GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / media / video / gspca / sonixb.c
blob4134edb8083edfcb4f3a0a3f09d86ad2630c6945
1 /*
2 * sonix sn9c102 (bayer) library
3 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
4 * Add Pas106 Stefano Mozzi (C) 2004
6 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 /* Some documentation on known sonixb registers:
25 Reg Use
26 0x10 high nibble red gain low nibble blue gain
27 0x11 low nibble green gain
28 0x12 hstart
29 0x13 vstart
30 0x15 hsize (hsize = register-value * 16)
31 0x16 vsize (vsize = register-value * 16)
32 0x17 bit 0 toggle compression quality (according to sn9c102 driver)
33 0x18 bit 7 enables compression, bit 4-5 set image down scaling:
34 00 scale 1, 01 scale 1/2, 10, scale 1/4
35 0x19 high-nibble is sensor clock divider, changes exposure on sensors which
36 use a clock generated by the bridge. Some sensors have their own clock.
37 0x1c auto_exposure area (for avg_lum) startx (startx = register-value * 32)
38 0x1d auto_exposure area (for avg_lum) starty (starty = register-value * 32)
39 0x1e auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
40 0x1f auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
43 #define MODULE_NAME "sonixb"
45 #include <linux/input.h>
46 #include "gspca.h"
48 MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
49 MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
50 MODULE_LICENSE("GPL");
52 /* specific webcam descriptor */
53 struct sd {
54 struct gspca_dev gspca_dev; /* !! must be the first item */
55 atomic_t avg_lum;
56 int prev_avg_lum;
57 int exp_too_low_cnt;
58 int exp_too_high_cnt;
60 unsigned short exposure;
61 unsigned char gain;
62 unsigned char brightness;
63 unsigned char autogain;
64 unsigned char autogain_ignore_frames;
65 unsigned char frames_to_drop;
66 unsigned char freq; /* light freq filter setting */
68 __u8 bridge; /* Type of bridge */
69 #define BRIDGE_101 0
70 #define BRIDGE_102 0 /* We make no difference between 101 and 102 */
71 #define BRIDGE_103 1
73 __u8 sensor; /* Type of image sensor chip */
74 #define SENSOR_HV7131R 0
75 #define SENSOR_OV6650 1
76 #define SENSOR_OV7630 2
77 #define SENSOR_PAS106 3
78 #define SENSOR_PAS202 4
79 #define SENSOR_TAS5110C 5
80 #define SENSOR_TAS5110D 6
81 #define SENSOR_TAS5130CXX 7
82 __u8 reg11;
85 typedef const __u8 sensor_init_t[8];
87 struct sensor_data {
88 const __u8 *bridge_init[2];
89 int bridge_init_size[2];
90 sensor_init_t *sensor_init;
91 int sensor_init_size;
92 sensor_init_t *sensor_bridge_init[2];
93 int sensor_bridge_init_size[2];
94 int flags;
95 unsigned ctrl_dis;
96 __u8 sensor_addr;
99 /* sensor_data flags */
100 #define F_GAIN 0x01 /* has gain */
101 #define F_SIF 0x02 /* sif or vga */
102 #define F_COARSE_EXPO 0x04 /* exposure control is coarse */
104 /* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
105 #define MODE_RAW 0x10 /* raw bayer mode */
106 #define MODE_REDUCED_SIF 0x20 /* vga mode (320x240 / 160x120) on sif cam */
108 /* ctrl_dis helper macros */
109 #define NO_EXPO ((1 << EXPOSURE_IDX) | (1 << COARSE_EXPOSURE_IDX) | \
110 (1 << AUTOGAIN_IDX))
111 #define NO_FREQ (1 << FREQ_IDX)
112 #define NO_BRIGHTNESS (1 << BRIGHTNESS_IDX)
114 #define COMP2 0x8f
115 #define COMP 0xc7 /* 0x87 //0x07 */
116 #define COMP1 0xc9 /* 0x89 //0x09 */
118 #define MCK_INIT 0x63
119 #define MCK_INIT1 0x20
121 #define SYS_CLK 0x04
123 #define SENS(bridge_1, bridge_3, sensor, sensor_1, \
124 sensor_3, _flags, _ctrl_dis, _sensor_addr) \
126 .bridge_init = { bridge_1, bridge_3 }, \
127 .bridge_init_size = { sizeof(bridge_1), sizeof(bridge_3) }, \
128 .sensor_init = sensor, \
129 .sensor_init_size = sizeof(sensor), \
130 .sensor_bridge_init = { sensor_1, sensor_3,}, \
131 .sensor_bridge_init_size = { sizeof(sensor_1), sizeof(sensor_3)}, \
132 .flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
135 /* We calculate the autogain at the end of the transfer of a frame, at this
136 moment a frame with the old settings is being captured and transmitted. So
137 if we adjust the gain or exposure we must ignore atleast the next frame for
138 the new settings to come into effect before doing any other adjustments. */
139 #define AUTOGAIN_IGNORE_FRAMES 1
141 /* V4L2 controls supported by the driver */
142 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
143 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
144 static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
145 static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
146 static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
147 static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
148 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
149 static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
150 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
151 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
153 static const struct ctrl sd_ctrls[] = {
154 #define BRIGHTNESS_IDX 0
157 .id = V4L2_CID_BRIGHTNESS,
158 .type = V4L2_CTRL_TYPE_INTEGER,
159 .name = "Brightness",
160 .minimum = 0,
161 .maximum = 255,
162 .step = 1,
163 #define BRIGHTNESS_DEF 127
164 .default_value = BRIGHTNESS_DEF,
166 .set = sd_setbrightness,
167 .get = sd_getbrightness,
169 #define GAIN_IDX 1
172 .id = V4L2_CID_GAIN,
173 .type = V4L2_CTRL_TYPE_INTEGER,
174 .name = "Gain",
175 .minimum = 0,
176 .maximum = 255,
177 .step = 1,
178 #define GAIN_DEF 127
179 #define GAIN_KNEE 230
180 .default_value = GAIN_DEF,
182 .set = sd_setgain,
183 .get = sd_getgain,
185 #define EXPOSURE_IDX 2
188 .id = V4L2_CID_EXPOSURE,
189 .type = V4L2_CTRL_TYPE_INTEGER,
190 .name = "Exposure",
191 #define EXPOSURE_DEF 66 /* 33 ms / 30 fps (except on PASXXX) */
192 #define EXPOSURE_KNEE 200 /* 100 ms / 10 fps (except on PASXXX) */
193 .minimum = 0,
194 .maximum = 1023,
195 .step = 1,
196 .default_value = EXPOSURE_DEF,
197 .flags = 0,
199 .set = sd_setexposure,
200 .get = sd_getexposure,
202 #define COARSE_EXPOSURE_IDX 3
205 .id = V4L2_CID_EXPOSURE,
206 .type = V4L2_CTRL_TYPE_INTEGER,
207 .name = "Exposure",
208 #define COARSE_EXPOSURE_DEF 2 /* 30 fps */
209 .minimum = 2,
210 .maximum = 15,
211 .step = 1,
212 .default_value = COARSE_EXPOSURE_DEF,
213 .flags = 0,
215 .set = sd_setexposure,
216 .get = sd_getexposure,
218 #define AUTOGAIN_IDX 4
221 .id = V4L2_CID_AUTOGAIN,
222 .type = V4L2_CTRL_TYPE_BOOLEAN,
223 .name = "Automatic Gain (and Exposure)",
224 .minimum = 0,
225 .maximum = 1,
226 .step = 1,
227 #define AUTOGAIN_DEF 1
228 .default_value = AUTOGAIN_DEF,
229 .flags = 0,
231 .set = sd_setautogain,
232 .get = sd_getautogain,
234 #define FREQ_IDX 5
237 .id = V4L2_CID_POWER_LINE_FREQUENCY,
238 .type = V4L2_CTRL_TYPE_MENU,
239 .name = "Light frequency filter",
240 .minimum = 0,
241 .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
242 .step = 1,
243 #define FREQ_DEF 0
244 .default_value = FREQ_DEF,
246 .set = sd_setfreq,
247 .get = sd_getfreq,
251 static const struct v4l2_pix_format vga_mode[] = {
252 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
253 .bytesperline = 160,
254 .sizeimage = 160 * 120,
255 .colorspace = V4L2_COLORSPACE_SRGB,
256 .priv = 2 | MODE_RAW},
257 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
258 .bytesperline = 160,
259 .sizeimage = 160 * 120 * 5 / 4,
260 .colorspace = V4L2_COLORSPACE_SRGB,
261 .priv = 2},
262 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
263 .bytesperline = 320,
264 .sizeimage = 320 * 240 * 5 / 4,
265 .colorspace = V4L2_COLORSPACE_SRGB,
266 .priv = 1},
267 {640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
268 .bytesperline = 640,
269 .sizeimage = 640 * 480 * 5 / 4,
270 .colorspace = V4L2_COLORSPACE_SRGB,
271 .priv = 0},
273 static const struct v4l2_pix_format sif_mode[] = {
274 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
275 .bytesperline = 160,
276 .sizeimage = 160 * 120,
277 .colorspace = V4L2_COLORSPACE_SRGB,
278 .priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
279 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
280 .bytesperline = 160,
281 .sizeimage = 160 * 120 * 5 / 4,
282 .colorspace = V4L2_COLORSPACE_SRGB,
283 .priv = 1 | MODE_REDUCED_SIF},
284 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
285 .bytesperline = 176,
286 .sizeimage = 176 * 144,
287 .colorspace = V4L2_COLORSPACE_SRGB,
288 .priv = 1 | MODE_RAW},
289 {176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
290 .bytesperline = 176,
291 .sizeimage = 176 * 144 * 5 / 4,
292 .colorspace = V4L2_COLORSPACE_SRGB,
293 .priv = 1},
294 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
295 .bytesperline = 320,
296 .sizeimage = 320 * 240 * 5 / 4,
297 .colorspace = V4L2_COLORSPACE_SRGB,
298 .priv = 0 | MODE_REDUCED_SIF},
299 {352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
300 .bytesperline = 352,
301 .sizeimage = 352 * 288 * 5 / 4,
302 .colorspace = V4L2_COLORSPACE_SRGB,
303 .priv = 0},
306 static const __u8 initHv7131[] = {
307 0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
308 0x00, 0x00,
309 0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
310 0x28, 0x1e, 0x60, 0x8a, 0x20,
311 0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c
313 static const __u8 hv7131_sensor_init[][8] = {
314 {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
315 {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
316 {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
317 {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
318 {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
320 static const __u8 initOv6650[] = {
321 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
322 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
323 0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
324 0x10, 0x1d, 0x10, 0x02, 0x02, 0x09, 0x07
326 static const __u8 ov6650_sensor_init[][8] =
328 /* Bright, contrast, etc are set through SCBB interface.
329 * AVCAP on win2 do not send any data on this controls. */
330 /* Anyway, some registers appears to alter bright and constrat */
332 /* Reset sensor */
333 {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
334 /* Set clock register 0x11 low nibble is clock divider */
335 {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
336 /* Next some unknown stuff */
337 {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
338 /* {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
339 * THIS SET GREEN SCREEN
340 * (pixels could be innverted in decode kind of "brg",
341 * but blue wont be there. Avoid this data ... */
342 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
343 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
344 {0xa0, 0x60, 0x30, 0x3d, 0x0A, 0xd8, 0xa4, 0x10},
345 /* Enable rgb brightness control */
346 {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
347 /* HDG: Note windows uses the line below, which sets both register 0x60
348 and 0x61 I believe these registers of the ov6650 are identical as
349 those of the ov7630, because if this is true the windows settings
350 add a bit additional red gain and a lot additional blue gain, which
351 matches my findings that the windows settings make blue much too
352 blue and red a little too red.
353 {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
354 /* Some more unknown stuff */
355 {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
356 {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
359 static const __u8 initOv7630[] = {
360 0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */
361 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */
362 0x00, 0x01, 0x01, 0x0a, /* r11 .. r14 */
363 0x28, 0x1e, /* H & V sizes r15 .. r16 */
364 0x68, COMP2, MCK_INIT1, /* r17 .. r19 */
365 0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c /* r1a .. r1f */
367 static const __u8 initOv7630_3[] = {
368 0x44, 0x44, 0x00, 0x1a, 0x20, 0x20, 0x20, 0x80, /* r01 .. r08 */
369 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */
370 0x00, 0x02, 0x01, 0x0a, /* r11 .. r14 */
371 0x28, 0x1e, /* H & V sizes r15 .. r16 */
372 0x68, 0x8f, MCK_INIT1, /* r17 .. r19 */
373 0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c, 0x00, /* r1a .. r20 */
374 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, /* r21 .. r28 */
375 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xff /* r29 .. r30 */
377 static const __u8 ov7630_sensor_init[][8] = {
378 {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
379 {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
380 /* {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10}, jfm */
381 {0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10}, /* jfm */
382 {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
383 {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
384 {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
385 {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
386 {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
387 {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
388 {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
389 {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
390 /* {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10}, * jfm */
391 {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
392 {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
393 {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
394 {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
395 {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
396 {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
399 static const __u8 ov7630_sensor_init_3[][8] = {
400 {0xa0, 0x21, 0x13, 0x80, 0x00, 0x00, 0x00, 0x10},
403 static const __u8 initPas106[] = {
404 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
405 0x00, 0x00,
406 0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
407 0x16, 0x12, 0x24, COMP1, MCK_INIT1,
408 0x18, 0x10, 0x02, 0x02, 0x09, 0x07
410 /* compression 0x86 mckinit1 0x2b */
412 /* "Known" PAS106B registers:
413 0x02 clock divider
414 0x03 Variable framerate bits 4-11
415 0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
416 The variable framerate control must never be set lower then 300,
417 which sets the framerate at 90 / reg02, otherwise vsync is lost.
418 0x05 Shutter Time Line Offset, this can be used as an exposure control:
419 0 = use full frame time, 255 = no exposure at all
420 Note this may never be larger then "var-framerate control" / 2 - 2.
421 When var-framerate control is < 514, no exposure is reached at the max
422 allowed value for the framerate control value, rather then at 255.
423 0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
424 only a very little bit, leave at 0xcd
425 0x07 offset sign bit (bit0 1 > negative offset)
426 0x08 offset
427 0x09 Blue Gain
428 0x0a Green1 Gain
429 0x0b Green2 Gain
430 0x0c Red Gain
431 0x0e Global gain
432 0x13 Write 1 to commit settings to sensor
435 static const __u8 pas106_sensor_init[][8] = {
436 /* Pixel Clock Divider 6 */
437 { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
438 /* Frame Time MSB (also seen as 0x12) */
439 { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
440 /* Frame Time LSB (also seen as 0x05) */
441 { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
442 /* Shutter Time Line Offset (also seen as 0x6d) */
443 { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
444 /* Shutter Time Pixel Offset (also seen as 0xb1) */
445 { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
446 /* Black Level Subtract Sign (also seen 0x00) */
447 { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
448 /* Black Level Subtract Level (also seen 0x01) */
449 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
450 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
451 /* Color Gain B Pixel 5 a */
452 { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
453 /* Color Gain G1 Pixel 1 5 */
454 { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
455 /* Color Gain G2 Pixel 1 0 5 */
456 { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
457 /* Color Gain R Pixel 3 1 */
458 { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
459 /* Color GainH Pixel */
460 { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
461 /* Global Gain */
462 { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
463 /* Contrast */
464 { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
465 /* H&V synchro polarity */
466 { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
467 /* ?default */
468 { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
469 /* DAC scale */
470 { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
471 /* ?default */
472 { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
473 /* Validate Settings */
474 { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
477 static const __u8 initPas202[] = {
478 0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
479 0x00, 0x00,
480 0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
481 0x28, 0x1e, 0x20, 0x89, 0x20,
482 0x00, 0x00, 0x02, 0x03, 0x0f, 0x0c
485 /* "Known" PAS202BCB registers:
486 0x02 clock divider
487 0x04 Variable framerate bits 6-11 (*)
488 0x05 Var framerate bits 0-5, one must leave the 2 msb's at 0 !!
489 0x07 Blue Gain
490 0x08 Green Gain
491 0x09 Red Gain
492 0x0b offset sign bit (bit0 1 > negative offset)
493 0x0c offset
494 0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
495 leave at 1 otherwise we get a jump in our exposure control
496 0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
497 0x10 Master gain 0 - 31
498 0x11 write 1 to apply changes
499 (*) The variable framerate control must never be set lower then 500
500 which sets the framerate at 30 / reg02, otherwise vsync is lost.
502 static const __u8 pas202_sensor_init[][8] = {
503 /* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
504 to set it lower, but for some reason the bridge starts missing
505 vsync's then */
506 {0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
507 {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
508 {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
509 {0xd0, 0x40, 0x0C, 0x00, 0x0C, 0x01, 0x32, 0x10},
510 {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
511 {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
512 {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
513 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
514 {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
515 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
518 static const __u8 initTas5110c[] = {
519 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
520 0x00, 0x00,
521 0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
522 0x16, 0x12, 0x60, 0x86, 0x2b,
523 0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
525 /* Same as above, except a different hstart */
526 static const __u8 initTas5110d[] = {
527 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
528 0x00, 0x00,
529 0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
530 0x16, 0x12, 0x60, 0x86, 0x2b,
531 0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
533 static const __u8 tas5110_sensor_init[][8] = {
534 {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
535 {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
536 {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17},
539 static const __u8 initTas5130[] = {
540 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
541 0x00, 0x00,
542 0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
543 0x28, 0x1e, 0x60, COMP, MCK_INIT,
544 0x18, 0x10, 0x04, 0x03, 0x11, 0x0c
546 static const __u8 tas5130_sensor_init[][8] = {
547 /* {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
548 * shutter 0x47 short exposure? */
549 {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
550 /* shutter 0x01 long exposure */
551 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
554 static struct sensor_data sensor_data[] = {
555 SENS(initHv7131, NULL, hv7131_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ, 0),
556 SENS(initOv6650, NULL, ov6650_sensor_init, NULL, NULL, F_GAIN|F_SIF, 0, 0x60),
557 SENS(initOv7630, initOv7630_3, ov7630_sensor_init, NULL, ov7630_sensor_init_3,
558 F_GAIN, 0, 0x21),
559 SENS(initPas106, NULL, pas106_sensor_init, NULL, NULL, F_GAIN|F_SIF, NO_FREQ,
561 SENS(initPas202, initPas202, pas202_sensor_init, NULL, NULL, F_GAIN,
562 NO_FREQ, 0),
563 SENS(initTas5110c, NULL, tas5110_sensor_init, NULL, NULL,
564 F_GAIN|F_SIF|F_COARSE_EXPO, NO_BRIGHTNESS|NO_FREQ, 0),
565 SENS(initTas5110d, NULL, tas5110_sensor_init, NULL, NULL,
566 F_GAIN|F_SIF|F_COARSE_EXPO, NO_BRIGHTNESS|NO_FREQ, 0),
567 SENS(initTas5130, NULL, tas5130_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ,
571 /* get one byte in gspca_dev->usb_buf */
572 static void reg_r(struct gspca_dev *gspca_dev,
573 __u16 value)
575 usb_control_msg(gspca_dev->dev,
576 usb_rcvctrlpipe(gspca_dev->dev, 0),
577 0, /* request */
578 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
579 value,
580 0, /* index */
581 gspca_dev->usb_buf, 1,
582 500);
585 static void reg_w(struct gspca_dev *gspca_dev,
586 __u16 value,
587 const __u8 *buffer,
588 int len)
590 #ifdef GSPCA_DEBUG
591 if (len > USB_BUF_SZ) {
592 PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
593 return;
595 #endif
596 memcpy(gspca_dev->usb_buf, buffer, len);
597 usb_control_msg(gspca_dev->dev,
598 usb_sndctrlpipe(gspca_dev->dev, 0),
599 0x08, /* request */
600 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
601 value,
602 0, /* index */
603 gspca_dev->usb_buf, len,
604 500);
607 static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
609 int retry = 60;
611 /* is i2c ready */
612 reg_w(gspca_dev, 0x08, buffer, 8);
613 while (retry--) {
614 msleep(10);
615 reg_r(gspca_dev, 0x08);
616 if (gspca_dev->usb_buf[0] & 0x04) {
617 if (gspca_dev->usb_buf[0] & 0x08)
618 return -1;
619 return 0;
622 return -1;
625 static void i2c_w_vector(struct gspca_dev *gspca_dev,
626 const __u8 buffer[][8], int len)
628 for (;;) {
629 reg_w(gspca_dev, 0x08, *buffer, 8);
630 len -= 8;
631 if (len <= 0)
632 break;
633 buffer++;
637 static void setbrightness(struct gspca_dev *gspca_dev)
639 struct sd *sd = (struct sd *) gspca_dev;
640 __u8 value;
642 switch (sd->sensor) {
643 case SENSOR_OV6650:
644 case SENSOR_OV7630: {
645 __u8 i2cOV[] =
646 {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
648 /* change reg 0x06 */
649 i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
650 i2cOV[3] = sd->brightness;
651 if (i2c_w(gspca_dev, i2cOV) < 0)
652 goto err;
653 break;
655 case SENSOR_PAS106:
656 case SENSOR_PAS202: {
657 __u8 i2cpbright[] =
658 {0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
659 __u8 i2cpdoit[] =
660 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
662 /* PAS106 uses reg 7 and 8 instead of b and c */
663 if (sd->sensor == SENSOR_PAS106) {
664 i2cpbright[2] = 7;
665 i2cpdoit[2] = 0x13;
668 if (sd->brightness < 127) {
669 /* change reg 0x0b, signreg */
670 i2cpbright[3] = 0x01;
671 /* set reg 0x0c, offset */
672 i2cpbright[4] = 127 - sd->brightness;
673 } else
674 i2cpbright[4] = sd->brightness - 127;
676 if (i2c_w(gspca_dev, i2cpbright) < 0)
677 goto err;
678 if (i2c_w(gspca_dev, i2cpdoit) < 0)
679 goto err;
680 break;
682 case SENSOR_TAS5130CXX: {
683 __u8 i2c[] =
684 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
686 value = 0xff - sd->brightness;
687 i2c[4] = value;
688 PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
689 if (i2c_w(gspca_dev, i2c) < 0)
690 goto err;
691 break;
694 return;
695 err:
696 PDEBUG(D_ERR, "i2c error brightness");
699 static void setsensorgain(struct gspca_dev *gspca_dev)
701 struct sd *sd = (struct sd *) gspca_dev;
702 unsigned char gain = sd->gain;
704 switch (sd->sensor) {
706 case SENSOR_TAS5110C:
707 case SENSOR_TAS5110D: {
708 __u8 i2c[] =
709 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
711 i2c[4] = 255 - gain;
712 if (i2c_w(gspca_dev, i2c) < 0)
713 goto err;
714 break;
717 case SENSOR_OV6650:
718 gain >>= 1;
719 /* fall thru */
720 case SENSOR_OV7630: {
721 __u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
723 i2c[1] = sensor_data[sd->sensor].sensor_addr;
724 i2c[3] = gain >> 2;
725 if (i2c_w(gspca_dev, i2c) < 0)
726 goto err;
727 break;
729 case SENSOR_PAS106:
730 case SENSOR_PAS202: {
731 __u8 i2cpgain[] =
732 {0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
733 __u8 i2cpcolorgain[] =
734 {0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
735 __u8 i2cpdoit[] =
736 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
738 /* PAS106 uses different regs (and has split green gains) */
739 if (sd->sensor == SENSOR_PAS106) {
740 i2cpgain[2] = 0x0e;
741 i2cpcolorgain[0] = 0xd0;
742 i2cpcolorgain[2] = 0x09;
743 i2cpdoit[2] = 0x13;
746 i2cpgain[3] = sd->gain >> 3;
747 i2cpcolorgain[3] = sd->gain >> 4;
748 i2cpcolorgain[4] = sd->gain >> 4;
749 i2cpcolorgain[5] = sd->gain >> 4;
750 i2cpcolorgain[6] = sd->gain >> 4;
752 if (i2c_w(gspca_dev, i2cpgain) < 0)
753 goto err;
754 if (i2c_w(gspca_dev, i2cpcolorgain) < 0)
755 goto err;
756 if (i2c_w(gspca_dev, i2cpdoit) < 0)
757 goto err;
758 break;
761 return;
762 err:
763 PDEBUG(D_ERR, "i2c error gain");
766 static void setgain(struct gspca_dev *gspca_dev)
768 struct sd *sd = (struct sd *) gspca_dev;
769 __u8 gain;
770 __u8 buf[2] = { 0, 0 };
772 if (sensor_data[sd->sensor].flags & F_GAIN) {
773 /* Use the sensor gain to do the actual gain */
774 setsensorgain(gspca_dev);
775 return;
778 gain = sd->gain >> 4;
780 /* red and blue gain */
781 buf[0] = gain << 4 | gain;
782 /* green gain */
783 buf[1] = gain;
784 reg_w(gspca_dev, 0x10, buf, 2);
787 static void setexposure(struct gspca_dev *gspca_dev)
789 struct sd *sd = (struct sd *) gspca_dev;
791 switch (sd->sensor) {
792 case SENSOR_TAS5110C:
793 case SENSOR_TAS5110D: {
794 /* register 19's high nibble contains the sn9c10x clock divider
795 The high nibble configures the no fps according to the
796 formula: 60 / high_nibble. With a maximum of 30 fps */
797 __u8 reg = sd->exposure;
798 reg = (reg << 4) | 0x0b;
799 reg_w(gspca_dev, 0x19, &reg, 1);
800 break;
802 case SENSOR_OV6650:
803 case SENSOR_OV7630: {
804 /* The ov6650 / ov7630 have 2 registers which both influence
805 exposure, register 11, whose low nibble sets the nr off fps
806 according to: fps = 30 / (low_nibble + 1)
808 The fps configures the maximum exposure setting, but it is
809 possible to use less exposure then what the fps maximum
810 allows by setting register 10. register 10 configures the
811 actual exposure as quotient of the full exposure, with 0
812 being no exposure at all (not very usefull) and reg10_max
813 being max exposure possible at that framerate.
815 The code maps our 0 - 510 ms exposure ctrl to these 2
816 registers, trying to keep fps as high as possible.
818 __u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
819 int reg10, reg11, reg10_max;
821 /* ov6645 datasheet says reg10_max is 9a, but that uses
822 tline * 2 * reg10 as formula for calculating texpo, the
823 ov6650 probably uses the same formula as the 7730 which uses
824 tline * 4 * reg10, which explains why the reg10max we've
825 found experimentally for the ov6650 is exactly half that of
826 the ov6645. The ov7630 datasheet says the max is 0x41. */
827 if (sd->sensor == SENSOR_OV6650) {
828 reg10_max = 0x4d;
829 i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
830 } else
831 reg10_max = 0x41;
833 reg11 = (15 * sd->exposure + 999) / 1000;
834 if (reg11 < 1)
835 reg11 = 1;
836 else if (reg11 > 16)
837 reg11 = 16;
839 /* In 640x480, if the reg11 has less than 4, the image is
840 unstable (the bridge goes into a higher compression mode
841 which we have not reverse engineered yet). */
842 if (gspca_dev->width == 640 && reg11 < 4)
843 reg11 = 4;
845 /* frame exposure time in ms = 1000 * reg11 / 30 ->
846 reg10 = (sd->exposure / 2) * reg10_max / (1000 * reg11 / 30) */
847 reg10 = (sd->exposure * 15 * reg10_max) / (1000 * reg11);
849 /* Don't allow this to get below 10 when using autogain, the
850 steps become very large (relatively) when below 10 causing
851 the image to oscilate from much too dark, to much too bright
852 and back again. */
853 if (sd->autogain && reg10 < 10)
854 reg10 = 10;
855 else if (reg10 > reg10_max)
856 reg10 = reg10_max;
858 /* Write reg 10 and reg11 low nibble */
859 i2c[1] = sensor_data[sd->sensor].sensor_addr;
860 i2c[3] = reg10;
861 i2c[4] |= reg11 - 1;
863 /* If register 11 didn't change, don't change it */
864 if (sd->reg11 == reg11 )
865 i2c[0] = 0xa0;
867 if (i2c_w(gspca_dev, i2c) == 0)
868 sd->reg11 = reg11;
869 else
870 goto err;
871 break;
873 case SENSOR_PAS202: {
874 __u8 i2cpframerate[] =
875 {0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
876 __u8 i2cpexpo[] =
877 {0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
878 const __u8 i2cpdoit[] =
879 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
880 int framerate_ctrl;
882 /* The exposure knee for the autogain algorithm is 200
883 (100 ms / 10 fps on other sensors), for values below this
884 use the control for setting the partial frame expose time,
885 above that use variable framerate. This way we run at max
886 framerate (640x480@7.5 fps, 320x240@10fps) until the knee
887 is reached. Using the variable framerate control above 200
888 is better then playing around with both clockdiv + partial
889 frame exposure times (like we are doing with the ov chips),
890 as that sometimes leads to jumps in the exposure control,
891 which are bad for auto exposure. */
892 if (sd->exposure < 200) {
893 i2cpexpo[3] = 255 - (sd->exposure * 255) / 200;
894 framerate_ctrl = 500;
895 } else {
896 /* The PAS202's exposure control goes from 0 - 4095,
897 but anything below 500 causes vsync issues, so scale
898 our 200-1023 to 500-4095 */
899 framerate_ctrl = (sd->exposure - 200) * 1000 / 229 +
900 500;
903 i2cpframerate[3] = framerate_ctrl >> 6;
904 i2cpframerate[4] = framerate_ctrl & 0x3f;
905 if (i2c_w(gspca_dev, i2cpframerate) < 0)
906 goto err;
907 if (i2c_w(gspca_dev, i2cpexpo) < 0)
908 goto err;
909 if (i2c_w(gspca_dev, i2cpdoit) < 0)
910 goto err;
911 break;
913 case SENSOR_PAS106: {
914 __u8 i2cpframerate[] =
915 {0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
916 __u8 i2cpexpo[] =
917 {0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
918 const __u8 i2cpdoit[] =
919 {0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
920 int framerate_ctrl;
922 /* For values below 150 use partial frame exposure, above
923 that use framerate ctrl */
924 if (sd->exposure < 150) {
925 i2cpexpo[3] = 150 - sd->exposure;
926 framerate_ctrl = 300;
927 } else {
928 /* The PAS106's exposure control goes from 0 - 4095,
929 but anything below 300 causes vsync issues, so scale
930 our 150-1023 to 300-4095 */
931 framerate_ctrl = (sd->exposure - 150) * 1000 / 230 +
932 300;
935 i2cpframerate[3] = framerate_ctrl >> 4;
936 i2cpframerate[4] = framerate_ctrl & 0x0f;
937 if (i2c_w(gspca_dev, i2cpframerate) < 0)
938 goto err;
939 if (i2c_w(gspca_dev, i2cpexpo) < 0)
940 goto err;
941 if (i2c_w(gspca_dev, i2cpdoit) < 0)
942 goto err;
943 break;
946 return;
947 err:
948 PDEBUG(D_ERR, "i2c error exposure");
951 static void setfreq(struct gspca_dev *gspca_dev)
953 struct sd *sd = (struct sd *) gspca_dev;
955 switch (sd->sensor) {
956 case SENSOR_OV6650:
957 case SENSOR_OV7630: {
958 /* Framerate adjust register for artificial light 50 hz flicker
959 compensation, for the ov6650 this is identical to ov6630
960 0x2b register, see ov6630 datasheet.
961 0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
962 __u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
963 switch (sd->freq) {
964 default:
965 /* case 0: * no filter*/
966 /* case 2: * 60 hz */
967 i2c[3] = 0;
968 break;
969 case 1: /* 50 hz */
970 i2c[3] = (sd->sensor == SENSOR_OV6650)
971 ? 0x4f : 0x8a;
972 break;
974 i2c[1] = sensor_data[sd->sensor].sensor_addr;
975 if (i2c_w(gspca_dev, i2c) < 0)
976 PDEBUG(D_ERR, "i2c error setfreq");
977 break;
982 #include "coarse_expo_autogain.h"
984 static void do_autogain(struct gspca_dev *gspca_dev)
986 int deadzone, desired_avg_lum, result;
987 struct sd *sd = (struct sd *) gspca_dev;
988 int avg_lum = atomic_read(&sd->avg_lum);
990 if (avg_lum == -1 || !sd->autogain)
991 return;
993 if (sd->autogain_ignore_frames > 0) {
994 sd->autogain_ignore_frames--;
995 return;
998 /* SIF / VGA sensors have a different autoexposure area and thus
999 different avg_lum values for the same picture brightness */
1000 if (sensor_data[sd->sensor].flags & F_SIF) {
1001 deadzone = 500;
1002 /* SIF sensors tend to overexpose, so keep this small */
1003 desired_avg_lum = 5000;
1004 } else {
1005 deadzone = 1500;
1006 desired_avg_lum = 18000;
1009 if (sensor_data[sd->sensor].flags & F_COARSE_EXPO)
1010 result = gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum,
1011 sd->brightness * desired_avg_lum / 127,
1012 deadzone);
1013 else
1014 result = gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
1015 sd->brightness * desired_avg_lum / 127,
1016 deadzone, GAIN_KNEE, EXPOSURE_KNEE);
1018 if (result) {
1019 PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d",
1020 (int)sd->gain, (int)sd->exposure);
1021 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1025 /* this function is called at probe time */
1026 static int sd_config(struct gspca_dev *gspca_dev,
1027 const struct usb_device_id *id)
1029 struct sd *sd = (struct sd *) gspca_dev;
1030 struct cam *cam;
1032 reg_r(gspca_dev, 0x00);
1033 if (gspca_dev->usb_buf[0] != 0x10)
1034 return -ENODEV;
1036 /* copy the webcam info from the device id */
1037 sd->sensor = id->driver_info >> 8;
1038 sd->bridge = id->driver_info & 0xff;
1039 gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
1041 cam = &gspca_dev->cam;
1042 if (!(sensor_data[sd->sensor].flags & F_SIF)) {
1043 cam->cam_mode = vga_mode;
1044 cam->nmodes = ARRAY_SIZE(vga_mode);
1045 } else {
1046 cam->cam_mode = sif_mode;
1047 cam->nmodes = ARRAY_SIZE(sif_mode);
1049 cam->npkt = 36; /* 36 packets per ISOC message */
1051 sd->brightness = BRIGHTNESS_DEF;
1052 sd->gain = GAIN_DEF;
1053 if (sensor_data[sd->sensor].flags & F_COARSE_EXPO) {
1054 sd->exposure = COARSE_EXPOSURE_DEF;
1055 gspca_dev->ctrl_dis |= (1 << EXPOSURE_IDX);
1056 } else {
1057 sd->exposure = EXPOSURE_DEF;
1058 gspca_dev->ctrl_dis |= (1 << COARSE_EXPOSURE_IDX);
1060 if (gspca_dev->ctrl_dis & (1 << AUTOGAIN_IDX))
1061 sd->autogain = 0; /* Disable do_autogain callback */
1062 else
1063 sd->autogain = AUTOGAIN_DEF;
1064 sd->freq = FREQ_DEF;
1066 return 0;
1069 /* this function is called at probe and resume time */
1070 static int sd_init(struct gspca_dev *gspca_dev)
1072 const __u8 stop = 0x09; /* Disable stream turn of LED */
1074 reg_w(gspca_dev, 0x01, &stop, 1);
1076 return 0;
1079 /* -- start the camera -- */
1080 static int sd_start(struct gspca_dev *gspca_dev)
1082 struct sd *sd = (struct sd *) gspca_dev;
1083 struct cam *cam = &gspca_dev->cam;
1084 int mode, l;
1085 const __u8 *sn9c10x;
1086 __u8 reg12_19[8];
1088 mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1089 sn9c10x = sensor_data[sd->sensor].bridge_init[sd->bridge];
1090 l = sensor_data[sd->sensor].bridge_init_size[sd->bridge];
1091 memcpy(reg12_19, &sn9c10x[0x12 - 1], 8);
1092 reg12_19[6] = sn9c10x[0x18 - 1] | (mode << 4);
1093 /* Special cases where reg 17 and or 19 value depends on mode */
1094 switch (sd->sensor) {
1095 case SENSOR_TAS5130CXX:
1096 /* probably not mode specific at all most likely the upper
1097 nibble of 0x19 is exposure (clock divider) just as with
1098 the tas5110, we need someone to test this. */
1099 reg12_19[7] = mode ? 0x23 : 0x43;
1100 break;
1102 /* Disable compression when the raw bayer format has been selected */
1103 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
1104 reg12_19[6] &= ~0x80;
1106 /* Vga mode emulation on SIF sensor? */
1107 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
1108 reg12_19[0] += 16; /* 0x12: hstart adjust */
1109 reg12_19[1] += 24; /* 0x13: vstart adjust */
1110 reg12_19[3] = 320 / 16; /* 0x15: hsize */
1111 reg12_19[4] = 240 / 16; /* 0x16: vsize */
1114 /* reg 0x01 bit 2 video transfert on */
1115 reg_w(gspca_dev, 0x01, &sn9c10x[0x01 - 1], 1);
1116 /* reg 0x17 SensorClk enable inv Clk 0x60 */
1117 reg_w(gspca_dev, 0x17, &sn9c10x[0x17 - 1], 1);
1118 /* Set the registers from the template */
1119 reg_w(gspca_dev, 0x01, sn9c10x, l);
1121 /* Init the sensor */
1122 i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
1123 sensor_data[sd->sensor].sensor_init_size);
1124 if (sensor_data[sd->sensor].sensor_bridge_init[sd->bridge])
1125 i2c_w_vector(gspca_dev,
1126 sensor_data[sd->sensor].sensor_bridge_init[sd->bridge],
1127 sensor_data[sd->sensor].sensor_bridge_init_size[
1128 sd->bridge]);
1130 /* Mode specific sensor setup */
1131 switch (sd->sensor) {
1132 case SENSOR_PAS202: {
1133 const __u8 i2cpclockdiv[] =
1134 {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
1135 /* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
1136 if (mode)
1137 i2c_w(gspca_dev, i2cpclockdiv);
1140 /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1141 reg_w(gspca_dev, 0x15, &reg12_19[3], 2);
1142 /* compression register */
1143 reg_w(gspca_dev, 0x18, &reg12_19[6], 1);
1144 /* H_start */
1145 reg_w(gspca_dev, 0x12, &reg12_19[0], 1);
1146 /* V_START */
1147 reg_w(gspca_dev, 0x13, &reg12_19[1], 1);
1148 /* reset 0x17 SensorClk enable inv Clk 0x60 */
1149 reg_w(gspca_dev, 0x17, &reg12_19[5], 1);
1150 /*MCKSIZE ->3 */
1151 reg_w(gspca_dev, 0x19, &reg12_19[7], 1);
1152 /* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1153 reg_w(gspca_dev, 0x1c, &sn9c10x[0x1c - 1], 4);
1154 /* Enable video transfert */
1155 reg_w(gspca_dev, 0x01, &sn9c10x[0], 1);
1156 /* Compression */
1157 reg_w(gspca_dev, 0x18, &reg12_19[6], 2);
1158 msleep(20);
1160 sd->reg11 = -1;
1162 setgain(gspca_dev);
1163 setbrightness(gspca_dev);
1164 setexposure(gspca_dev);
1165 setfreq(gspca_dev);
1167 sd->frames_to_drop = 0;
1168 sd->autogain_ignore_frames = 0;
1169 sd->exp_too_high_cnt = 0;
1170 sd->exp_too_low_cnt = 0;
1171 atomic_set(&sd->avg_lum, -1);
1172 return 0;
1175 static void sd_stopN(struct gspca_dev *gspca_dev)
1177 sd_init(gspca_dev);
1180 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1181 u8 *data, /* isoc packet */
1182 int len) /* iso packet length */
1184 int i;
1185 struct sd *sd = (struct sd *) gspca_dev;
1186 struct cam *cam = &gspca_dev->cam;
1188 /* frames start with:
1189 * ff ff 00 c4 c4 96 synchro
1190 * 00 (unknown)
1191 * xx (frame sequence / size / compression)
1192 * (xx) (idem - extra byte for sn9c103)
1193 * ll mm brightness sum inside auto exposure
1194 * ll mm brightness sum outside auto exposure
1195 * (xx xx xx xx xx) audio values for snc103
1197 if (len > 6 && len < 24) {
1198 for (i = 0; i < len - 6; i++) {
1199 if (data[0 + i] == 0xff
1200 && data[1 + i] == 0xff
1201 && data[2 + i] == 0x00
1202 && data[3 + i] == 0xc4
1203 && data[4 + i] == 0xc4
1204 && data[5 + i] == 0x96) { /* start of frame */
1205 int lum = -1;
1206 int pkt_type = LAST_PACKET;
1207 int fr_h_sz = (sd->bridge == BRIDGE_103) ?
1208 18 : 12;
1210 if (len - i < fr_h_sz) {
1211 PDEBUG(D_STREAM, "packet too short to"
1212 " get avg brightness");
1213 } else if (sd->bridge == BRIDGE_103) {
1214 lum = data[i + 9] +
1215 (data[i + 10] << 8);
1216 } else {
1217 lum = data[i + 8] + (data[i + 9] << 8);
1219 /* When exposure changes midway a frame we
1220 get a lum of 0 in this case drop 2 frames
1221 as the frames directly after an exposure
1222 change have an unstable image. Sometimes lum
1223 *really* is 0 (cam used in low light with
1224 low exposure setting), so do not drop frames
1225 if the previous lum was 0 too. */
1226 if (lum == 0 && sd->prev_avg_lum != 0) {
1227 lum = -1;
1228 sd->frames_to_drop = 2;
1229 sd->prev_avg_lum = 0;
1230 } else
1231 sd->prev_avg_lum = lum;
1232 atomic_set(&sd->avg_lum, lum);
1234 if (sd->frames_to_drop) {
1235 sd->frames_to_drop--;
1236 pkt_type = DISCARD_PACKET;
1239 gspca_frame_add(gspca_dev, pkt_type,
1240 NULL, 0);
1241 data += i + fr_h_sz;
1242 len -= i + fr_h_sz;
1243 gspca_frame_add(gspca_dev, FIRST_PACKET,
1244 data, len);
1245 return;
1250 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
1251 /* In raw mode we sometimes get some garbage after the frame
1252 ignore this */
1253 int used;
1254 int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;
1256 used = gspca_dev->image_len;
1257 if (used + len > size)
1258 len = size - used;
1261 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1264 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
1266 struct sd *sd = (struct sd *) gspca_dev;
1268 sd->brightness = val;
1269 if (gspca_dev->streaming)
1270 setbrightness(gspca_dev);
1271 return 0;
1274 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
1276 struct sd *sd = (struct sd *) gspca_dev;
1278 *val = sd->brightness;
1279 return 0;
1282 static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
1284 struct sd *sd = (struct sd *) gspca_dev;
1286 sd->gain = val;
1287 if (gspca_dev->streaming)
1288 setgain(gspca_dev);
1289 return 0;
1292 static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1294 struct sd *sd = (struct sd *) gspca_dev;
1296 *val = sd->gain;
1297 return 0;
1300 static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
1302 struct sd *sd = (struct sd *) gspca_dev;
1304 sd->exposure = val;
1305 if (gspca_dev->streaming)
1306 setexposure(gspca_dev);
1307 return 0;
1310 static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
1312 struct sd *sd = (struct sd *) gspca_dev;
1314 *val = sd->exposure;
1315 return 0;
1318 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
1320 struct sd *sd = (struct sd *) gspca_dev;
1322 sd->autogain = val;
1323 sd->exp_too_high_cnt = 0;
1324 sd->exp_too_low_cnt = 0;
1326 /* when switching to autogain set defaults to make sure
1327 we are on a valid point of the autogain gain /
1328 exposure knee graph, and give this change time to
1329 take effect before doing autogain. */
1330 if (sd->autogain && !(sensor_data[sd->sensor].flags & F_COARSE_EXPO)) {
1331 sd->exposure = EXPOSURE_DEF;
1332 sd->gain = GAIN_DEF;
1333 if (gspca_dev->streaming) {
1334 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1335 setexposure(gspca_dev);
1336 setgain(gspca_dev);
1340 return 0;
1343 static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1345 struct sd *sd = (struct sd *) gspca_dev;
1347 *val = sd->autogain;
1348 return 0;
1351 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
1353 struct sd *sd = (struct sd *) gspca_dev;
1355 sd->freq = val;
1356 if (gspca_dev->streaming)
1357 setfreq(gspca_dev);
1358 return 0;
1361 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
1363 struct sd *sd = (struct sd *) gspca_dev;
1365 *val = sd->freq;
1366 return 0;
1369 static int sd_querymenu(struct gspca_dev *gspca_dev,
1370 struct v4l2_querymenu *menu)
1372 switch (menu->id) {
1373 case V4L2_CID_POWER_LINE_FREQUENCY:
1374 switch (menu->index) {
1375 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
1376 strcpy((char *) menu->name, "NoFliker");
1377 return 0;
1378 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
1379 strcpy((char *) menu->name, "50 Hz");
1380 return 0;
1381 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
1382 strcpy((char *) menu->name, "60 Hz");
1383 return 0;
1385 break;
1387 return -EINVAL;
1390 #ifdef CONFIG_INPUT
1391 static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
1392 u8 *data, /* interrupt packet data */
1393 int len) /* interrupt packet length */
1395 int ret = -EINVAL;
1397 if (len == 1 && data[0] == 1) {
1398 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
1399 input_sync(gspca_dev->input_dev);
1400 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
1401 input_sync(gspca_dev->input_dev);
1402 ret = 0;
1405 return ret;
1407 #endif
1409 /* sub-driver description */
1410 static const struct sd_desc sd_desc = {
1411 .name = MODULE_NAME,
1412 .ctrls = sd_ctrls,
1413 .nctrls = ARRAY_SIZE(sd_ctrls),
1414 .config = sd_config,
1415 .init = sd_init,
1416 .start = sd_start,
1417 .stopN = sd_stopN,
1418 .pkt_scan = sd_pkt_scan,
1419 .querymenu = sd_querymenu,
1420 .dq_callback = do_autogain,
1421 #ifdef CONFIG_INPUT
1422 .int_pkt_scan = sd_int_pkt_scan,
1423 #endif
1426 /* -- module initialisation -- */
1427 #define SB(sensor, bridge) \
1428 .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge
1431 static const struct usb_device_id device_table[] __devinitconst = {
1432 {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
1433 {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
1434 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1435 {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1436 #endif
1437 {USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
1438 {USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1439 {USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1440 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1441 {USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
1442 {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
1443 {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1444 #endif
1445 {USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
1446 {USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1447 {USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1448 {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1449 {USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1450 {USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1451 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1452 {USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1453 #endif
1454 {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1457 MODULE_DEVICE_TABLE(usb, device_table);
1459 /* -- device connect -- */
1460 static int __devinit sd_probe(struct usb_interface *intf,
1461 const struct usb_device_id *id)
1463 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1464 THIS_MODULE);
1467 static struct usb_driver sd_driver = {
1468 .name = MODULE_NAME,
1469 .id_table = device_table,
1470 .probe = sd_probe,
1471 .disconnect = gspca_disconnect,
1472 #ifdef CONFIG_PM
1473 .suspend = gspca_suspend,
1474 .resume = gspca_resume,
1475 #endif
1478 /* -- module insert / remove -- */
1479 static int __init sd_mod_init(void)
1481 int ret;
1482 ret = usb_register(&sd_driver);
1483 if (ret < 0)
1484 return ret;
1485 PDEBUG(D_PROBE, "registered");
1486 return 0;
1488 static void __exit sd_mod_exit(void)
1490 usb_deregister(&sd_driver);
1491 PDEBUG(D_PROBE, "deregistered");
1494 module_init(sd_mod_init);
1495 module_exit(sd_mod_exit);