s: %d bytes transferred: %d\n",
118 mmc_hostname(host),
119 mrq->data->bytes_xfered, mrq->data->error);
122 if (mrq->stop) {
123 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
124 mmc_hostname(host), mrq->stop->opcode,
125 mrq->stop->error,
126 mrq->stop->resp[0], mrq->stop->resp[1],
127 mrq->stop->resp[2], mrq->stop->resp[3]);
130 if (mrq->done)
131 mrq->done(mrq);
135 EXPORT_SYMBOL(mmc_request_done);
137 static void
138 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
140 #ifdef CONFIG_MMC_DEBUG
141 unsigned int i, sz;
142 struct scatterlist *sg;
143 #endif
145 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
146 mmc_hostname(host), mrq->cmd->opcode,
147 mrq->cmd->arg, mrq->cmd->flags);
149 if (mrq->data) {
150 pr_debug("%s: blksz %d blocks %d flags %08x "
151 "tsac %d ms nsac %d\n",
152 mmc_hostname(host), mrq->data->blksz,
153 mrq->data->blocks, mrq->data->flags,
154 mrq->data->timeout_ns / 1000000,
155 mrq->data->timeout_clks);
158 if (mrq->stop) {
159 pr_debug("%s: CMD%u arg %08x flags %08x\n",
160 mmc_hostname(host), mrq->stop->opcode,
161 mrq->stop->arg, mrq->stop->flags);
164 WARN_ON(!host->claimed);
166 led_trigger_event(host->led, LED_FULL);
168 mrq->cmd->error = 0;
169 mrq->cmd->mrq = mrq;
170 if (mrq->data) {
171 BUG_ON(mrq->data->blksz > host->max_blk_size);
172 BUG_ON(mrq->data->blocks > host->max_blk_count);
173 BUG_ON(mrq->data->blocks * mrq->data->blksz >
174 host->max_req_size);
176 #ifdef CONFIG_MMC_DEBUG
177 sz = 0;
178 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
179 sz += sg->length;
180 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
181 #endif
183 mrq->cmd->data = mrq->data;
184 mrq->data->error = 0;
185 mrq->data->mrq = mrq;
186 if (mrq->stop) {
187 mrq->data->stop = mrq->stop;
188 mrq->stop->error = 0;
189 mrq->stop->mrq = mrq;
192 host->ops->request(host, mrq);
195 static void mmc_wait_done(struct mmc_request *mrq)
197 complete(mrq->done_data);
201 * mmc_wait_for_req - start a request and wait for completion
202 * @host: MMC host to start command
203 * @mrq: MMC request to start
205 * Start a new MMC custom command request for a host, and wait
206 * for the command to complete. Does not attempt to parse the
207 * response.
209 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
211 DECLARE_COMPLETION_ONSTACK(complete);
213 mrq->done_data = &complete;
214 mrq->done = mmc_wait_done;
216 mmc_start_request(host, mrq);
218 wait_for_completion(&complete);
221 EXPORT_SYMBOL(mmc_wait_for_req);
224 * mmc_wait_for_cmd - start a command and wait for completion
225 * @host: MMC host to start command
226 * @cmd: MMC command to start
227 * @retries: maximum number of retries
229 * Start a new MMC command for a host, and wait for the command
230 * to complete. Return any error that occurred while the command
231 * was executing. Do not attempt to parse the response.
233 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
235 struct mmc_request mrq;
237 WARN_ON(!host->claimed);
239 memset(&mrq, 0, sizeof(struct mmc_request));
241 memset(cmd->resp, 0, sizeof(cmd->resp));
242 cmd->retries = retries;
244 mrq.cmd = cmd;
245 cmd->data = NULL;
247 mmc_wait_for_req(host, &mrq);
249 return cmd->error;
252 EXPORT_SYMBOL(mmc_wait_for_cmd);
255 * mmc_set_data_timeout - set the timeout for a data command
256 * @data: data phase for command
257 * @card: the MMC card associated with the data transfer
259 * Computes the data timeout parameters according to the
260 * correct algorithm given the card type.
262 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
264 unsigned int mult;
267 * SDIO cards only define an upper 1 s limit on access.
269 if (mmc_card_sdio(card)) {
270 data->timeout_ns = 1000000000;
271 data->timeout_clks = 0;
272 return;
276 * SD cards use a 100 multiplier rather than 10
278 mult = mmc_card_sd(card) ? 100 : 10;
281 * Scale up the multiplier (and therefore the timeout) by
282 * the r2w factor for writes.
284 if (data->flags & MMC_DATA_WRITE)
285 mult <<= card->csd.r2w_factor;
287 data->timeout_ns = card->csd.tacc_ns * mult;
288 data->timeout_clks = card->csd.tacc_clks * mult;
291 * SD cards also have an upper limit on the timeout.
293 if (mmc_card_sd(card)) {
294 unsigned int timeout_us, limit_us;
296 timeout_us = data->timeout_ns / 1000;
297 timeout_us += data->timeout_clks * 1000 /
298 (card->host->ios.clock / 1000);
300 if (data->flags & MMC_DATA_WRITE)
302 * The limit is really 250 ms, but that is
303 * insufficient for some crappy cards.
305 limit_us = 300000;
306 else
307 limit_us = 100000;
310 * SDHC cards always use these fixed values.
312 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
313 data->timeout_ns = limit_us * 1000;
314 data->timeout_clks = 0;
318 * Some cards need very high timeouts if driven in SPI mode.
319 * The worst observed timeout was 900ms after writing a
320 * continuous stream of data until the internal logic
321 * overflowed.
323 if (mmc_host_is_spi(card->host)) {
324 if (data->flags & MMC_DATA_WRITE) {
325 if (data->timeout_ns < 1000000000)
326 data->timeout_ns = 1000000000; /* 1s */
327 } else {
328 if (data->timeout_ns < 100000000)
329 data->timeout_ns = 100000000; /* 100ms */
333 EXPORT_SYMBOL(mmc_set_data_timeout);
336 * mmc_align_data_size - pads a transfer size to a more optimal value
337 * @card: the MMC card associated with the data transfer
338 * @sz: original transfer size
340 * Pads the original data size with a number of extra bytes in
341 * order to avoid controller bugs and/or performance hits
342 * (e.g. some controllers revert to PIO for certain sizes).
344 * Returns the improved size, which might be unmodified.
346 * Note that this function is only relevant when issuing a
347 * single scatter gather entry.
349 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
351 sz = ((sz + 3) / 4) * 4;
353 return sz;
355 EXPORT_SYMBOL(mmc_align_data_size);
358 * mmc_host_enable - enable a host.
359 * @host: mmc host to enable
361 * Hosts that support power saving can use the 'enable' and 'disable'
362 * methods to exit and enter power saving states. For more information
363 * see comments for struct mmc_host_ops.
365 int mmc_host_enable(struct mmc_host *host)
367 if (!(host->caps & MMC_CAP_DISABLE))
368 return 0;
370 if (host->en_dis_recurs)
371 return 0;
373 if (host->nesting_cnt++)
374 return 0;
376 cancel_delayed_work_sync(&host->disable);
378 if (host->enabled)
379 return 0;
381 if (host->ops->enable) {
382 int err;
384 host->en_dis_recurs = 1;
385 err = host->ops->enable(host);
386 host->en_dis_recurs = 0;
388 if (err) {
389 pr_debug("%s: enable error %d\n",
390 mmc_hostname(host), err);
391 return err;
394 host->enabled = 1;
395 return 0;
397 EXPORT_SYMBOL(mmc_host_enable);
399 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
401 if (host->ops->disable) {
402 int err;
404 host->en_dis_recurs = 1;
405 err = host->ops->disable(host, lazy);
406 host->en_dis_recurs = 0;
408 if (err < 0) {
409 pr_debug("%s: disable error %d\n",
410 mmc_hostname(host), err);
411 return err;
413 if (err > 0) {
414 unsigned long delay = msecs_to_jiffies(err);
416 mmc_schedule_delayed_work(&host->disable, delay);
419 host->enabled = 0;
420 return 0;
424 * mmc_host_disable - disable a host.
425 * @host: mmc host to disable
427 * Hosts that support power saving can use the 'enable' and 'disable'
428 * methods to exit and enter power saving states. For more information
429 * see comments for struct mmc_host_ops.
431 int mmc_host_disable(struct mmc_host *host)
433 int err;
435 if (!(host->caps & MMC_CAP_DISABLE))
436 return 0;
438 if (host->en_dis_recurs)
439 return 0;
441 if (--host->nesting_cnt)
442 return 0;
444 if (!host->enabled)
445 return 0;
447 err = mmc_host_do_disable(host, 0);
448 return err;
450 EXPORT_SYMBOL(mmc_host_disable);
453 * __mmc_claim_host - exclusively claim a host
454 * @host: mmc host to claim
455 * @abort: whether or not the operation should be aborted
457 * Claim a host for a set of operations. If @abort is non null and
458 * dereference a non-zero value then this will return prematurely with
459 * that non-zero value without acquiring the lock. Returns zero
460 * with the lock held otherwise.
462 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
464 DECLARE_WAITQUEUE(wait, current);
465 unsigned long flags;
466 int stop;
468 might_sleep();
470 add_wait_queue(&host->wq, &wait);
471 spin_lock_irqsave(&host->lock, flags);
472 while (1) {
473 set_current_state(TASK_UNINTERRUPTIBLE);
474 stop = abort ? atomic_read(abort) : 0;
475 if (stop || !host->claimed || host->claimer == current)
476 break;
477 spin_unlock_irqrestore(&host->lock, flags);
478 schedule();
479 spin_lock_irqsave(&host->lock, flags);
481 set_current_state(TASK_RUNNING);
482 if (!stop) {
483 host->claimed = 1;
484 host->claimer = current;
485 host->claim_cnt += 1;
486 } else
487 wake_up(&host->wq);
488 spin_unlock_irqrestore(&host->lock, flags);
489 remove_wait_queue(&host->wq, &wait);
490 if (!stop)
491 mmc_host_enable(host);
492 return stop;
495 EXPORT_SYMBOL(__mmc_claim_host);
498 * mmc_try_claim_host - try exclusively to claim a host
499 * @host: mmc host to claim
501 * Returns %1 if the host is claimed, %0 otherwise.
503 int mmc_try_claim_host(struct mmc_host *host)
505 int claimed_host = 0;
506 unsigned long flags;
508 spin_lock_irqsave(&host->lock, flags);
509 if (!host->claimed || host->claimer == current) {
510 host->claimed = 1;
511 host->claimer = current;
512 host->claim_cnt += 1;
513 claimed_host = 1;
515 spin_unlock_irqrestore(&host->lock, flags);
516 return claimed_host;
518 EXPORT_SYMBOL(mmc_try_claim_host);
520 static void mmc_do_release_host(struct mmc_host *host)
522 unsigned long flags;
524 spin_lock_irqsave(&host->lock, flags);
525 if (--host->claim_cnt) {
526 /* Release for nested claim */
527 spin_unlock_irqrestore(&host->lock, flags);
528 } else {
529 host->claimed = 0;
530 host->claimer = NULL;
531 spin_unlock_irqrestore(&host->lock, flags);
532 wake_up(&host->wq);
536 void mmc_host_deeper_disable(struct work_struct *work)
538 struct mmc_host *host =
539 container_of(work, struct mmc_host, disable.work);
541 /* If the host is claimed then we do not want to disable it anymore */
542 if (!mmc_try_claim_host(host))
543 return;
544 mmc_host_do_disable(host, 1);
545 mmc_do_release_host(host);
549 * mmc_host_lazy_disable - lazily disable a host.
550 * @host: mmc host to disable
552 * Hosts that support power saving can use the 'enable' and 'disable'
553 * methods to exit and enter power saving states. For more information
554 * see comments for struct mmc_host_ops.
556 int mmc_host_lazy_disable(struct mmc_host *host)
558 if (!(host->caps & MMC_CAP_DISABLE))
559 return 0;
561 if (host->en_dis_recurs)
562 return 0;
564 if (--host->nesting_cnt)
565 return 0;
567 if (!host->enabled)
568 return 0;
570 if (host->disable_delay) {
571 mmc_schedule_delayed_work(&host->disable,
572 msecs_to_jiffies(host->disable_delay));
573 return 0;
574 } else
575 return mmc_host_do_disable(host, 1);
577 EXPORT_SYMBOL(mmc_host_lazy_disable);
580 * mmc_release_host - release a host
581 * @host: mmc host to release
583 * Release a MMC host, allowing others to claim the host
584 * for their operations.
586 void mmc_release_host(struct mmc_host *host)
588 WARN_ON(!host->claimed);
590 mmc_host_lazy_disable(host);
592 mmc_do_release_host(host);
595 EXPORT_SYMBOL(mmc_release_host);
598 * Internal function that does the actual ios call to the host driver,
599 * optionally printing some debug output.
601 static inline void mmc_set_ios(struct mmc_host *host)
603 struct mmc_ios *ios = &host->ios;
605 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
606 "width %u timing %u\n",
607 mmc_hostname(host), ios->clock, ios->bus_mode,
608 ios->power_mode, ios->chip_select, ios->vdd,
609 ios->bus_width, ios->timing);
611 host->ops->set_ios(host, ios);
615 * Control chip select pin on a host.
617 void mmc_set_chip_select(struct mmc_host *host, int mode)
619 host->ios.chip_select = mode;
620 mmc_set_ios(host);
624 * Sets the host clock to the highest possible frequency that
625 * is below "hz".
627 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
629 WARN_ON(hz < host->f_min);
631 if (hz > host->f_max)
632 hz = host->f_max;
634 host->ios.clock = hz;
635 mmc_set_ios(host);
639 * Change the bus mode (open drain/push-pull) of a host.
641 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
643 host->ios.bus_mode = mode;
644 mmc_set_ios(host);
648 * Change data bus width of a host.
650 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
652 host->ios.bus_width = width;
653 mmc_set_ios(host);
657 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
658 * @vdd: voltage (mV)
659 * @low_bits: prefer low bits in boundary cases
661 * This function returns the OCR bit number according to the provided @vdd
662 * value. If conversion is not possible a negative errno value returned.
664 * Depending on the @low_bits flag the function prefers low or high OCR bits
665 * on boundary voltages. For example,
666 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
667 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
669 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
671 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
673 const int max_bit = ilog2(MMC_VDD_35_36);
674 int bit;
676 if (vdd < 1650 || vdd > 3600)
677 return -EINVAL;
679 if (vdd >= 1650 && vdd <= 1950)
680 return ilog2(MMC_VDD_165_195);
682 if (low_bits)
683 vdd -= 1;
685 /* Base 2000 mV, step 100 mV, bit's base 8. */
686 bit = (vdd - 2000) / 100 + 8;
687 if (bit > max_bit)
688 return max_bit;
689 return bit;
693 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
694 * @vdd_min: minimum voltage value (mV)
695 * @vdd_max: maximum voltage value (mV)
697 * This function returns the OCR mask bits according to the provided @vdd_min
698 * and @vdd_max values. If conversion is not possible the function returns 0.
700 * Notes wrt boundary cases:
701 * This function sets the OCR bits for all boundary voltages, for example
702 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
703 * MMC_VDD_34_35 mask.
705 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
707 u32 mask = 0;
709 if (vdd_max < vdd_min)
710 return 0;
712 /* Prefer high bits for the boundary vdd_max values. */
713 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
714 if (vdd_max < 0)
715 return 0;
717 /* Prefer low bits for the boundary vdd_min values. */
718 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
719 if (vdd_min < 0)
720 return 0;
722 /* Fill the mask, from max bit to min bit. */
723 while (vdd_max >= vdd_min)
724 mask |= 1 << vdd_max--;
726 return mask;
728 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
730 #ifdef CONFIG_REGULATOR
733 * mmc_regulator_get_ocrmask - return mask of supported voltages
734 * @supply: regulator to use
736 * This returns either a negative errno, or a mask of voltages that
737 * can be provided to MMC/SD/SDIO devices using the specified voltage
738 * regulator. This would normally be called before registering the
739 * MMC host adapter.
741 int mmc_regulator_get_ocrmask(struct regulator *supply)
743 int result = 0;
744 int count;
745 int i;
747 count = regulator_count_voltages(supply);
748 if (count < 0)
749 return count;
751 for (i = 0; i < count; i++) {
752 int vdd_uV;
753 int vdd_mV;
755 vdd_uV = regulator_list_voltage(supply, i);
756 if (vdd_uV <= 0)
757 continue;
759 vdd_mV = vdd_uV / 1000;
760 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
763 return result;
765 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
768 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
769 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
770 * @supply: regulator to use
772 * Returns zero on success, else negative errno.
774 * MMC host drivers may use this to enable or disable a regulator using
775 * a particular supply voltage. This would normally be called from the
776 * set_ios() method.
778 int mmc_regulator_set_ocr(struct regulator *supply, unsigned short vdd_bit)
780 int result = 0;
781 int min_uV, max_uV;
782 int enabled;
784 enabled = regulator_is_enabled(supply);
785 if (enabled < 0)
786 return enabled;
788 if (vdd_bit) {
789 int tmp;
790 int voltage;
792 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
793 * bits this regulator doesn't quite support ... don't
794 * be too picky, most cards and regulators are OK with
795 * a 0.1V range goof (it's a small error percentage).
797 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
798 if (tmp == 0) {
799 min_uV = 1650 * 1000;
800 max_uV = 1950 * 1000;
801 } else {
802 min_uV = 1900 * 1000 + tmp * 100 * 1000;
803 max_uV = min_uV + 100 * 1000;
806 /* avoid needless changes to this voltage; the regulator
807 * might not allow this operation
809 voltage = regulator_get_voltage(supply);
810 if (voltage < 0)
811 result = voltage;
812 else if (voltage < min_uV || voltage > max_uV)
813 result = regulator_set_voltage(supply, min_uV, max_uV);
814 else
815 result = 0;
817 if (result == 0 && !enabled)
818 result = regulator_enable(supply);
819 } else if (enabled) {
820 result = regulator_disable(supply);
823 return result;
825 EXPORT_SYMBOL(mmc_regulator_set_ocr);
827 #endif
830 * Mask off any voltages we don't support and select
831 * the lowest voltage
833 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
835 int bit;
837 ocr &= host->ocr_avail;
839 bit = ffs(ocr);
840 if (bit) {
841 bit -= 1;
843 ocr &= 3 << bit;
845 host->ios.vdd = bit;
846 mmc_set_ios(host);
847 } else {
848 pr_warning("%s: host doesn't support card's voltages\n",
849 mmc_hostname(host));
850 ocr = 0;
853 return ocr;
857 * Select timing parameters for host.
859 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
861 host->ios.timing = timing;
862 mmc_set_ios(host);
866 * Apply power to the MMC stack. This is a two-stage process.
867 * First, we enable power to the card without the clock running.
868 * We then wait a bit for the power to stabilise. Finally,
869 * enable the bus drivers and clock to the card.
871 * We must _NOT_ enable the clock prior to power stablising.
873 * If a host does all the power sequencing itself, ignore the
874 * initial MMC_POWER_UP stage.
876 static void mmc_power_up(struct mmc_host *host)
878 int bit;
880 /* If ocr is set, we use it */
881 if (host->ocr)
882 bit = ffs(host->ocr) - 1;
883 else
884 bit = fls(host->ocr_avail) - 1;
886 host->ios.vdd = bit;
887 if (mmc_host_is_spi(host)) {
888 host->ios.chip_select = MMC_CS_HIGH;
889 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
890 } else {
891 host->ios.chip_select = MMC_CS_DONTCARE;
892 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
894 host->ios.power_mode = MMC_POWER_UP;
895 host->ios.bus_width = MMC_BUS_WIDTH_1;
896 host->ios.timing = MMC_TIMING_LEGACY;
897 mmc_set_ios(host);
900 * This delay should be sufficient to allow the power supply
901 * to reach the minimum voltage.
903 mmc_delay(10);
905 if (host->f_min > 400000) {
906 pr_warning("%s: Minimum clock frequency too high for "
907 "identification mode\n", mmc_hostname(host));
908 host->ios.clock = host->f_min;
909 } else
910 host->ios.clock = 400000;
912 host->ios.power_mode = MMC_POWER_ON;
913 mmc_set_ios(host);
916 * This delay must be at least 74 clock sizes, or 1 ms, or the
917 * time required to reach a stable voltage.
919 mmc_delay(10);
922 static void mmc_power_off(struct mmc_host *host)
924 host->ios.clock = 0;
925 host->ios.vdd = 0;
926 if (!mmc_host_is_spi(host)) {
927 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
928 host->ios.chip_select = MMC_CS_DONTCARE;
930 host->ios.power_mode = MMC_POWER_OFF;
931 host->ios.bus_width = MMC_BUS_WIDTH_1;
932 host->ios.timing = MMC_TIMING_LEGACY;
933 mmc_set_ios(host);
937 * Cleanup when the last reference to the bus operator is dropped.
939 static void __mmc_release_bus(struct mmc_host *host)
941 BUG_ON(!host);
942 BUG_ON(host->bus_refs);
943 BUG_ON(!host->bus_dead);
945 host->bus_ops = NULL;
949 * Increase reference count of bus operator
951 static inline void mmc_bus_get(struct mmc_host *host)
953 unsigned long flags;
955 spin_lock_irqsave(&host->lock, flags);
956 host->bus_refs++;
957 spin_unlock_irqrestore(&host->lock, flags);
961 * Decrease reference count of bus operator and free it if
962 * it is the last reference.
964 static inline void mmc_bus_put(struct mmc_host *host)
966 unsigned long flags;
968 spin_lock_irqsave(&host->lock, flags);
969 host->bus_refs--;
970 if ((host->bus_refs == 0) && host->bus_ops)
971 __mmc_release_bus(host);
972 spin_unlock_irqrestore(&host->lock, flags);
976 * Assign a mmc bus handler to a host. Only one bus handler may control a
977 * host at any given time.
979 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
981 unsigned long flags;
983 BUG_ON(!host);
984 BUG_ON(!ops);
986 WARN_ON(!host->claimed);
988 spin_lock_irqsave(&host->lock, flags);
990 BUG_ON(host->bus_ops);
991 BUG_ON(host->bus_refs);
993 host->bus_ops = ops;
994 host->bus_refs = 1;
995 host->bus_dead = 0;
997 spin_unlock_irqrestore(&host->lock, flags);
1001 * Remove the current bus handler from a host. Assumes that there are
1002 * no interesting cards left, so the bus is powered down.
1004 void mmc_detach_bus(struct mmc_host *host)
1006 unsigned long flags;
1008 BUG_ON(!host);
1010 WARN_ON(!host->claimed);
1011 WARN_ON(!host->bus_ops);
1013 spin_lock_irqsave(&host->lock, flags);
1015 host->bus_dead = 1;
1017 spin_unlock_irqrestore(&host->lock, flags);
1019 mmc_power_off(host);
1021 mmc_bus_put(host);
1025 * mmc_detect_change - process change of state on a MMC socket
1026 * @host: host which changed state.
1027 * @delay: optional delay to wait before detection (jiffies)
1029 * MMC drivers should call this when they detect a card has been
1030 * inserted or removed. The MMC layer will confirm that any
1031 * present card is still functional, and initialize any newly
1032 * inserted.
1034 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1036 #ifdef CONFIG_MMC_DEBUG
1037 unsigned long flags;
1038 spin_lock_irqsave(&host->lock, flags);
1039 WARN_ON(host->removed);
1040 spin_unlock_irqrestore(&host->lock, flags);
1041 #endif
1043 mmc_schedule_delayed_work(&host->detect, delay);
1046 EXPORT_SYMBOL(mmc_detect_change);
1048 void mmc_init_erase(struct mmc_card *card)
1050 unsigned int sz;
1052 if (is_power_of_2(card->erase_size))
1053 card->erase_shift = ffs(card->erase_size) - 1;
1054 else
1055 card->erase_shift = 0;
1058 * It is possible to erase an arbitrarily large area of an SD or MMC
1059 * card. That is not desirable because it can take a long time
1060 * (minutes) potentially delaying more important I/O, and also the
1061 * timeout calculations become increasingly hugely over-estimated.
1062 * Consequently, 'pref_erase' is defined as a guide to limit erases
1063 * to that size and alignment.
1065 * For SD cards that define Allocation Unit size, limit erases to one
1066 * Allocation Unit at a time. For MMC cards that define High Capacity
1067 * Erase Size, whether it is switched on or not, limit to that size.
1068 * Otherwise just have a stab at a good value. For modern cards it
1069 * will end up being 4MiB. Note that if the value is too small, it
1070 * can end up taking longer to erase.
1072 if (mmc_card_sd(card) && card->ssr.au) {
1073 card->pref_erase = card->ssr.au;
1074 card->erase_shift = ffs(card->ssr.au) - 1;
1075 } else if (card->ext_csd.hc_erase_size) {
1076 card->pref_erase = card->ext_csd.hc_erase_size;
1077 } else {
1078 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1079 if (sz < 128)
1080 card->pref_erase = 512 * 1024 / 512;
1081 else if (sz < 512)
1082 card->pref_erase = 1024 * 1024 / 512;
1083 else if (sz < 1024)
1084 card->pref_erase = 2 * 1024 * 1024 / 512;
1085 else
1086 card->pref_erase = 4 * 1024 * 1024 / 512;
1087 if (card->pref_erase < card->erase_size)
1088 card->pref_erase = card->erase_size;
1089 else {
1090 sz = card->pref_erase % card->erase_size;
1091 if (sz)
1092 card->pref_erase += card->erase_size - sz;
1097 static void mmc_set_mmc_erase_timeout(struct mmc_card *card,
1098 struct mmc_command *cmd,
1099 unsigned int arg, unsigned int qty)
1101 unsigned int erase_timeout;
1103 if (card->ext_csd.erase_group_def & 1) {
1104 /* High Capacity Erase Group Size uses HC timeouts */
1105 if (arg == MMC_TRIM_ARG)
1106 erase_timeout = card->ext_csd.trim_timeout;
1107 else
1108 erase_timeout = card->ext_csd.hc_erase_timeout;
1109 } else {
1110 /* CSD Erase Group Size uses write timeout */
1111 unsigned int mult = (10 << card->csd.r2w_factor);
1112 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1113 unsigned int timeout_us;
1115 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1116 if (card->csd.tacc_ns < 1000000)
1117 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1118 else
1119 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1122 * ios.clock is only a target. The real clock rate might be
1123 * less but not that much less, so fudge it by multiplying by 2.
1125 timeout_clks <<= 1;
1126 timeout_us += (timeout_clks * 1000) /
1127 (card->host->ios.clock / 1000);
1129 erase_timeout = timeout_us / 1000;
1132 * Theoretically, the calculation could underflow so round up
1133 * to 1ms in that case.
1135 if (!erase_timeout)
1136 erase_timeout = 1;
1139 /* Multiplier for secure operations */
1140 if (arg & MMC_SECURE_ARGS) {
1141 if (arg == MMC_SECURE_ERASE_ARG)
1142 erase_timeout *= card->ext_csd.sec_erase_mult;
1143 else
1144 erase_timeout *= card->ext_csd.sec_trim_mult;
1147 erase_timeout *= qty;
1150 * Ensure at least a 1 second timeout for SPI as per
1151 * 'mmc_set_data_timeout()'
1153 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1154 erase_timeout = 1000;
1156 cmd->erase_timeout = erase_timeout;
1159 static void mmc_set_sd_erase_timeout(struct mmc_card *card,
1160 struct mmc_command *cmd, unsigned int arg,
1161 unsigned int qty)
1163 if (card->ssr.erase_timeout) {
1164 /* Erase timeout specified in SD Status Register (SSR) */
1165 cmd->erase_timeout = card->ssr.erase_timeout * qty +
1166 card->ssr.erase_offset;
1167 } else {
1169 * Erase timeout not specified in SD Status Register (SSR) so
1170 * use 250ms per write block.
1172 cmd->erase_timeout = 250 * qty;
1175 /* Must not be less than 1 second */
1176 if (cmd->erase_timeout < 1000)
1177 cmd->erase_timeout = 1000;
1180 static void mmc_set_erase_timeout(struct mmc_card *card,
1181 struct mmc_command *cmd, unsigned int arg,
1182 unsigned int qty)
1184 if (mmc_card_sd(card))
1185 mmc_set_sd_erase_timeout(card, cmd, arg, qty);
1186 else
1187 mmc_set_mmc_erase_timeout(card, cmd, arg, qty);
1190 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1191 unsigned int to, unsigned int arg)
1193 struct mmc_command cmd;
1194 unsigned int qty = 0;
1195 int err;
1198 * qty is used to calculate the erase timeout which depends on how many
1199 * erase groups (or allocation units in SD terminology) are affected.
1200 * We count erasing part of an erase group as one erase group.
1201 * For SD, the allocation units are always a power of 2. For MMC, the
1202 * erase group size is almost certainly also power of 2, but it does not
1203 * seem to insist on that in the JEDEC standard, so we fall back to
1204 * division in that case. SD may not specify an allocation unit size,
1205 * in which case the timeout is based on the number of write blocks.
1207 * Note that the timeout for secure trim 2 will only be correct if the
1208 * number of erase groups specified is the same as the total of all
1209 * preceding secure trim 1 commands. Since the power may have been
1210 * lost since the secure trim 1 commands occurred, it is generally
1211 * impossible to calculate the secure trim 2 timeout correctly.
1213 if (card->erase_shift)
1214 qty += ((to >> card->erase_shift) -
1215 (from >> card->erase_shift)) + 1;
1216 else if (mmc_card_sd(card))
1217 qty += to - from + 1;
1218 else
1219 qty += ((to / card->erase_size) -
1220 (from / card->erase_size)) + 1;
1222 if (!mmc_card_blockaddr(card)) {
1223 from <<= 9;
1224 to <<= 9;
1227 memset(&cmd, 0, sizeof(struct mmc_command));
1228 if (mmc_card_sd(card))
1229 cmd.opcode = SD_ERASE_WR_BLK_START;
1230 else
1231 cmd.opcode = MMC_ERASE_GROUP_START;
1232 cmd.arg = from;
1233 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1234 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1235 if (err) {
1236 printk(KERN_ERR "mmc_erase: group start error %d, "
1237 "status %#x\n", err, cmd.resp[0]);
1238 err = -EINVAL;
1239 goto out;
1242 memset(&cmd, 0, sizeof(struct mmc_command));
1243 if (mmc_card_sd(card))
1244 cmd.opcode = SD_ERASE_WR_BLK_END;
1245 else
1246 cmd.opcode = MMC_ERASE_GROUP_END;
1247 cmd.arg = to;
1248 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1249 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1250 if (err) {
1251 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1252 err, cmd.resp[0]);
1253 err = -EINVAL;
1254 goto out;
1257 memset(&cmd, 0, sizeof(struct mmc_command));
1258 cmd.opcode = MMC_ERASE;
1259 cmd.arg = arg;
1260 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1261 mmc_set_erase_timeout(card, &cmd, arg, qty);
1262 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1263 if (err) {
1264 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1265 err, cmd.resp[0]);
1266 err = -EIO;
1267 goto out;
1270 if (mmc_host_is_spi(card->host))
1271 goto out;
1273 do {
1274 memset(&cmd, 0, sizeof(struct mmc_command));
1275 cmd.opcode = MMC_SEND_STATUS;
1276 cmd.arg = card->rca << 16;
1277 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1278 /* Do not retry else we can't see errors */
1279 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1280 if (err || (cmd.resp[0] & 0xFDF92000)) {
1281 printk(KERN_ERR "error %d requesting status %#x\n",
1282 err, cmd.resp[0]);
1283 err = -EIO;
1284 goto out;
1286 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1287 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1288 out:
1289 return err;
1293 * mmc_erase - erase sectors.
1294 * @card: card to erase
1295 * @from: first sector to erase
1296 * @nr: number of sectors to erase
1297 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1299 * Caller must claim host before calling this function.
1301 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1302 unsigned int arg)
1304 unsigned int rem, to = from + nr;
1306 if (!(card->host->caps & MMC_CAP_ERASE) ||
1307 !(card->csd.cmdclass & CCC_ERASE))
1308 return -EOPNOTSUPP;
1310 if (!card->erase_size)
1311 return -EOPNOTSUPP;
1313 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1314 return -EOPNOTSUPP;
1316 if ((arg & MMC_SECURE_ARGS) &&
1317 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1318 return -EOPNOTSUPP;
1320 if ((arg & MMC_TRIM_ARGS) &&
1321 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1322 return -EOPNOTSUPP;
1324 if (arg == MMC_SECURE_ERASE_ARG) {
1325 if (from % card->erase_size || nr % card->erase_size)
1326 return -EINVAL;
1329 if (arg == MMC_ERASE_ARG) {
1330 rem = from % card->erase_size;
1331 if (rem) {
1332 rem = card->erase_size - rem;
1333 from += rem;
1334 if (nr > rem)
1335 nr -= rem;
1336 else
1337 return 0;
1339 rem = nr % card->erase_size;
1340 if (rem)
1341 nr -= rem;
1344 if (nr == 0)
1345 return 0;
1347 to = from + nr;
1349 if (to <= from)
1350 return -EINVAL;
1352 /* 'from' and 'to' are inclusive */
1353 to -= 1;
1355 return mmc_do_erase(card, from, to, arg);
1357 EXPORT_SYMBOL(mmc_erase);
1359 int mmc_can_erase(struct mmc_card *card)
1361 if ((card->host->caps & MMC_CAP_ERASE) &&
1362 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1363 return 1;
1364 return 0;
1366 EXPORT_SYMBOL(mmc_can_erase);
1368 int mmc_can_trim(struct mmc_card *card)
1370 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1371 return 1;
1372 return 0;
1374 EXPORT_SYMBOL(mmc_can_trim);
1376 int mmc_can_secure_erase_trim(struct mmc_card *card)
1378 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1379 return 1;
1380 return 0;
1382 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1384 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1385 unsigned int nr)
1387 if (!card->erase_size)
1388 return 0;
1389 if (from % card->erase_size || nr % card->erase_size)
1390 return 0;
1391 return 1;
1393 EXPORT_SYMBOL(mmc_erase_group_aligned);
1395 void mmc_rescan(struct work_struct *work)
1397 struct mmc_host *host =
1398 container_of(work, struct mmc_host, detect.work);
1399 u32 ocr;
1400 int err;
1401 unsigned long flags;
1403 spin_lock_irqsave(&host->lock, flags);
1405 if (host->rescan_disable) {
1406 spin_unlock_irqrestore(&host->lock, flags);
1407 return;
1410 spin_unlock_irqrestore(&host->lock, flags);
1413 mmc_bus_get(host);
1415 /* if there is a card registered, check whether it is still present */
1416 if ((host->bus_ops != NULL) && host->bus_ops->detect && !host->bus_dead)
1417 host->bus_ops->detect(host);
1419 mmc_bus_put(host);
1422 mmc_bus_get(host);
1424 /* if there still is a card present, stop here */
1425 if (host->bus_ops != NULL) {
1426 mmc_bus_put(host);
1427 goto out;
1430 /* detect a newly inserted card */
1433 * Only we can add a new handler, so it's safe to
1434 * release the lock here.
1436 mmc_bus_put(host);
1438 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1439 goto out;
1441 mmc_claim_host(host);
1443 mmc_power_up(host);
1444 sdio_reset(host);
1445 mmc_go_idle(host);
1447 mmc_send_if_cond(host, host->ocr_avail);
1450 * First we search for SDIO...
1452 err = mmc_send_io_op_cond(host, 0, &ocr);
1453 if (!err) {
1454 if (mmc_attach_sdio(host, ocr)) {
1455 mmc_claim_host(host);
1456 /* try SDMEM (but not MMC) even if SDIO is broken */
1457 if (mmc_send_app_op_cond(host, 0, &ocr))
1458 goto out_fail;
1460 if (mmc_attach_sd(host, ocr))
1461 mmc_power_off(host);
1463 goto out;
1467 * ...then normal SD...
1469 err = mmc_send_app_op_cond(host, 0, &ocr);
1470 if (!err) {
1471 if (mmc_attach_sd(host, ocr))
1472 mmc_power_off(host);
1473 goto out;
1477 * ...and finally MMC.
1479 err = mmc_send_op_cond(host, 0, &ocr);
1480 if (!err) {
1481 if (mmc_attach_mmc(host, ocr))
1482 mmc_power_off(host);
1483 goto out;
1486 out_fail:
1487 mmc_release_host(host);
1488 mmc_power_off(host);
1490 out:
1491 if (host->caps & MMC_CAP_NEEDS_POLL)
1492 mmc_schedule_delayed_work(&host->detect, HZ);
1495 void mmc_start_host(struct mmc_host *host)
1497 mmc_power_off(host);
1498 mmc_detect_change(host, 0);
1501 void mmc_stop_host(struct mmc_host *host)
1503 #ifdef CONFIG_MMC_DEBUG
1504 unsigned long flags;
1505 spin_lock_irqsave(&host->lock, flags);
1506 host->removed = 1;
1507 spin_unlock_irqrestore(&host->lock, flags);
1508 #endif
1510 if (host->caps & MMC_CAP_DISABLE)
1511 cancel_delayed_work(&host->disable);
1512 cancel_delayed_work_sync(&host->detect);
1513 mmc_flush_scheduled_work();
1515 /* clear pm flags now and let card drivers set them as needed */
1516 host->pm_flags = 0;
1518 mmc_bus_get(host);
1519 if (host->bus_ops && !host->bus_dead) {
1520 if (host->bus_ops->remove)
1521 host->bus_ops->remove(host);
1523 mmc_claim_host(host);
1524 mmc_detach_bus(host);
1525 mmc_release_host(host);
1526 mmc_bus_put(host);
1527 return;
1529 mmc_bus_put(host);
1531 BUG_ON(host->card);
1533 mmc_power_off(host);
1536 void mmc_power_save_host(struct mmc_host *host)
1538 mmc_bus_get(host);
1540 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1541 mmc_bus_put(host);
1542 return;
1545 if (host->bus_ops->power_save)
1546 host->bus_ops->power_save(host);
1548 mmc_bus_put(host);
1550 mmc_power_off(host);
1552 EXPORT_SYMBOL(mmc_power_save_host);
1554 void mmc_power_restore_host(struct mmc_host *host)
1556 mmc_bus_get(host);
1558 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1559 mmc_bus_put(host);
1560 return;
1563 mmc_power_up(host);
1564 host->bus_ops->power_restore(host);
1566 mmc_bus_put(host);
1568 EXPORT_SYMBOL(mmc_power_restore_host);
1570 int mmc_card_awake(struct mmc_host *host)
1572 int err = -ENOSYS;
1574 mmc_bus_get(host);
1576 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1577 err = host->bus_ops->awake(host);
1579 mmc_bus_put(host);
1581 return err;
1583 EXPORT_SYMBOL(mmc_card_awake);
1585 int mmc_card_sleep(struct mmc_host *host)
1587 int err = -ENOSYS;
1589 mmc_bus_get(host);
1591 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1592 err = host->bus_ops->sleep(host);
1594 mmc_bus_put(host);
1596 return err;
1598 EXPORT_SYMBOL(mmc_card_sleep);
1600 int mmc_card_can_sleep(struct mmc_host *host)
1602 struct mmc_card *card = host->card;
1604 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1605 return 1;
1606 return 0;
1608 EXPORT_SYMBOL(mmc_card_can_sleep);
1610 #ifdef CONFIG_PM
1613 * mmc_suspend_host - suspend a host
1614 * @host: mmc host
1616 int mmc_suspend_host(struct mmc_host *host)
1618 int err = 0;
1620 if (host->caps & MMC_CAP_DISABLE)
1621 cancel_delayed_work(&host->disable);
1622 cancel_delayed_work(&host->detect);
1623 mmc_flush_scheduled_work();
1625 mmc_bus_get(host);
1626 if (host->bus_ops && !host->bus_dead) {
1627 if (host->bus_ops->suspend)
1628 err = host->bus_ops->suspend(host);
1629 if (err == -ENOSYS || !host->bus_ops->resume) {
1631 * We simply "remove" the card in this case.
1632 * It will be redetected on resume.
1634 if (host->bus_ops->remove)
1635 host->bus_ops->remove(host);
1636 mmc_claim_host(host);
1637 mmc_detach_bus(host);
1638 mmc_release_host(host);
1639 host->pm_flags = 0;
1640 err = 0;
1643 mmc_bus_put(host);
1645 if (!err && !(host->pm_flags & MMC_PM_KEEP_POWER))
1646 mmc_power_off(host);
1648 return err;
1651 EXPORT_SYMBOL(mmc_suspend_host);
1654 * mmc_resume_host - resume a previously suspended host
1655 * @host: mmc host
1657 int mmc_resume_host(struct mmc_host *host)
1659 int err = 0;
1661 mmc_bus_get(host);
1662 if (host->bus_ops && !host->bus_dead) {
1663 if (!(host->pm_flags & MMC_PM_KEEP_POWER)) {
1664 mmc_power_up(host);
1665 mmc_select_voltage(host, host->ocr);
1667 BUG_ON(!host->bus_ops->resume);
1668 err = host->bus_ops->resume(host);
1669 if (err) {
1670 printk(KERN_WARNING "%s: error %d during resume "
1671 "(card was removed?)\n",
1672 mmc_hostname(host), err);
1673 err = 0;
1676 mmc_bus_put(host);
1678 return err;
1680 EXPORT_SYMBOL(mmc_resume_host);
1682 /* Do the card removal on suspend if card is assumed removeable
1683 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1684 to sync the card.
1686 int mmc_pm_notify(struct notifier_block *notify_block,
1687 unsigned long mode, void *unused)
1689 struct mmc_host *host = container_of(
1690 notify_block, struct mmc_host, pm_notify);
1691 unsigned long flags;
1694 switch (mode) {
1695 case PM_HIBERNATION_PREPARE:
1696 case PM_SUSPEND_PREPARE:
1698 spin_lock_irqsave(&host->lock, flags);
1699 host->rescan_disable = 1;
1700 spin_unlock_irqrestore(&host->lock, flags);
1701 cancel_delayed_work_sync(&host->detect);
1703 if (!host->bus_ops || host->bus_ops->suspend)
1704 break;
1706 mmc_claim_host(host);
1708 if (host->bus_ops->remove)
1709 host->bus_ops->remove(host);
1711 mmc_detach_bus(host);
1712 mmc_release_host(host);
1713 host->pm_flags = 0;
1714 break;
1716 case PM_POST_SUSPEND:
1717 case PM_POST_HIBERNATION:
1718 case PM_POST_RESTORE:
1720 spin_lock_irqsave(&host->lock, flags);
1721 host->rescan_disable = 0;
1722 spin_unlock_irqrestore(&host->lock, flags);
1723 mmc_detect_change(host, 0);
1727 return 0;
1729 #endif
1731 static int __init mmc_init(void)
1733 int ret;
1735 workqueue = create_singlethread_workqueue("kmmcd");
1736 if (!workqueue)
1737 return -ENOMEM;
1739 ret = mmc_register_bus();
1740 if (ret)
1741 goto destroy_workqueue;
1743 ret = mmc_register_host_class();
1744 if (ret)
1745 goto unregister_bus;
1747 ret = sdio_register_bus();
1748 if (ret)
1749 goto unregister_host_class;
1751 return 0;
1753 unregister_host_class:
1754 mmc_unregister_host_class();
1755 unregister_bus:
1756 mmc_unregister_bus();
1757 destroy_workqueue:
1758 destroy_workqueue(workqueue);
1760 return ret;
1763 static void __exit mmc_exit(void)
1765 sdio_unregister_bus();
1766 mmc_unregister_host_class();
1767 mmc_unregister_bus();
1768 destroy_workqueue(workqueue);
1771 subsys_initcall(mmc_init);
1772 module_exit(mmc_exit);
1774 MODULE_LICENSE("GPL");