GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / media / video / gspca / ov519.c
blob9571be797fdba8947e4ae548476b36211fe5bd88
1 /**
2 * OV519 driver
4 * Copyright (C) 2008 Jean-Francois Moine (http://moinejf.free.fr)
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
10 * Original copyright for the ov511 driver is:
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
19 * ov51x-jpeg original copyright is:
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 #define MODULE_NAME "ov519"
41 #include <linux/input.h>
42 #include "gspca.h"
44 /* The jpeg_hdr is used by w996Xcf only */
45 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
46 #define CONEX_CAM
47 #include "jpeg.h"
49 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
50 MODULE_DESCRIPTION("OV519 USB Camera Driver");
51 MODULE_LICENSE("GPL");
53 /* global parameters */
54 static int frame_rate;
56 /* Number of times to retry a failed I2C transaction. Increase this if you
57 * are getting "Failed to read sensor ID..." */
58 static int i2c_detect_tries = 10;
60 /* ov519 device descriptor */
61 struct sd {
62 struct gspca_dev gspca_dev; /* !! must be the first item */
64 __u8 packet_nr;
66 char bridge;
67 #define BRIDGE_OV511 0
68 #define BRIDGE_OV511PLUS 1
69 #define BRIDGE_OV518 2
70 #define BRIDGE_OV518PLUS 3
71 #define BRIDGE_OV519 4
72 #define BRIDGE_OVFX2 5
73 #define BRIDGE_W9968CF 6
74 #define BRIDGE_MASK 7
76 char invert_led;
77 #define BRIDGE_INVERT_LED 8
79 char snapshot_pressed;
80 char snapshot_needs_reset;
82 /* Determined by sensor type */
83 __u8 sif;
85 __u8 brightness;
86 __u8 contrast;
87 __u8 colors;
88 __u8 hflip;
89 __u8 vflip;
90 __u8 autobrightness;
91 __u8 freq;
92 __u8 quality;
93 #define QUALITY_MIN 50
94 #define QUALITY_MAX 70
95 #define QUALITY_DEF 50
97 __u8 stopped; /* Streaming is temporarily paused */
98 __u8 first_frame;
100 __u8 frame_rate; /* current Framerate */
101 __u8 clockdiv; /* clockdiv override */
103 char sensor; /* Type of image sensor chip (SEN_*) */
104 #define SEN_UNKNOWN 0
105 #define SEN_OV2610 1
106 #define SEN_OV3610 2
107 #define SEN_OV6620 3
108 #define SEN_OV6630 4
109 #define SEN_OV66308AF 5
110 #define SEN_OV7610 6
111 #define SEN_OV7620 7
112 #define SEN_OV7620AE 8
113 #define SEN_OV7640 9
114 #define SEN_OV7648 10
115 #define SEN_OV7670 11
116 #define SEN_OV76BE 12
117 #define SEN_OV8610 13
119 u8 sensor_addr;
120 int sensor_width;
121 int sensor_height;
122 int sensor_reg_cache[256];
124 u8 jpeg_hdr[JPEG_HDR_SZ];
127 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
128 the ov sensors which is already present here. When we have the time we
129 really should move the sensor drivers to v4l2 sub drivers. */
130 #include "w996Xcf.c"
132 /* V4L2 controls supported by the driver */
133 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
134 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
135 static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val);
136 static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val);
137 static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val);
138 static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val);
139 static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val);
140 static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val);
141 static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val);
142 static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val);
143 static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val);
144 static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val);
145 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
146 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
147 static void setbrightness(struct gspca_dev *gspca_dev);
148 static void setcontrast(struct gspca_dev *gspca_dev);
149 static void setcolors(struct gspca_dev *gspca_dev);
150 static void setautobrightness(struct sd *sd);
151 static void setfreq(struct sd *sd);
153 static const struct ctrl sd_ctrls[] = {
154 #define BRIGHTNESS_IDX 0
157 .id = V4L2_CID_BRIGHTNESS,
158 .type = V4L2_CTRL_TYPE_INTEGER,
159 .name = "Brightness",
160 .minimum = 0,
161 .maximum = 255,
162 .step = 1,
163 #define BRIGHTNESS_DEF 127
164 .default_value = BRIGHTNESS_DEF,
166 .set = sd_setbrightness,
167 .get = sd_getbrightness,
169 #define CONTRAST_IDX 1
172 .id = V4L2_CID_CONTRAST,
173 .type = V4L2_CTRL_TYPE_INTEGER,
174 .name = "Contrast",
175 .minimum = 0,
176 .maximum = 255,
177 .step = 1,
178 #define CONTRAST_DEF 127
179 .default_value = CONTRAST_DEF,
181 .set = sd_setcontrast,
182 .get = sd_getcontrast,
184 #define COLOR_IDX 2
187 .id = V4L2_CID_SATURATION,
188 .type = V4L2_CTRL_TYPE_INTEGER,
189 .name = "Color",
190 .minimum = 0,
191 .maximum = 255,
192 .step = 1,
193 #define COLOR_DEF 127
194 .default_value = COLOR_DEF,
196 .set = sd_setcolors,
197 .get = sd_getcolors,
199 /* The flip controls work with ov7670 only */
200 #define HFLIP_IDX 3
203 .id = V4L2_CID_HFLIP,
204 .type = V4L2_CTRL_TYPE_BOOLEAN,
205 .name = "Mirror",
206 .minimum = 0,
207 .maximum = 1,
208 .step = 1,
209 #define HFLIP_DEF 0
210 .default_value = HFLIP_DEF,
212 .set = sd_sethflip,
213 .get = sd_gethflip,
215 #define VFLIP_IDX 4
218 .id = V4L2_CID_VFLIP,
219 .type = V4L2_CTRL_TYPE_BOOLEAN,
220 .name = "Vflip",
221 .minimum = 0,
222 .maximum = 1,
223 .step = 1,
224 #define VFLIP_DEF 0
225 .default_value = VFLIP_DEF,
227 .set = sd_setvflip,
228 .get = sd_getvflip,
230 #define AUTOBRIGHT_IDX 5
233 .id = V4L2_CID_AUTOBRIGHTNESS,
234 .type = V4L2_CTRL_TYPE_BOOLEAN,
235 .name = "Auto Brightness",
236 .minimum = 0,
237 .maximum = 1,
238 .step = 1,
239 #define AUTOBRIGHT_DEF 1
240 .default_value = AUTOBRIGHT_DEF,
242 .set = sd_setautobrightness,
243 .get = sd_getautobrightness,
245 #define FREQ_IDX 6
248 .id = V4L2_CID_POWER_LINE_FREQUENCY,
249 .type = V4L2_CTRL_TYPE_MENU,
250 .name = "Light frequency filter",
251 .minimum = 0,
252 .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
253 .step = 1,
254 #define FREQ_DEF 0
255 .default_value = FREQ_DEF,
257 .set = sd_setfreq,
258 .get = sd_getfreq,
260 #define OV7670_FREQ_IDX 7
263 .id = V4L2_CID_POWER_LINE_FREQUENCY,
264 .type = V4L2_CTRL_TYPE_MENU,
265 .name = "Light frequency filter",
266 .minimum = 0,
267 .maximum = 3, /* 0: 0, 1: 50Hz, 2:60Hz 3: Auto Hz */
268 .step = 1,
269 #define OV7670_FREQ_DEF 3
270 .default_value = OV7670_FREQ_DEF,
272 .set = sd_setfreq,
273 .get = sd_getfreq,
277 static const struct v4l2_pix_format ov519_vga_mode[] = {
278 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
279 .bytesperline = 320,
280 .sizeimage = 320 * 240 * 3 / 8 + 590,
281 .colorspace = V4L2_COLORSPACE_JPEG,
282 .priv = 1},
283 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
284 .bytesperline = 640,
285 .sizeimage = 640 * 480 * 3 / 8 + 590,
286 .colorspace = V4L2_COLORSPACE_JPEG,
287 .priv = 0},
289 static const struct v4l2_pix_format ov519_sif_mode[] = {
290 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
291 .bytesperline = 160,
292 .sizeimage = 160 * 120 * 3 / 8 + 590,
293 .colorspace = V4L2_COLORSPACE_JPEG,
294 .priv = 3},
295 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
296 .bytesperline = 176,
297 .sizeimage = 176 * 144 * 3 / 8 + 590,
298 .colorspace = V4L2_COLORSPACE_JPEG,
299 .priv = 1},
300 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
301 .bytesperline = 320,
302 .sizeimage = 320 * 240 * 3 / 8 + 590,
303 .colorspace = V4L2_COLORSPACE_JPEG,
304 .priv = 2},
305 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
306 .bytesperline = 352,
307 .sizeimage = 352 * 288 * 3 / 8 + 590,
308 .colorspace = V4L2_COLORSPACE_JPEG,
309 .priv = 0},
312 /* Note some of the sizeimage values for the ov511 / ov518 may seem
313 larger then necessary, however they need to be this big as the ov511 /
314 ov518 always fills the entire isoc frame, using 0 padding bytes when
315 it doesn't have any data. So with low framerates the amount of data
316 transfered can become quite large (libv4l will remove all the 0 padding
317 in userspace). */
318 static const struct v4l2_pix_format ov518_vga_mode[] = {
319 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
320 .bytesperline = 320,
321 .sizeimage = 320 * 240 * 3,
322 .colorspace = V4L2_COLORSPACE_JPEG,
323 .priv = 1},
324 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
325 .bytesperline = 640,
326 .sizeimage = 640 * 480 * 2,
327 .colorspace = V4L2_COLORSPACE_JPEG,
328 .priv = 0},
330 static const struct v4l2_pix_format ov518_sif_mode[] = {
331 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
332 .bytesperline = 160,
333 .sizeimage = 70000,
334 .colorspace = V4L2_COLORSPACE_JPEG,
335 .priv = 3},
336 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
337 .bytesperline = 176,
338 .sizeimage = 70000,
339 .colorspace = V4L2_COLORSPACE_JPEG,
340 .priv = 1},
341 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
342 .bytesperline = 320,
343 .sizeimage = 320 * 240 * 3,
344 .colorspace = V4L2_COLORSPACE_JPEG,
345 .priv = 2},
346 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
347 .bytesperline = 352,
348 .sizeimage = 352 * 288 * 3,
349 .colorspace = V4L2_COLORSPACE_JPEG,
350 .priv = 0},
353 static const struct v4l2_pix_format ov511_vga_mode[] = {
354 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
355 .bytesperline = 320,
356 .sizeimage = 320 * 240 * 3,
357 .colorspace = V4L2_COLORSPACE_JPEG,
358 .priv = 1},
359 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
360 .bytesperline = 640,
361 .sizeimage = 640 * 480 * 2,
362 .colorspace = V4L2_COLORSPACE_JPEG,
363 .priv = 0},
365 static const struct v4l2_pix_format ov511_sif_mode[] = {
366 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
367 .bytesperline = 160,
368 .sizeimage = 70000,
369 .colorspace = V4L2_COLORSPACE_JPEG,
370 .priv = 3},
371 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
372 .bytesperline = 176,
373 .sizeimage = 70000,
374 .colorspace = V4L2_COLORSPACE_JPEG,
375 .priv = 1},
376 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
377 .bytesperline = 320,
378 .sizeimage = 320 * 240 * 3,
379 .colorspace = V4L2_COLORSPACE_JPEG,
380 .priv = 2},
381 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
382 .bytesperline = 352,
383 .sizeimage = 352 * 288 * 3,
384 .colorspace = V4L2_COLORSPACE_JPEG,
385 .priv = 0},
388 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
389 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
390 .bytesperline = 320,
391 .sizeimage = 320 * 240,
392 .colorspace = V4L2_COLORSPACE_SRGB,
393 .priv = 1},
394 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
395 .bytesperline = 640,
396 .sizeimage = 640 * 480,
397 .colorspace = V4L2_COLORSPACE_SRGB,
398 .priv = 0},
400 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
401 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
402 .bytesperline = 160,
403 .sizeimage = 160 * 120,
404 .colorspace = V4L2_COLORSPACE_SRGB,
405 .priv = 3},
406 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
407 .bytesperline = 176,
408 .sizeimage = 176 * 144,
409 .colorspace = V4L2_COLORSPACE_SRGB,
410 .priv = 1},
411 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
412 .bytesperline = 320,
413 .sizeimage = 320 * 240,
414 .colorspace = V4L2_COLORSPACE_SRGB,
415 .priv = 2},
416 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
417 .bytesperline = 352,
418 .sizeimage = 352 * 288,
419 .colorspace = V4L2_COLORSPACE_SRGB,
420 .priv = 0},
422 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
423 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
424 .bytesperline = 1600,
425 .sizeimage = 1600 * 1200,
426 .colorspace = V4L2_COLORSPACE_SRGB},
428 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
429 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
430 .bytesperline = 640,
431 .sizeimage = 640 * 480,
432 .colorspace = V4L2_COLORSPACE_SRGB,
433 .priv = 1},
434 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
435 .bytesperline = 800,
436 .sizeimage = 800 * 600,
437 .colorspace = V4L2_COLORSPACE_SRGB,
438 .priv = 1},
439 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
440 .bytesperline = 1024,
441 .sizeimage = 1024 * 768,
442 .colorspace = V4L2_COLORSPACE_SRGB,
443 .priv = 1},
444 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
445 .bytesperline = 1600,
446 .sizeimage = 1600 * 1200,
447 .colorspace = V4L2_COLORSPACE_SRGB,
448 .priv = 0},
449 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
450 .bytesperline = 2048,
451 .sizeimage = 2048 * 1536,
452 .colorspace = V4L2_COLORSPACE_SRGB,
453 .priv = 0},
457 /* Registers common to OV511 / OV518 */
458 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
459 #define R51x_SYS_RESET 0x50
460 /* Reset type flags */
461 #define OV511_RESET_OMNICE 0x08
462 #define R51x_SYS_INIT 0x53
463 #define R51x_SYS_SNAP 0x52
464 #define R51x_SYS_CUST_ID 0x5F
465 #define R51x_COMP_LUT_BEGIN 0x80
467 /* OV511 Camera interface register numbers */
468 #define R511_CAM_DELAY 0x10
469 #define R511_CAM_EDGE 0x11
470 #define R511_CAM_PXCNT 0x12
471 #define R511_CAM_LNCNT 0x13
472 #define R511_CAM_PXDIV 0x14
473 #define R511_CAM_LNDIV 0x15
474 #define R511_CAM_UV_EN 0x16
475 #define R511_CAM_LINE_MODE 0x17
476 #define R511_CAM_OPTS 0x18
478 #define R511_SNAP_FRAME 0x19
479 #define R511_SNAP_PXCNT 0x1A
480 #define R511_SNAP_LNCNT 0x1B
481 #define R511_SNAP_PXDIV 0x1C
482 #define R511_SNAP_LNDIV 0x1D
483 #define R511_SNAP_UV_EN 0x1E
484 #define R511_SNAP_UV_EN 0x1E
485 #define R511_SNAP_OPTS 0x1F
487 #define R511_DRAM_FLOW_CTL 0x20
488 #define R511_FIFO_OPTS 0x31
489 #define R511_I2C_CTL 0x40
490 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
491 #define R511_COMP_EN 0x78
492 #define R511_COMP_LUT_EN 0x79
494 /* OV518 Camera interface register numbers */
495 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
496 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
498 /* OV519 Camera interface register numbers */
499 #define OV519_R10_H_SIZE 0x10
500 #define OV519_R11_V_SIZE 0x11
501 #define OV519_R12_X_OFFSETL 0x12
502 #define OV519_R13_X_OFFSETH 0x13
503 #define OV519_R14_Y_OFFSETL 0x14
504 #define OV519_R15_Y_OFFSETH 0x15
505 #define OV519_R16_DIVIDER 0x16
506 #define OV519_R20_DFR 0x20
507 #define OV519_R25_FORMAT 0x25
509 /* OV519 System Controller register numbers */
510 #define OV519_SYS_RESET1 0x51
511 #define OV519_SYS_EN_CLK1 0x54
513 #define OV519_GPIO_DATA_OUT0 0x71
514 #define OV519_GPIO_IO_CTRL0 0x72
516 #define OV511_ENDPOINT_ADDRESS 1 /* Isoc endpoint number */
519 * The FX2 chip does not give us a zero length read at end of frame.
520 * It does, however, give a short read at the end of a frame, if
521 * necessary, rather than run two frames together.
523 * By choosing the right bulk transfer size, we are guaranteed to always
524 * get a short read for the last read of each frame. Frame sizes are
525 * always a composite number (width * height, or a multiple) so if we
526 * choose a prime number, we are guaranteed that the last read of a
527 * frame will be short.
529 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
530 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
531 * to figure out why. [PMiller]
533 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
535 * It isn't enough to know the number of bytes per frame, in case we
536 * have data dropouts or buffer overruns (even though the FX2 double
537 * buffers, there are some pretty strict real time constraints for
538 * isochronous transfer for larger frame sizes).
540 #define OVFX2_BULK_SIZE (13 * 4096)
542 /* I2C registers */
543 #define R51x_I2C_W_SID 0x41
544 #define R51x_I2C_SADDR_3 0x42
545 #define R51x_I2C_SADDR_2 0x43
546 #define R51x_I2C_R_SID 0x44
547 #define R51x_I2C_DATA 0x45
548 #define R518_I2C_CTL 0x47 /* OV518(+) only */
549 #define OVFX2_I2C_ADDR 0x00
551 /* I2C ADDRESSES */
552 #define OV7xx0_SID 0x42
553 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
554 #define OV8xx0_SID 0xa0
555 #define OV6xx0_SID 0xc0
557 /* OV7610 registers */
558 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
559 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
560 #define OV7610_REG_RED 0x02 /* red channel balance */
561 #define OV7610_REG_SAT 0x03 /* saturation */
562 #define OV8610_REG_HUE 0x04 /* 04 reserved */
563 #define OV7610_REG_CNT 0x05 /* Y contrast */
564 #define OV7610_REG_BRT 0x06 /* Y brightness */
565 #define OV7610_REG_COM_C 0x14 /* misc common regs */
566 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
567 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
568 #define OV7610_REG_COM_I 0x29 /* misc settings */
570 /* OV7670 registers */
571 #define OV7670_REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
572 #define OV7670_REG_BLUE 0x01 /* blue gain */
573 #define OV7670_REG_RED 0x02 /* red gain */
574 #define OV7670_REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
575 #define OV7670_REG_COM1 0x04 /* Control 1 */
576 #define OV7670_REG_AECHH 0x07 /* AEC MS 5 bits */
577 #define OV7670_REG_COM3 0x0c /* Control 3 */
578 #define OV7670_REG_COM4 0x0d /* Control 4 */
579 #define OV7670_REG_COM5 0x0e /* All "reserved" */
580 #define OV7670_REG_COM6 0x0f /* Control 6 */
581 #define OV7670_REG_AECH 0x10 /* More bits of AEC value */
582 #define OV7670_REG_CLKRC 0x11 /* Clock control */
583 #define OV7670_REG_COM7 0x12 /* Control 7 */
584 #define OV7670_COM7_FMT_VGA 0x00
585 #define OV7670_COM7_YUV 0x00 /* YUV */
586 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
587 #define OV7670_COM7_FMT_MASK 0x38
588 #define OV7670_COM7_RESET 0x80 /* Register reset */
589 #define OV7670_REG_COM8 0x13 /* Control 8 */
590 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
591 #define OV7670_COM8_AWB 0x02 /* White balance enable */
592 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
593 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
594 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
595 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
596 #define OV7670_REG_COM9 0x14 /* Control 9 - gain ceiling */
597 #define OV7670_REG_COM10 0x15 /* Control 10 */
598 #define OV7670_REG_HSTART 0x17 /* Horiz start high bits */
599 #define OV7670_REG_HSTOP 0x18 /* Horiz stop high bits */
600 #define OV7670_REG_VSTART 0x19 /* Vert start high bits */
601 #define OV7670_REG_VSTOP 0x1a /* Vert stop high bits */
602 #define OV7670_REG_MVFP 0x1e /* Mirror / vflip */
603 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
604 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
605 #define OV7670_REG_AEW 0x24 /* AGC upper limit */
606 #define OV7670_REG_AEB 0x25 /* AGC lower limit */
607 #define OV7670_REG_VPT 0x26 /* AGC/AEC fast mode op region */
608 #define OV7670_REG_HREF 0x32 /* HREF pieces */
609 #define OV7670_REG_TSLB 0x3a /* lots of stuff */
610 #define OV7670_REG_COM11 0x3b /* Control 11 */
611 #define OV7670_COM11_EXP 0x02
612 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
613 #define OV7670_REG_COM12 0x3c /* Control 12 */
614 #define OV7670_REG_COM13 0x3d /* Control 13 */
615 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
616 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
617 #define OV7670_REG_COM14 0x3e /* Control 14 */
618 #define OV7670_REG_EDGE 0x3f /* Edge enhancement factor */
619 #define OV7670_REG_COM15 0x40 /* Control 15 */
620 #define OV7670_COM15_R00FF 0xc0 /* 00 to FF */
621 #define OV7670_REG_COM16 0x41 /* Control 16 */
622 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
623 #define OV7670_REG_BRIGHT 0x55 /* Brightness */
624 #define OV7670_REG_CONTRAS 0x56 /* Contrast control */
625 #define OV7670_REG_GFIX 0x69 /* Fix gain control */
626 #define OV7670_REG_RGB444 0x8c /* RGB 444 control */
627 #define OV7670_REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
628 #define OV7670_REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
629 #define OV7670_REG_BD50MAX 0xa5 /* 50hz banding step limit */
630 #define OV7670_REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
631 #define OV7670_REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
632 #define OV7670_REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
633 #define OV7670_REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
634 #define OV7670_REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
635 #define OV7670_REG_BD60MAX 0xab /* 60hz banding step limit */
637 struct ov_regvals {
638 __u8 reg;
639 __u8 val;
641 struct ov_i2c_regvals {
642 __u8 reg;
643 __u8 val;
646 /* Settings for OV2610 camera chip */
647 static const struct ov_i2c_regvals norm_2610[] =
649 { 0x12, 0x80 }, /* reset */
652 static const struct ov_i2c_regvals norm_3620b[] =
655 * From the datasheet: "Note that after writing to register COMH
656 * (0x12) to change the sensor mode, registers related to the
657 * sensor’s cropping window will be reset back to their default
658 * values."
660 * "wait 4096 external clock ... to make sure the sensor is
661 * stable and ready to access registers" i.e. 160us at 24MHz
664 { 0x12, 0x80 }, /* COMH reset */
665 { 0x12, 0x00 }, /* QXGA, master */
668 * 11 CLKRC "Clock Rate Control"
669 * [7] internal frequency doublers: on
670 * [6] video port mode: master
671 * [5:0] clock divider: 1
673 { 0x11, 0x80 },
676 * 13 COMI "Common Control I"
677 * = 192 (0xC0) 11000000
678 * COMI[7] "AEC speed selection"
679 * = 1 (0x01) 1....... "Faster AEC correction"
680 * COMI[6] "AEC speed step selection"
681 * = 1 (0x01) .1...... "Big steps, fast"
682 * COMI[5] "Banding filter on off"
683 * = 0 (0x00) ..0..... "Off"
684 * COMI[4] "Banding filter option"
685 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
686 * the PLL is ON"
687 * COMI[3] "Reserved"
688 * = 0 (0x00) ....0...
689 * COMI[2] "AGC auto manual control selection"
690 * = 0 (0x00) .....0.. "Manual"
691 * COMI[1] "AWB auto manual control selection"
692 * = 0 (0x00) ......0. "Manual"
693 * COMI[0] "Exposure control"
694 * = 0 (0x00) .......0 "Manual"
696 { 0x13, 0xC0 },
699 * 09 COMC "Common Control C"
700 * = 8 (0x08) 00001000
701 * COMC[7:5] "Reserved"
702 * = 0 (0x00) 000.....
703 * COMC[4] "Sleep Mode Enable"
704 * = 0 (0x00) ...0.... "Normal mode"
705 * COMC[3:2] "Sensor sampling reset timing selection"
706 * = 2 (0x02) ....10.. "Longer reset time"
707 * COMC[1:0] "Output drive current select"
708 * = 0 (0x00) ......00 "Weakest"
710 { 0x09, 0x08 },
713 * 0C COMD "Common Control D"
714 * = 8 (0x08) 00001000
715 * COMD[7] "Reserved"
716 * = 0 (0x00) 0.......
717 * COMD[6] "Swap MSB and LSB at the output port"
718 * = 0 (0x00) .0...... "False"
719 * COMD[5:3] "Reserved"
720 * = 1 (0x01) ..001...
721 * COMD[2] "Output Average On Off"
722 * = 0 (0x00) .....0.. "Output Normal"
723 * COMD[1] "Sensor precharge voltage selection"
724 * = 0 (0x00) ......0. "Selects internal
725 * reference precharge
726 * voltage"
727 * COMD[0] "Snapshot option"
728 * = 0 (0x00) .......0 "Enable live video output
729 * after snapshot sequence"
731 { 0x0c, 0x08 },
734 * 0D COME "Common Control E"
735 * = 161 (0xA1) 10100001
736 * COME[7] "Output average option"
737 * = 1 (0x01) 1....... "Output average of 4 pixels"
738 * COME[6] "Anti-blooming control"
739 * = 0 (0x00) .0...... "Off"
740 * COME[5:3] "Reserved"
741 * = 4 (0x04) ..100...
742 * COME[2] "Clock output power down pin status"
743 * = 0 (0x00) .....0.. "Tri-state data output pin
744 * on power down"
745 * COME[1] "Data output pin status selection at power down"
746 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
747 * HREF, and CHSYNC pins on
748 * power down"
749 * COME[0] "Auto zero circuit select"
750 * = 1 (0x01) .......1 "On"
752 { 0x0d, 0xA1 },
755 * 0E COMF "Common Control F"
756 * = 112 (0x70) 01110000
757 * COMF[7] "System clock selection"
758 * = 0 (0x00) 0....... "Use 24 MHz system clock"
759 * COMF[6:4] "Reserved"
760 * = 7 (0x07) .111....
761 * COMF[3] "Manual auto negative offset canceling selection"
762 * = 0 (0x00) ....0... "Auto detect negative
763 * offset and cancel it"
764 * COMF[2:0] "Reserved"
765 * = 0 (0x00) .....000
767 { 0x0e, 0x70 },
770 * 0F COMG "Common Control G"
771 * = 66 (0x42) 01000010
772 * COMG[7] "Optical black output selection"
773 * = 0 (0x00) 0....... "Disable"
774 * COMG[6] "Black level calibrate selection"
775 * = 1 (0x01) .1...... "Use optical black pixels
776 * to calibrate"
777 * COMG[5:4] "Reserved"
778 * = 0 (0x00) ..00....
779 * COMG[3] "Channel offset adjustment"
780 * = 0 (0x00) ....0... "Disable offset adjustment"
781 * COMG[2] "ADC black level calibration option"
782 * = 0 (0x00) .....0.. "Use B/G line and G/R
783 * line to calibrate each
784 * channel's black level"
785 * COMG[1] "Reserved"
786 * = 1 (0x01) ......1.
787 * COMG[0] "ADC black level calibration enable"
788 * = 0 (0x00) .......0 "Disable"
790 { 0x0f, 0x42 },
793 * 14 COMJ "Common Control J"
794 * = 198 (0xC6) 11000110
795 * COMJ[7:6] "AGC gain ceiling"
796 * = 3 (0x03) 11...... "8x"
797 * COMJ[5:4] "Reserved"
798 * = 0 (0x00) ..00....
799 * COMJ[3] "Auto banding filter"
800 * = 0 (0x00) ....0... "Banding filter is always
801 * on off depending on
802 * COMI[5] setting"
803 * COMJ[2] "VSYNC drop option"
804 * = 1 (0x01) .....1.. "SYNC is dropped if frame
805 * data is dropped"
806 * COMJ[1] "Frame data drop"
807 * = 1 (0x01) ......1. "Drop frame data if
808 * exposure is not within
809 * tolerance. In AEC mode,
810 * data is normally dropped
811 * when data is out of
812 * range."
813 * COMJ[0] "Reserved"
814 * = 0 (0x00) .......0
816 { 0x14, 0xC6 },
819 * 15 COMK "Common Control K"
820 * = 2 (0x02) 00000010
821 * COMK[7] "CHSYNC pin output swap"
822 * = 0 (0x00) 0....... "CHSYNC"
823 * COMK[6] "HREF pin output swap"
824 * = 0 (0x00) .0...... "HREF"
825 * COMK[5] "PCLK output selection"
826 * = 0 (0x00) ..0..... "PCLK always output"
827 * COMK[4] "PCLK edge selection"
828 * = 0 (0x00) ...0.... "Data valid on falling edge"
829 * COMK[3] "HREF output polarity"
830 * = 0 (0x00) ....0... "positive"
831 * COMK[2] "Reserved"
832 * = 0 (0x00) .....0..
833 * COMK[1] "VSYNC polarity"
834 * = 1 (0x01) ......1. "negative"
835 * COMK[0] "HSYNC polarity"
836 * = 0 (0x00) .......0 "positive"
838 { 0x15, 0x02 },
841 * 33 CHLF "Current Control"
842 * = 9 (0x09) 00001001
843 * CHLF[7:6] "Sensor current control"
844 * = 0 (0x00) 00......
845 * CHLF[5] "Sensor current range control"
846 * = 0 (0x00) ..0..... "normal range"
847 * CHLF[4] "Sensor current"
848 * = 0 (0x00) ...0.... "normal current"
849 * CHLF[3] "Sensor buffer current control"
850 * = 1 (0x01) ....1... "half current"
851 * CHLF[2] "Column buffer current control"
852 * = 0 (0x00) .....0.. "normal current"
853 * CHLF[1] "Analog DSP current control"
854 * = 0 (0x00) ......0. "normal current"
855 * CHLF[1] "ADC current control"
856 * = 0 (0x00) ......0. "normal current"
858 { 0x33, 0x09 },
861 * 34 VBLM "Blooming Control"
862 * = 80 (0x50) 01010000
863 * VBLM[7] "Hard soft reset switch"
864 * = 0 (0x00) 0....... "Hard reset"
865 * VBLM[6:4] "Blooming voltage selection"
866 * = 5 (0x05) .101....
867 * VBLM[3:0] "Sensor current control"
868 * = 0 (0x00) ....0000
870 { 0x34, 0x50 },
873 * 36 VCHG "Sensor Precharge Voltage Control"
874 * = 0 (0x00) 00000000
875 * VCHG[7] "Reserved"
876 * = 0 (0x00) 0.......
877 * VCHG[6:4] "Sensor precharge voltage control"
878 * = 0 (0x00) .000....
879 * VCHG[3:0] "Sensor array common reference"
880 * = 0 (0x00) ....0000
882 { 0x36, 0x00 },
885 * 37 ADC "ADC Reference Control"
886 * = 4 (0x04) 00000100
887 * ADC[7:4] "Reserved"
888 * = 0 (0x00) 0000....
889 * ADC[3] "ADC input signal range"
890 * = 0 (0x00) ....0... "Input signal 1.0x"
891 * ADC[2:0] "ADC range control"
892 * = 4 (0x04) .....100
894 { 0x37, 0x04 },
897 * 38 ACOM "Analog Common Ground"
898 * = 82 (0x52) 01010010
899 * ACOM[7] "Analog gain control"
900 * = 0 (0x00) 0....... "Gain 1x"
901 * ACOM[6] "Analog black level calibration"
902 * = 1 (0x01) .1...... "On"
903 * ACOM[5:0] "Reserved"
904 * = 18 (0x12) ..010010
906 { 0x38, 0x52 },
909 * 3A FREFA "Internal Reference Adjustment"
910 * = 0 (0x00) 00000000
911 * FREFA[7:0] "Range"
912 * = 0 (0x00) 00000000
914 { 0x3a, 0x00 },
917 * 3C FVOPT "Internal Reference Adjustment"
918 * = 31 (0x1F) 00011111
919 * FVOPT[7:0] "Range"
920 * = 31 (0x1F) 00011111
922 { 0x3c, 0x1F },
925 * 44 Undocumented = 0 (0x00) 00000000
926 * 44[7:0] "It's a secret"
927 * = 0 (0x00) 00000000
929 { 0x44, 0x00 },
932 * 40 Undocumented = 0 (0x00) 00000000
933 * 40[7:0] "It's a secret"
934 * = 0 (0x00) 00000000
936 { 0x40, 0x00 },
939 * 41 Undocumented = 0 (0x00) 00000000
940 * 41[7:0] "It's a secret"
941 * = 0 (0x00) 00000000
943 { 0x41, 0x00 },
946 * 42 Undocumented = 0 (0x00) 00000000
947 * 42[7:0] "It's a secret"
948 * = 0 (0x00) 00000000
950 { 0x42, 0x00 },
953 * 43 Undocumented = 0 (0x00) 00000000
954 * 43[7:0] "It's a secret"
955 * = 0 (0x00) 00000000
957 { 0x43, 0x00 },
960 * 45 Undocumented = 128 (0x80) 10000000
961 * 45[7:0] "It's a secret"
962 * = 128 (0x80) 10000000
964 { 0x45, 0x80 },
967 * 48 Undocumented = 192 (0xC0) 11000000
968 * 48[7:0] "It's a secret"
969 * = 192 (0xC0) 11000000
971 { 0x48, 0xC0 },
974 * 49 Undocumented = 25 (0x19) 00011001
975 * 49[7:0] "It's a secret"
976 * = 25 (0x19) 00011001
978 { 0x49, 0x19 },
981 * 4B Undocumented = 128 (0x80) 10000000
982 * 4B[7:0] "It's a secret"
983 * = 128 (0x80) 10000000
985 { 0x4B, 0x80 },
988 * 4D Undocumented = 196 (0xC4) 11000100
989 * 4D[7:0] "It's a secret"
990 * = 196 (0xC4) 11000100
992 { 0x4D, 0xC4 },
995 * 35 VREF "Reference Voltage Control"
996 * = 76 (0x4C) 01001100
997 * VREF[7:5] "Column high reference control"
998 * = 2 (0x02) 010..... "higher voltage"
999 * VREF[4:2] "Column low reference control"
1000 * = 3 (0x03) ...011.. "Highest voltage"
1001 * VREF[1:0] "Reserved"
1002 * = 0 (0x00) ......00
1004 { 0x35, 0x4C },
1007 * 3D Undocumented = 0 (0x00) 00000000
1008 * 3D[7:0] "It's a secret"
1009 * = 0 (0x00) 00000000
1011 { 0x3D, 0x00 },
1014 * 3E Undocumented = 0 (0x00) 00000000
1015 * 3E[7:0] "It's a secret"
1016 * = 0 (0x00) 00000000
1018 { 0x3E, 0x00 },
1021 * 3B FREFB "Internal Reference Adjustment"
1022 * = 24 (0x18) 00011000
1023 * FREFB[7:0] "Range"
1024 * = 24 (0x18) 00011000
1026 { 0x3b, 0x18 },
1029 * 33 CHLF "Current Control"
1030 * = 25 (0x19) 00011001
1031 * CHLF[7:6] "Sensor current control"
1032 * = 0 (0x00) 00......
1033 * CHLF[5] "Sensor current range control"
1034 * = 0 (0x00) ..0..... "normal range"
1035 * CHLF[4] "Sensor current"
1036 * = 1 (0x01) ...1.... "double current"
1037 * CHLF[3] "Sensor buffer current control"
1038 * = 1 (0x01) ....1... "half current"
1039 * CHLF[2] "Column buffer current control"
1040 * = 0 (0x00) .....0.. "normal current"
1041 * CHLF[1] "Analog DSP current control"
1042 * = 0 (0x00) ......0. "normal current"
1043 * CHLF[1] "ADC current control"
1044 * = 0 (0x00) ......0. "normal current"
1046 { 0x33, 0x19 },
1049 * 34 VBLM "Blooming Control"
1050 * = 90 (0x5A) 01011010
1051 * VBLM[7] "Hard soft reset switch"
1052 * = 0 (0x00) 0....... "Hard reset"
1053 * VBLM[6:4] "Blooming voltage selection"
1054 * = 5 (0x05) .101....
1055 * VBLM[3:0] "Sensor current control"
1056 * = 10 (0x0A) ....1010
1058 { 0x34, 0x5A },
1061 * 3B FREFB "Internal Reference Adjustment"
1062 * = 0 (0x00) 00000000
1063 * FREFB[7:0] "Range"
1064 * = 0 (0x00) 00000000
1066 { 0x3b, 0x00 },
1069 * 33 CHLF "Current Control"
1070 * = 9 (0x09) 00001001
1071 * CHLF[7:6] "Sensor current control"
1072 * = 0 (0x00) 00......
1073 * CHLF[5] "Sensor current range control"
1074 * = 0 (0x00) ..0..... "normal range"
1075 * CHLF[4] "Sensor current"
1076 * = 0 (0x00) ...0.... "normal current"
1077 * CHLF[3] "Sensor buffer current control"
1078 * = 1 (0x01) ....1... "half current"
1079 * CHLF[2] "Column buffer current control"
1080 * = 0 (0x00) .....0.. "normal current"
1081 * CHLF[1] "Analog DSP current control"
1082 * = 0 (0x00) ......0. "normal current"
1083 * CHLF[1] "ADC current control"
1084 * = 0 (0x00) ......0. "normal current"
1086 { 0x33, 0x09 },
1089 * 34 VBLM "Blooming Control"
1090 * = 80 (0x50) 01010000
1091 * VBLM[7] "Hard soft reset switch"
1092 * = 0 (0x00) 0....... "Hard reset"
1093 * VBLM[6:4] "Blooming voltage selection"
1094 * = 5 (0x05) .101....
1095 * VBLM[3:0] "Sensor current control"
1096 * = 0 (0x00) ....0000
1098 { 0x34, 0x50 },
1101 * 12 COMH "Common Control H"
1102 * = 64 (0x40) 01000000
1103 * COMH[7] "SRST"
1104 * = 0 (0x00) 0....... "No-op"
1105 * COMH[6:4] "Resolution selection"
1106 * = 4 (0x04) .100.... "XGA"
1107 * COMH[3] "Master slave selection"
1108 * = 0 (0x00) ....0... "Master mode"
1109 * COMH[2] "Internal B/R channel option"
1110 * = 0 (0x00) .....0.. "B/R use same channel"
1111 * COMH[1] "Color bar test pattern"
1112 * = 0 (0x00) ......0. "Off"
1113 * COMH[0] "Reserved"
1114 * = 0 (0x00) .......0
1116 { 0x12, 0x40 },
1119 * 17 HREFST "Horizontal window start"
1120 * = 31 (0x1F) 00011111
1121 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1122 * = 31 (0x1F) 00011111
1124 { 0x17, 0x1F },
1127 * 18 HREFEND "Horizontal window end"
1128 * = 95 (0x5F) 01011111
1129 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1130 * = 95 (0x5F) 01011111
1132 { 0x18, 0x5F },
1135 * 19 VSTRT "Vertical window start"
1136 * = 0 (0x00) 00000000
1137 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1138 * = 0 (0x00) 00000000
1140 { 0x19, 0x00 },
1143 * 1A VEND "Vertical window end"
1144 * = 96 (0x60) 01100000
1145 * VEND[7:0] "Vertical Window End, 8 MSBs"
1146 * = 96 (0x60) 01100000
1148 { 0x1a, 0x60 },
1151 * 32 COMM "Common Control M"
1152 * = 18 (0x12) 00010010
1153 * COMM[7:6] "Pixel clock divide option"
1154 * = 0 (0x00) 00...... "/1"
1155 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1156 * = 2 (0x02) ..010...
1157 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1158 * = 2 (0x02) .....010
1160 { 0x32, 0x12 },
1163 * 03 COMA "Common Control A"
1164 * = 74 (0x4A) 01001010
1165 * COMA[7:4] "AWB Update Threshold"
1166 * = 4 (0x04) 0100....
1167 * COMA[3:2] "Vertical window end line control 2 LSBs"
1168 * = 2 (0x02) ....10..
1169 * COMA[1:0] "Vertical window start line control 2 LSBs"
1170 * = 2 (0x02) ......10
1172 { 0x03, 0x4A },
1175 * 11 CLKRC "Clock Rate Control"
1176 * = 128 (0x80) 10000000
1177 * CLKRC[7] "Internal frequency doublers on off seclection"
1178 * = 1 (0x01) 1....... "On"
1179 * CLKRC[6] "Digital video master slave selection"
1180 * = 0 (0x00) .0...... "Master mode, sensor
1181 * provides PCLK"
1182 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1183 * = 0 (0x00) ..000000
1185 { 0x11, 0x80 },
1188 * 12 COMH "Common Control H"
1189 * = 0 (0x00) 00000000
1190 * COMH[7] "SRST"
1191 * = 0 (0x00) 0....... "No-op"
1192 * COMH[6:4] "Resolution selection"
1193 * = 0 (0x00) .000.... "QXGA"
1194 * COMH[3] "Master slave selection"
1195 * = 0 (0x00) ....0... "Master mode"
1196 * COMH[2] "Internal B/R channel option"
1197 * = 0 (0x00) .....0.. "B/R use same channel"
1198 * COMH[1] "Color bar test pattern"
1199 * = 0 (0x00) ......0. "Off"
1200 * COMH[0] "Reserved"
1201 * = 0 (0x00) .......0
1203 { 0x12, 0x00 },
1206 * 12 COMH "Common Control H"
1207 * = 64 (0x40) 01000000
1208 * COMH[7] "SRST"
1209 * = 0 (0x00) 0....... "No-op"
1210 * COMH[6:4] "Resolution selection"
1211 * = 4 (0x04) .100.... "XGA"
1212 * COMH[3] "Master slave selection"
1213 * = 0 (0x00) ....0... "Master mode"
1214 * COMH[2] "Internal B/R channel option"
1215 * = 0 (0x00) .....0.. "B/R use same channel"
1216 * COMH[1] "Color bar test pattern"
1217 * = 0 (0x00) ......0. "Off"
1218 * COMH[0] "Reserved"
1219 * = 0 (0x00) .......0
1221 { 0x12, 0x40 },
1224 * 17 HREFST "Horizontal window start"
1225 * = 31 (0x1F) 00011111
1226 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1227 * = 31 (0x1F) 00011111
1229 { 0x17, 0x1F },
1232 * 18 HREFEND "Horizontal window end"
1233 * = 95 (0x5F) 01011111
1234 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1235 * = 95 (0x5F) 01011111
1237 { 0x18, 0x5F },
1240 * 19 VSTRT "Vertical window start"
1241 * = 0 (0x00) 00000000
1242 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1243 * = 0 (0x00) 00000000
1245 { 0x19, 0x00 },
1248 * 1A VEND "Vertical window end"
1249 * = 96 (0x60) 01100000
1250 * VEND[7:0] "Vertical Window End, 8 MSBs"
1251 * = 96 (0x60) 01100000
1253 { 0x1a, 0x60 },
1256 * 32 COMM "Common Control M"
1257 * = 18 (0x12) 00010010
1258 * COMM[7:6] "Pixel clock divide option"
1259 * = 0 (0x00) 00...... "/1"
1260 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1261 * = 2 (0x02) ..010...
1262 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1263 * = 2 (0x02) .....010
1265 { 0x32, 0x12 },
1268 * 03 COMA "Common Control A"
1269 * = 74 (0x4A) 01001010
1270 * COMA[7:4] "AWB Update Threshold"
1271 * = 4 (0x04) 0100....
1272 * COMA[3:2] "Vertical window end line control 2 LSBs"
1273 * = 2 (0x02) ....10..
1274 * COMA[1:0] "Vertical window start line control 2 LSBs"
1275 * = 2 (0x02) ......10
1277 { 0x03, 0x4A },
1280 * 02 RED "Red Gain Control"
1281 * = 175 (0xAF) 10101111
1282 * RED[7] "Action"
1283 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1284 * RED[6:0] "Value"
1285 * = 47 (0x2F) .0101111
1287 { 0x02, 0xAF },
1290 * 2D ADDVSL "VSYNC Pulse Width"
1291 * = 210 (0xD2) 11010010
1292 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1293 * = 210 (0xD2) 11010010
1295 { 0x2d, 0xD2 },
1298 * 00 GAIN = 24 (0x18) 00011000
1299 * GAIN[7:6] "Reserved"
1300 * = 0 (0x00) 00......
1301 * GAIN[5] "Double"
1302 * = 0 (0x00) ..0..... "False"
1303 * GAIN[4] "Double"
1304 * = 1 (0x01) ...1.... "True"
1305 * GAIN[3:0] "Range"
1306 * = 8 (0x08) ....1000
1308 { 0x00, 0x18 },
1311 * 01 BLUE "Blue Gain Control"
1312 * = 240 (0xF0) 11110000
1313 * BLUE[7] "Action"
1314 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1315 * BLUE[6:0] "Value"
1316 * = 112 (0x70) .1110000
1318 { 0x01, 0xF0 },
1321 * 10 AEC "Automatic Exposure Control"
1322 * = 10 (0x0A) 00001010
1323 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1324 * = 10 (0x0A) 00001010
1326 { 0x10, 0x0A },
1328 { 0xE1, 0x67 },
1329 { 0xE3, 0x03 },
1330 { 0xE4, 0x26 },
1331 { 0xE5, 0x3E },
1332 { 0xF8, 0x01 },
1333 { 0xFF, 0x01 },
1336 static const struct ov_i2c_regvals norm_6x20[] = {
1337 { 0x12, 0x80 }, /* reset */
1338 { 0x11, 0x01 },
1339 { 0x03, 0x60 },
1340 { 0x05, 0x7f }, /* For when autoadjust is off */
1341 { 0x07, 0xa8 },
1342 /* The ratio of 0x0c and 0x0d controls the white point */
1343 { 0x0c, 0x24 },
1344 { 0x0d, 0x24 },
1345 { 0x0f, 0x15 }, /* COMS */
1346 { 0x10, 0x75 }, /* AEC Exposure time */
1347 { 0x12, 0x24 }, /* Enable AGC */
1348 { 0x14, 0x04 },
1349 /* 0x16: 0x06 helps frame stability with moving objects */
1350 { 0x16, 0x06 },
1351 /* { 0x20, 0x30 }, * Aperture correction enable */
1352 { 0x26, 0xb2 }, /* BLC enable */
1353 /* 0x28: 0x05 Selects RGB format if RGB on */
1354 { 0x28, 0x05 },
1355 { 0x2a, 0x04 }, /* Disable framerate adjust */
1356 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1357 { 0x2d, 0x85 },
1358 { 0x33, 0xa0 }, /* Color Processing Parameter */
1359 { 0x34, 0xd2 }, /* Max A/D range */
1360 { 0x38, 0x8b },
1361 { 0x39, 0x40 },
1363 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1364 { 0x3c, 0x3c }, /* Change AEC mode */
1365 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1367 { 0x3d, 0x80 },
1368 /* These next two registers (0x4a, 0x4b) are undocumented.
1369 * They control the color balance */
1370 { 0x4a, 0x80 },
1371 { 0x4b, 0x80 },
1372 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1373 { 0x4e, 0xc1 },
1374 { 0x4f, 0x04 },
1375 /* Do 50-53 have any effect? */
1376 /* Toggle 0x12[2] off and on here? */
1379 static const struct ov_i2c_regvals norm_6x30[] = {
1380 { 0x12, 0x80 }, /* Reset */
1381 { 0x00, 0x1f }, /* Gain */
1382 { 0x01, 0x99 }, /* Blue gain */
1383 { 0x02, 0x7c }, /* Red gain */
1384 { 0x03, 0xc0 }, /* Saturation */
1385 { 0x05, 0x0a }, /* Contrast */
1386 { 0x06, 0x95 }, /* Brightness */
1387 { 0x07, 0x2d }, /* Sharpness */
1388 { 0x0c, 0x20 },
1389 { 0x0d, 0x20 },
1390 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1391 { 0x0f, 0x05 },
1392 { 0x10, 0x9a },
1393 { 0x11, 0x00 }, /* Pixel clock = fastest */
1394 { 0x12, 0x24 }, /* Enable AGC and AWB */
1395 { 0x13, 0x21 },
1396 { 0x14, 0x80 },
1397 { 0x15, 0x01 },
1398 { 0x16, 0x03 },
1399 { 0x17, 0x38 },
1400 { 0x18, 0xea },
1401 { 0x19, 0x04 },
1402 { 0x1a, 0x93 },
1403 { 0x1b, 0x00 },
1404 { 0x1e, 0xc4 },
1405 { 0x1f, 0x04 },
1406 { 0x20, 0x20 },
1407 { 0x21, 0x10 },
1408 { 0x22, 0x88 },
1409 { 0x23, 0xc0 }, /* Crystal circuit power level */
1410 { 0x25, 0x9a }, /* Increase AEC black ratio */
1411 { 0x26, 0xb2 }, /* BLC enable */
1412 { 0x27, 0xa2 },
1413 { 0x28, 0x00 },
1414 { 0x29, 0x00 },
1415 { 0x2a, 0x84 }, /* 60 Hz power */
1416 { 0x2b, 0xa8 }, /* 60 Hz power */
1417 { 0x2c, 0xa0 },
1418 { 0x2d, 0x95 }, /* Enable auto-brightness */
1419 { 0x2e, 0x88 },
1420 { 0x33, 0x26 },
1421 { 0x34, 0x03 },
1422 { 0x36, 0x8f },
1423 { 0x37, 0x80 },
1424 { 0x38, 0x83 },
1425 { 0x39, 0x80 },
1426 { 0x3a, 0x0f },
1427 { 0x3b, 0x3c },
1428 { 0x3c, 0x1a },
1429 { 0x3d, 0x80 },
1430 { 0x3e, 0x80 },
1431 { 0x3f, 0x0e },
1432 { 0x40, 0x00 }, /* White bal */
1433 { 0x41, 0x00 }, /* White bal */
1434 { 0x42, 0x80 },
1435 { 0x43, 0x3f }, /* White bal */
1436 { 0x44, 0x80 },
1437 { 0x45, 0x20 },
1438 { 0x46, 0x20 },
1439 { 0x47, 0x80 },
1440 { 0x48, 0x7f },
1441 { 0x49, 0x00 },
1442 { 0x4a, 0x00 },
1443 { 0x4b, 0x80 },
1444 { 0x4c, 0xd0 },
1445 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1446 { 0x4e, 0x40 },
1447 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1448 { 0x50, 0xff },
1449 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1450 { 0x55, 0xff },
1451 { 0x56, 0x12 },
1452 { 0x57, 0x81 },
1453 { 0x58, 0x75 },
1454 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1455 { 0x5a, 0x2c },
1456 { 0x5b, 0x0f }, /* AWB chrominance levels */
1457 { 0x5c, 0x10 },
1458 { 0x3d, 0x80 },
1459 { 0x27, 0xa6 },
1460 { 0x12, 0x20 }, /* Toggle AWB */
1461 { 0x12, 0x24 },
1464 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1466 * Register 0x0f in the 7610 has the following effects:
1468 * 0x85 (AEC method 1): Best overall, good contrast range
1469 * 0x45 (AEC method 2): Very overexposed
1470 * 0xa5 (spec sheet default): Ok, but the black level is
1471 * shifted resulting in loss of contrast
1472 * 0x05 (old driver setting): very overexposed, too much
1473 * contrast
1475 static const struct ov_i2c_regvals norm_7610[] = {
1476 { 0x10, 0xff },
1477 { 0x16, 0x06 },
1478 { 0x28, 0x24 },
1479 { 0x2b, 0xac },
1480 { 0x12, 0x00 },
1481 { 0x38, 0x81 },
1482 { 0x28, 0x24 }, /* 0c */
1483 { 0x0f, 0x85 }, /* lg's setting */
1484 { 0x15, 0x01 },
1485 { 0x20, 0x1c },
1486 { 0x23, 0x2a },
1487 { 0x24, 0x10 },
1488 { 0x25, 0x8a },
1489 { 0x26, 0xa2 },
1490 { 0x27, 0xc2 },
1491 { 0x2a, 0x04 },
1492 { 0x2c, 0xfe },
1493 { 0x2d, 0x93 },
1494 { 0x30, 0x71 },
1495 { 0x31, 0x60 },
1496 { 0x32, 0x26 },
1497 { 0x33, 0x20 },
1498 { 0x34, 0x48 },
1499 { 0x12, 0x24 },
1500 { 0x11, 0x01 },
1501 { 0x0c, 0x24 },
1502 { 0x0d, 0x24 },
1505 static const struct ov_i2c_regvals norm_7620[] = {
1506 { 0x12, 0x80 }, /* reset */
1507 { 0x00, 0x00 }, /* gain */
1508 { 0x01, 0x80 }, /* blue gain */
1509 { 0x02, 0x80 }, /* red gain */
1510 { 0x03, 0xc0 }, /* OV7670_REG_VREF */
1511 { 0x06, 0x60 },
1512 { 0x07, 0x00 },
1513 { 0x0c, 0x24 },
1514 { 0x0c, 0x24 },
1515 { 0x0d, 0x24 },
1516 { 0x11, 0x01 },
1517 { 0x12, 0x24 },
1518 { 0x13, 0x01 },
1519 { 0x14, 0x84 },
1520 { 0x15, 0x01 },
1521 { 0x16, 0x03 },
1522 { 0x17, 0x2f },
1523 { 0x18, 0xcf },
1524 { 0x19, 0x06 },
1525 { 0x1a, 0xf5 },
1526 { 0x1b, 0x00 },
1527 { 0x20, 0x18 },
1528 { 0x21, 0x80 },
1529 { 0x22, 0x80 },
1530 { 0x23, 0x00 },
1531 { 0x26, 0xa2 },
1532 { 0x27, 0xea },
1533 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1534 { 0x29, 0x00 },
1535 { 0x2a, 0x10 },
1536 { 0x2b, 0x00 },
1537 { 0x2c, 0x88 },
1538 { 0x2d, 0x91 },
1539 { 0x2e, 0x80 },
1540 { 0x2f, 0x44 },
1541 { 0x60, 0x27 },
1542 { 0x61, 0x02 },
1543 { 0x62, 0x5f },
1544 { 0x63, 0xd5 },
1545 { 0x64, 0x57 },
1546 { 0x65, 0x83 },
1547 { 0x66, 0x55 },
1548 { 0x67, 0x92 },
1549 { 0x68, 0xcf },
1550 { 0x69, 0x76 },
1551 { 0x6a, 0x22 },
1552 { 0x6b, 0x00 },
1553 { 0x6c, 0x02 },
1554 { 0x6d, 0x44 },
1555 { 0x6e, 0x80 },
1556 { 0x6f, 0x1d },
1557 { 0x70, 0x8b },
1558 { 0x71, 0x00 },
1559 { 0x72, 0x14 },
1560 { 0x73, 0x54 },
1561 { 0x74, 0x00 },
1562 { 0x75, 0x8e },
1563 { 0x76, 0x00 },
1564 { 0x77, 0xff },
1565 { 0x78, 0x80 },
1566 { 0x79, 0x80 },
1567 { 0x7a, 0x80 },
1568 { 0x7b, 0xe2 },
1569 { 0x7c, 0x00 },
1572 /* 7640 and 7648. The defaults should be OK for most registers. */
1573 static const struct ov_i2c_regvals norm_7640[] = {
1574 { 0x12, 0x80 },
1575 { 0x12, 0x14 },
1578 /* 7670. Defaults taken from OmniVision provided data,
1579 * as provided by Jonathan Corbet of OLPC */
1580 static const struct ov_i2c_regvals norm_7670[] = {
1581 { OV7670_REG_COM7, OV7670_COM7_RESET },
1582 { OV7670_REG_TSLB, 0x04 }, /* OV */
1583 { OV7670_REG_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1584 { OV7670_REG_CLKRC, 0x01 },
1586 * Set the hardware window. These values from OV don't entirely
1587 * make sense - hstop is less than hstart. But they work...
1589 { OV7670_REG_HSTART, 0x13 },
1590 { OV7670_REG_HSTOP, 0x01 },
1591 { OV7670_REG_HREF, 0xb6 },
1592 { OV7670_REG_VSTART, 0x02 },
1593 { OV7670_REG_VSTOP, 0x7a },
1594 { OV7670_REG_VREF, 0x0a },
1596 { OV7670_REG_COM3, 0x00 },
1597 { OV7670_REG_COM14, 0x00 },
1598 /* Mystery scaling numbers */
1599 { 0x70, 0x3a },
1600 { 0x71, 0x35 },
1601 { 0x72, 0x11 },
1602 { 0x73, 0xf0 },
1603 { 0xa2, 0x02 },
1604 /* { OV7670_REG_COM10, 0x0 }, */
1606 /* Gamma curve values */
1607 { 0x7a, 0x20 },
1608 { 0x7b, 0x10 },
1609 { 0x7c, 0x1e },
1610 { 0x7d, 0x35 },
1611 { 0x7e, 0x5a },
1612 { 0x7f, 0x69 },
1613 { 0x80, 0x76 },
1614 { 0x81, 0x80 },
1615 { 0x82, 0x88 },
1616 { 0x83, 0x8f },
1617 { 0x84, 0x96 },
1618 { 0x85, 0xa3 },
1619 { 0x86, 0xaf },
1620 { 0x87, 0xc4 },
1621 { 0x88, 0xd7 },
1622 { 0x89, 0xe8 },
1624 /* AGC and AEC parameters. Note we start by disabling those features,
1625 then turn them only after tweaking the values. */
1626 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1627 | OV7670_COM8_AECSTEP
1628 | OV7670_COM8_BFILT },
1629 { OV7670_REG_GAIN, 0x00 },
1630 { OV7670_REG_AECH, 0x00 },
1631 { OV7670_REG_COM4, 0x40 }, /* magic reserved bit */
1632 { OV7670_REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1633 { OV7670_REG_BD50MAX, 0x05 },
1634 { OV7670_REG_BD60MAX, 0x07 },
1635 { OV7670_REG_AEW, 0x95 },
1636 { OV7670_REG_AEB, 0x33 },
1637 { OV7670_REG_VPT, 0xe3 },
1638 { OV7670_REG_HAECC1, 0x78 },
1639 { OV7670_REG_HAECC2, 0x68 },
1640 { 0xa1, 0x03 }, /* magic */
1641 { OV7670_REG_HAECC3, 0xd8 },
1642 { OV7670_REG_HAECC4, 0xd8 },
1643 { OV7670_REG_HAECC5, 0xf0 },
1644 { OV7670_REG_HAECC6, 0x90 },
1645 { OV7670_REG_HAECC7, 0x94 },
1646 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1647 | OV7670_COM8_AECSTEP
1648 | OV7670_COM8_BFILT
1649 | OV7670_COM8_AGC
1650 | OV7670_COM8_AEC },
1652 /* Almost all of these are magic "reserved" values. */
1653 { OV7670_REG_COM5, 0x61 },
1654 { OV7670_REG_COM6, 0x4b },
1655 { 0x16, 0x02 },
1656 { OV7670_REG_MVFP, 0x07 },
1657 { 0x21, 0x02 },
1658 { 0x22, 0x91 },
1659 { 0x29, 0x07 },
1660 { 0x33, 0x0b },
1661 { 0x35, 0x0b },
1662 { 0x37, 0x1d },
1663 { 0x38, 0x71 },
1664 { 0x39, 0x2a },
1665 { OV7670_REG_COM12, 0x78 },
1666 { 0x4d, 0x40 },
1667 { 0x4e, 0x20 },
1668 { OV7670_REG_GFIX, 0x00 },
1669 { 0x6b, 0x4a },
1670 { 0x74, 0x10 },
1671 { 0x8d, 0x4f },
1672 { 0x8e, 0x00 },
1673 { 0x8f, 0x00 },
1674 { 0x90, 0x00 },
1675 { 0x91, 0x00 },
1676 { 0x96, 0x00 },
1677 { 0x9a, 0x00 },
1678 { 0xb0, 0x84 },
1679 { 0xb1, 0x0c },
1680 { 0xb2, 0x0e },
1681 { 0xb3, 0x82 },
1682 { 0xb8, 0x0a },
1684 /* More reserved magic, some of which tweaks white balance */
1685 { 0x43, 0x0a },
1686 { 0x44, 0xf0 },
1687 { 0x45, 0x34 },
1688 { 0x46, 0x58 },
1689 { 0x47, 0x28 },
1690 { 0x48, 0x3a },
1691 { 0x59, 0x88 },
1692 { 0x5a, 0x88 },
1693 { 0x5b, 0x44 },
1694 { 0x5c, 0x67 },
1695 { 0x5d, 0x49 },
1696 { 0x5e, 0x0e },
1697 { 0x6c, 0x0a },
1698 { 0x6d, 0x55 },
1699 { 0x6e, 0x11 },
1700 { 0x6f, 0x9f },
1701 /* "9e for advance AWB" */
1702 { 0x6a, 0x40 },
1703 { OV7670_REG_BLUE, 0x40 },
1704 { OV7670_REG_RED, 0x60 },
1705 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1706 | OV7670_COM8_AECSTEP
1707 | OV7670_COM8_BFILT
1708 | OV7670_COM8_AGC
1709 | OV7670_COM8_AEC
1710 | OV7670_COM8_AWB },
1712 /* Matrix coefficients */
1713 { 0x4f, 0x80 },
1714 { 0x50, 0x80 },
1715 { 0x51, 0x00 },
1716 { 0x52, 0x22 },
1717 { 0x53, 0x5e },
1718 { 0x54, 0x80 },
1719 { 0x58, 0x9e },
1721 { OV7670_REG_COM16, OV7670_COM16_AWBGAIN },
1722 { OV7670_REG_EDGE, 0x00 },
1723 { 0x75, 0x05 },
1724 { 0x76, 0xe1 },
1725 { 0x4c, 0x00 },
1726 { 0x77, 0x01 },
1727 { OV7670_REG_COM13, OV7670_COM13_GAMMA
1728 | OV7670_COM13_UVSAT
1729 | 2}, /* was 3 */
1730 { 0x4b, 0x09 },
1731 { 0xc9, 0x60 },
1732 { OV7670_REG_COM16, 0x38 },
1733 { 0x56, 0x40 },
1735 { 0x34, 0x11 },
1736 { OV7670_REG_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1737 { 0xa4, 0x88 },
1738 { 0x96, 0x00 },
1739 { 0x97, 0x30 },
1740 { 0x98, 0x20 },
1741 { 0x99, 0x30 },
1742 { 0x9a, 0x84 },
1743 { 0x9b, 0x29 },
1744 { 0x9c, 0x03 },
1745 { 0x9d, 0x4c },
1746 { 0x9e, 0x3f },
1747 { 0x78, 0x04 },
1749 /* Extra-weird stuff. Some sort of multiplexor register */
1750 { 0x79, 0x01 },
1751 { 0xc8, 0xf0 },
1752 { 0x79, 0x0f },
1753 { 0xc8, 0x00 },
1754 { 0x79, 0x10 },
1755 { 0xc8, 0x7e },
1756 { 0x79, 0x0a },
1757 { 0xc8, 0x80 },
1758 { 0x79, 0x0b },
1759 { 0xc8, 0x01 },
1760 { 0x79, 0x0c },
1761 { 0xc8, 0x0f },
1762 { 0x79, 0x0d },
1763 { 0xc8, 0x20 },
1764 { 0x79, 0x09 },
1765 { 0xc8, 0x80 },
1766 { 0x79, 0x02 },
1767 { 0xc8, 0xc0 },
1768 { 0x79, 0x03 },
1769 { 0xc8, 0x40 },
1770 { 0x79, 0x05 },
1771 { 0xc8, 0x30 },
1772 { 0x79, 0x26 },
1775 static const struct ov_i2c_regvals norm_8610[] = {
1776 { 0x12, 0x80 },
1777 { 0x00, 0x00 },
1778 { 0x01, 0x80 },
1779 { 0x02, 0x80 },
1780 { 0x03, 0xc0 },
1781 { 0x04, 0x30 },
1782 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1783 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1784 { 0x0a, 0x86 },
1785 { 0x0b, 0xb0 },
1786 { 0x0c, 0x20 },
1787 { 0x0d, 0x20 },
1788 { 0x11, 0x01 },
1789 { 0x12, 0x25 },
1790 { 0x13, 0x01 },
1791 { 0x14, 0x04 },
1792 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
1793 { 0x16, 0x03 },
1794 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1795 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1796 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1797 { 0x1a, 0xf5 },
1798 { 0x1b, 0x00 },
1799 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1800 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1801 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1802 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1803 { 0x26, 0xa2 },
1804 { 0x27, 0xea },
1805 { 0x28, 0x00 },
1806 { 0x29, 0x00 },
1807 { 0x2a, 0x80 },
1808 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1809 { 0x2c, 0xac },
1810 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1811 { 0x2e, 0x80 },
1812 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1813 { 0x4c, 0x00 },
1814 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1815 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1816 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1817 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1818 { 0x63, 0xff },
1819 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1820 * maybe thats wrong */
1821 { 0x65, 0x00 },
1822 { 0x66, 0x55 },
1823 { 0x67, 0xb0 },
1824 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1825 { 0x69, 0x02 },
1826 { 0x6a, 0x22 },
1827 { 0x6b, 0x00 },
1828 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1829 * deleting bit7 colors the first images red */
1830 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1831 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1832 { 0x6f, 0x01 },
1833 { 0x70, 0x8b },
1834 { 0x71, 0x00 },
1835 { 0x72, 0x14 },
1836 { 0x73, 0x54 },
1837 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1838 { 0x75, 0x0e },
1839 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1840 { 0x77, 0xff },
1841 { 0x78, 0x80 },
1842 { 0x79, 0x80 },
1843 { 0x7a, 0x80 },
1844 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1845 { 0x7c, 0x00 },
1846 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1847 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1848 { 0x7f, 0xfb },
1849 { 0x80, 0x28 },
1850 { 0x81, 0x00 },
1851 { 0x82, 0x23 },
1852 { 0x83, 0x0b },
1853 { 0x84, 0x00 },
1854 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1855 { 0x86, 0xc9 },
1856 { 0x87, 0x00 },
1857 { 0x88, 0x00 },
1858 { 0x89, 0x01 },
1859 { 0x12, 0x20 },
1860 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1863 static unsigned char ov7670_abs_to_sm(unsigned char v)
1865 if (v > 127)
1866 return v & 0x7f;
1867 return (128 - v) | 0x80;
1870 /* Write a OV519 register */
1871 static int reg_w(struct sd *sd, __u16 index, __u16 value)
1873 int ret, req = 0;
1875 switch (sd->bridge) {
1876 case BRIDGE_OV511:
1877 case BRIDGE_OV511PLUS:
1878 req = 2;
1879 break;
1880 case BRIDGE_OVFX2:
1881 req = 0x0a;
1882 /* fall through */
1883 case BRIDGE_W9968CF:
1884 ret = usb_control_msg(sd->gspca_dev.dev,
1885 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1886 req,
1887 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1888 value, index, NULL, 0, 500);
1889 goto leave;
1890 default:
1891 req = 1;
1894 sd->gspca_dev.usb_buf[0] = value;
1895 ret = usb_control_msg(sd->gspca_dev.dev,
1896 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1897 req,
1898 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1899 0, index,
1900 sd->gspca_dev.usb_buf, 1, 500);
1901 leave:
1902 if (ret < 0) {
1903 PDEBUG(D_ERR, "Write reg 0x%04x -> [0x%02x] failed",
1904 value, index);
1905 return ret;
1908 PDEBUG(D_USBO, "Write reg 0x%04x -> [0x%02x]", value, index);
1909 return 0;
1912 /* Read from a OV519 register, note not valid for the w9968cf!! */
1913 /* returns: negative is error, pos or zero is data */
1914 static int reg_r(struct sd *sd, __u16 index)
1916 int ret;
1917 int req;
1919 switch (sd->bridge) {
1920 case BRIDGE_OV511:
1921 case BRIDGE_OV511PLUS:
1922 req = 3;
1923 break;
1924 case BRIDGE_OVFX2:
1925 req = 0x0b;
1926 break;
1927 default:
1928 req = 1;
1931 ret = usb_control_msg(sd->gspca_dev.dev,
1932 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1933 req,
1934 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1935 0, index, sd->gspca_dev.usb_buf, 1, 500);
1937 if (ret >= 0) {
1938 ret = sd->gspca_dev.usb_buf[0];
1939 PDEBUG(D_USBI, "Read reg [0x%02X] -> 0x%04X", index, ret);
1940 } else
1941 PDEBUG(D_ERR, "Read reg [0x%02x] failed", index);
1943 return ret;
1946 /* Read 8 values from a OV519 register */
1947 static int reg_r8(struct sd *sd,
1948 __u16 index)
1950 int ret;
1952 ret = usb_control_msg(sd->gspca_dev.dev,
1953 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1954 1, /* REQ_IO */
1955 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1956 0, index, sd->gspca_dev.usb_buf, 8, 500);
1958 if (ret >= 0)
1959 ret = sd->gspca_dev.usb_buf[0];
1960 else
1961 PDEBUG(D_ERR, "Read reg 8 [0x%02x] failed", index);
1963 return ret;
1967 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
1968 * the same position as 1's in "mask" are cleared and set to "value". Bits
1969 * that are in the same position as 0's in "mask" are preserved, regardless
1970 * of their respective state in "value".
1972 static int reg_w_mask(struct sd *sd,
1973 __u16 index,
1974 __u8 value,
1975 __u8 mask)
1977 int ret;
1978 __u8 oldval;
1980 if (mask != 0xff) {
1981 value &= mask; /* Enforce mask on value */
1982 ret = reg_r(sd, index);
1983 if (ret < 0)
1984 return ret;
1986 oldval = ret & ~mask; /* Clear the masked bits */
1987 value |= oldval; /* Set the desired bits */
1989 return reg_w(sd, index, value);
1993 * Writes multiple (n) byte value to a single register. Only valid with certain
1994 * registers (0x30 and 0xc4 - 0xce).
1996 static int ov518_reg_w32(struct sd *sd, __u16 index, u32 value, int n)
1998 int ret;
2000 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2002 ret = usb_control_msg(sd->gspca_dev.dev,
2003 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2004 1 /* REG_IO */,
2005 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2006 0, index,
2007 sd->gspca_dev.usb_buf, n, 500);
2008 if (ret < 0) {
2009 PDEBUG(D_ERR, "Write reg32 [%02x] %08x failed", index, value);
2010 return ret;
2013 return 0;
2016 static int ov511_i2c_w(struct sd *sd, __u8 reg, __u8 value)
2018 int rc, retries;
2020 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2022 /* Three byte write cycle */
2023 for (retries = 6; ; ) {
2024 /* Select camera register */
2025 rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
2026 if (rc < 0)
2027 return rc;
2029 /* Write "value" to I2C data port of OV511 */
2030 rc = reg_w(sd, R51x_I2C_DATA, value);
2031 if (rc < 0)
2032 return rc;
2034 /* Initiate 3-byte write cycle */
2035 rc = reg_w(sd, R511_I2C_CTL, 0x01);
2036 if (rc < 0)
2037 return rc;
2039 do {
2040 rc = reg_r(sd, R511_I2C_CTL);
2041 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2043 if (rc < 0)
2044 return rc;
2046 if ((rc & 2) == 0) /* Ack? */
2047 break;
2048 if (--retries < 0) {
2049 PDEBUG(D_USBO, "i2c write retries exhausted");
2050 return -1;
2054 return 0;
2057 static int ov511_i2c_r(struct sd *sd, __u8 reg)
2059 int rc, value, retries;
2061 /* Two byte write cycle */
2062 for (retries = 6; ; ) {
2063 /* Select camera register */
2064 rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
2065 if (rc < 0)
2066 return rc;
2068 /* Initiate 2-byte write cycle */
2069 rc = reg_w(sd, R511_I2C_CTL, 0x03);
2070 if (rc < 0)
2071 return rc;
2073 do {
2074 rc = reg_r(sd, R511_I2C_CTL);
2075 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2077 if (rc < 0)
2078 return rc;
2080 if ((rc & 2) == 0) /* Ack? */
2081 break;
2083 /* I2C abort */
2084 reg_w(sd, R511_I2C_CTL, 0x10);
2086 if (--retries < 0) {
2087 PDEBUG(D_USBI, "i2c write retries exhausted");
2088 return -1;
2092 /* Two byte read cycle */
2093 for (retries = 6; ; ) {
2094 /* Initiate 2-byte read cycle */
2095 rc = reg_w(sd, R511_I2C_CTL, 0x05);
2096 if (rc < 0)
2097 return rc;
2099 do {
2100 rc = reg_r(sd, R511_I2C_CTL);
2101 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2103 if (rc < 0)
2104 return rc;
2106 if ((rc & 2) == 0) /* Ack? */
2107 break;
2109 /* I2C abort */
2110 rc = reg_w(sd, R511_I2C_CTL, 0x10);
2111 if (rc < 0)
2112 return rc;
2114 if (--retries < 0) {
2115 PDEBUG(D_USBI, "i2c read retries exhausted");
2116 return -1;
2120 value = reg_r(sd, R51x_I2C_DATA);
2122 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
2124 /* This is needed to make i2c_w() work */
2125 rc = reg_w(sd, R511_I2C_CTL, 0x05);
2126 if (rc < 0)
2127 return rc;
2129 return value;
2133 * The OV518 I2C I/O procedure is different, hence, this function.
2134 * This is normally only called from i2c_w(). Note that this function
2135 * always succeeds regardless of whether the sensor is present and working.
2137 static int ov518_i2c_w(struct sd *sd,
2138 __u8 reg,
2139 __u8 value)
2141 int rc;
2143 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2145 /* Select camera register */
2146 rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
2147 if (rc < 0)
2148 return rc;
2150 /* Write "value" to I2C data port of OV511 */
2151 rc = reg_w(sd, R51x_I2C_DATA, value);
2152 if (rc < 0)
2153 return rc;
2155 /* Initiate 3-byte write cycle */
2156 rc = reg_w(sd, R518_I2C_CTL, 0x01);
2157 if (rc < 0)
2158 return rc;
2160 /* wait for write complete */
2161 msleep(4);
2162 return reg_r8(sd, R518_I2C_CTL);
2166 * returns: negative is error, pos or zero is data
2168 * The OV518 I2C I/O procedure is different, hence, this function.
2169 * This is normally only called from i2c_r(). Note that this function
2170 * always succeeds regardless of whether the sensor is present and working.
2172 static int ov518_i2c_r(struct sd *sd, __u8 reg)
2174 int rc, value;
2176 /* Select camera register */
2177 rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
2178 if (rc < 0)
2179 return rc;
2181 /* Initiate 2-byte write cycle */
2182 rc = reg_w(sd, R518_I2C_CTL, 0x03);
2183 if (rc < 0)
2184 return rc;
2186 /* Initiate 2-byte read cycle */
2187 rc = reg_w(sd, R518_I2C_CTL, 0x05);
2188 if (rc < 0)
2189 return rc;
2190 value = reg_r(sd, R51x_I2C_DATA);
2191 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
2192 return value;
2195 static int ovfx2_i2c_w(struct sd *sd, __u8 reg, __u8 value)
2197 int ret;
2199 ret = usb_control_msg(sd->gspca_dev.dev,
2200 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2201 0x02,
2202 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2203 (__u16)value, (__u16)reg, NULL, 0, 500);
2205 if (ret < 0) {
2206 PDEBUG(D_ERR, "i2c 0x%02x -> [0x%02x] failed", value, reg);
2207 return ret;
2210 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2211 return 0;
2214 static int ovfx2_i2c_r(struct sd *sd, __u8 reg)
2216 int ret;
2218 ret = usb_control_msg(sd->gspca_dev.dev,
2219 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2220 0x03,
2221 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2222 0, (__u16)reg, sd->gspca_dev.usb_buf, 1, 500);
2224 if (ret >= 0) {
2225 ret = sd->gspca_dev.usb_buf[0];
2226 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, ret);
2227 } else
2228 PDEBUG(D_ERR, "i2c read [0x%02x] failed", reg);
2230 return ret;
2233 static int i2c_w(struct sd *sd, __u8 reg, __u8 value)
2235 int ret = -1;
2237 if (sd->sensor_reg_cache[reg] == value)
2238 return 0;
2240 switch (sd->bridge) {
2241 case BRIDGE_OV511:
2242 case BRIDGE_OV511PLUS:
2243 ret = ov511_i2c_w(sd, reg, value);
2244 break;
2245 case BRIDGE_OV518:
2246 case BRIDGE_OV518PLUS:
2247 case BRIDGE_OV519:
2248 ret = ov518_i2c_w(sd, reg, value);
2249 break;
2250 case BRIDGE_OVFX2:
2251 ret = ovfx2_i2c_w(sd, reg, value);
2252 break;
2253 case BRIDGE_W9968CF:
2254 ret = w9968cf_i2c_w(sd, reg, value);
2255 break;
2258 if (ret >= 0) {
2259 /* Up on sensor reset empty the register cache */
2260 if (reg == 0x12 && (value & 0x80))
2261 memset(sd->sensor_reg_cache, -1,
2262 sizeof(sd->sensor_reg_cache));
2263 else
2264 sd->sensor_reg_cache[reg] = value;
2267 return ret;
2270 static int i2c_r(struct sd *sd, __u8 reg)
2272 int ret = -1;
2274 if (sd->sensor_reg_cache[reg] != -1)
2275 return sd->sensor_reg_cache[reg];
2277 switch (sd->bridge) {
2278 case BRIDGE_OV511:
2279 case BRIDGE_OV511PLUS:
2280 ret = ov511_i2c_r(sd, reg);
2281 break;
2282 case BRIDGE_OV518:
2283 case BRIDGE_OV518PLUS:
2284 case BRIDGE_OV519:
2285 ret = ov518_i2c_r(sd, reg);
2286 break;
2287 case BRIDGE_OVFX2:
2288 ret = ovfx2_i2c_r(sd, reg);
2289 break;
2290 case BRIDGE_W9968CF:
2291 ret = w9968cf_i2c_r(sd, reg);
2292 break;
2295 if (ret >= 0)
2296 sd->sensor_reg_cache[reg] = ret;
2298 return ret;
2301 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2302 * the same position as 1's in "mask" are cleared and set to "value". Bits
2303 * that are in the same position as 0's in "mask" are preserved, regardless
2304 * of their respective state in "value".
2306 static int i2c_w_mask(struct sd *sd,
2307 __u8 reg,
2308 __u8 value,
2309 __u8 mask)
2311 int rc;
2312 __u8 oldval;
2314 value &= mask; /* Enforce mask on value */
2315 rc = i2c_r(sd, reg);
2316 if (rc < 0)
2317 return rc;
2318 oldval = rc & ~mask; /* Clear the masked bits */
2319 value |= oldval; /* Set the desired bits */
2320 return i2c_w(sd, reg, value);
2323 /* Temporarily stops OV511 from functioning. Must do this before changing
2324 * registers while the camera is streaming */
2325 static inline int ov51x_stop(struct sd *sd)
2327 PDEBUG(D_STREAM, "stopping");
2328 sd->stopped = 1;
2329 switch (sd->bridge) {
2330 case BRIDGE_OV511:
2331 case BRIDGE_OV511PLUS:
2332 return reg_w(sd, R51x_SYS_RESET, 0x3d);
2333 case BRIDGE_OV518:
2334 case BRIDGE_OV518PLUS:
2335 return reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2336 case BRIDGE_OV519:
2337 return reg_w(sd, OV519_SYS_RESET1, 0x0f);
2338 case BRIDGE_OVFX2:
2339 return reg_w_mask(sd, 0x0f, 0x00, 0x02);
2340 case BRIDGE_W9968CF:
2341 return reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2344 return 0;
2347 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2348 * actually stopped (for performance). */
2349 static inline int ov51x_restart(struct sd *sd)
2351 int rc;
2353 PDEBUG(D_STREAM, "restarting");
2354 if (!sd->stopped)
2355 return 0;
2356 sd->stopped = 0;
2358 /* Reinitialize the stream */
2359 switch (sd->bridge) {
2360 case BRIDGE_OV511:
2361 case BRIDGE_OV511PLUS:
2362 return reg_w(sd, R51x_SYS_RESET, 0x00);
2363 case BRIDGE_OV518:
2364 case BRIDGE_OV518PLUS:
2365 rc = reg_w(sd, 0x2f, 0x80);
2366 if (rc < 0)
2367 return rc;
2368 return reg_w(sd, R51x_SYS_RESET, 0x00);
2369 case BRIDGE_OV519:
2370 return reg_w(sd, OV519_SYS_RESET1, 0x00);
2371 case BRIDGE_OVFX2:
2372 return reg_w_mask(sd, 0x0f, 0x02, 0x02);
2373 case BRIDGE_W9968CF:
2374 return reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2377 return 0;
2380 static int ov51x_set_slave_ids(struct sd *sd, __u8 slave);
2382 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2383 * is synchronized. Returns <0 on failure.
2385 static int init_ov_sensor(struct sd *sd, __u8 slave)
2387 int i;
2389 if (ov51x_set_slave_ids(sd, slave) < 0)
2390 return -EIO;
2392 /* Reset the sensor */
2393 if (i2c_w(sd, 0x12, 0x80) < 0)
2394 return -EIO;
2396 /* Wait for it to initialize */
2397 msleep(150);
2399 for (i = 0; i < i2c_detect_tries; i++) {
2400 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2401 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2402 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2403 return 0;
2406 /* Reset the sensor */
2407 if (i2c_w(sd, 0x12, 0x80) < 0)
2408 return -EIO;
2409 /* Wait for it to initialize */
2410 msleep(150);
2411 /* Dummy read to sync I2C */
2412 if (i2c_r(sd, 0x00) < 0)
2413 return -EIO;
2415 return -EIO;
2418 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2419 * and the read slave will be set to (slave + 1).
2420 * This should not be called from outside the i2c I/O functions.
2421 * Sets I2C read and write slave IDs. Returns <0 for error
2423 static int ov51x_set_slave_ids(struct sd *sd,
2424 __u8 slave)
2426 int rc;
2428 switch (sd->bridge) {
2429 case BRIDGE_OVFX2:
2430 return reg_w(sd, OVFX2_I2C_ADDR, slave);
2431 case BRIDGE_W9968CF:
2432 sd->sensor_addr = slave;
2433 return 0;
2436 rc = reg_w(sd, R51x_I2C_W_SID, slave);
2437 if (rc < 0)
2438 return rc;
2439 return reg_w(sd, R51x_I2C_R_SID, slave + 1);
2442 static int write_regvals(struct sd *sd,
2443 const struct ov_regvals *regvals,
2444 int n)
2446 int rc;
2448 while (--n >= 0) {
2449 rc = reg_w(sd, regvals->reg, regvals->val);
2450 if (rc < 0)
2451 return rc;
2452 regvals++;
2454 return 0;
2457 static int write_i2c_regvals(struct sd *sd,
2458 const struct ov_i2c_regvals *regvals,
2459 int n)
2461 int rc;
2463 while (--n >= 0) {
2464 rc = i2c_w(sd, regvals->reg, regvals->val);
2465 if (rc < 0)
2466 return rc;
2467 regvals++;
2469 return 0;
2472 /****************************************************************************
2474 * OV511 and sensor configuration
2476 ***************************************************************************/
2478 /* This initializes the OV2x10 / OV3610 / OV3620 */
2479 static int ov_hires_configure(struct sd *sd)
2481 int high, low;
2483 if (sd->bridge != BRIDGE_OVFX2) {
2484 PDEBUG(D_ERR, "error hires sensors only supported with ovfx2");
2485 return -1;
2488 PDEBUG(D_PROBE, "starting ov hires configuration");
2490 /* Detect sensor (sub)type */
2491 high = i2c_r(sd, 0x0a);
2492 low = i2c_r(sd, 0x0b);
2493 /* info("%x, %x", high, low); */
2494 if (high == 0x96 && low == 0x40) {
2495 PDEBUG(D_PROBE, "Sensor is an OV2610");
2496 sd->sensor = SEN_OV2610;
2497 } else if (high == 0x36 && (low & 0x0f) == 0x00) {
2498 PDEBUG(D_PROBE, "Sensor is an OV3610");
2499 sd->sensor = SEN_OV3610;
2500 } else {
2501 PDEBUG(D_ERR, "Error unknown sensor type: 0x%02x%02x",
2502 high, low);
2503 return -1;
2506 /* Set sensor-specific vars */
2507 return 0;
2511 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2512 * the same register settings as the OV8610, since they are very similar.
2514 static int ov8xx0_configure(struct sd *sd)
2516 int rc;
2518 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2520 /* Detect sensor (sub)type */
2521 rc = i2c_r(sd, OV7610_REG_COM_I);
2522 if (rc < 0) {
2523 PDEBUG(D_ERR, "Error detecting sensor type");
2524 return -1;
2526 if ((rc & 3) == 1) {
2527 sd->sensor = SEN_OV8610;
2528 } else {
2529 PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
2530 return -1;
2533 /* Set sensor-specific vars */
2534 return 0;
2537 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2538 * the same register settings as the OV7610, since they are very similar.
2540 static int ov7xx0_configure(struct sd *sd)
2542 int rc, high, low;
2545 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2547 /* Detect sensor (sub)type */
2548 rc = i2c_r(sd, OV7610_REG_COM_I);
2550 /* add OV7670 here
2551 * it appears to be wrongly detected as a 7610 by default */
2552 if (rc < 0) {
2553 PDEBUG(D_ERR, "Error detecting sensor type");
2554 return -1;
2556 if ((rc & 3) == 3) {
2557 /* quick hack to make OV7670s work */
2558 high = i2c_r(sd, 0x0a);
2559 low = i2c_r(sd, 0x0b);
2560 /* info("%x, %x", high, low); */
2561 if (high == 0x76 && low == 0x73) {
2562 PDEBUG(D_PROBE, "Sensor is an OV7670");
2563 sd->sensor = SEN_OV7670;
2564 } else {
2565 PDEBUG(D_PROBE, "Sensor is an OV7610");
2566 sd->sensor = SEN_OV7610;
2568 } else if ((rc & 3) == 1) {
2569 /* I don't know what's different about the 76BE yet. */
2570 if (i2c_r(sd, 0x15) & 1) {
2571 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2572 sd->sensor = SEN_OV7620AE;
2573 } else {
2574 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2575 sd->sensor = SEN_OV76BE;
2577 } else if ((rc & 3) == 0) {
2578 /* try to read product id registers */
2579 high = i2c_r(sd, 0x0a);
2580 if (high < 0) {
2581 PDEBUG(D_ERR, "Error detecting camera chip PID");
2582 return high;
2584 low = i2c_r(sd, 0x0b);
2585 if (low < 0) {
2586 PDEBUG(D_ERR, "Error detecting camera chip VER");
2587 return low;
2589 if (high == 0x76) {
2590 switch (low) {
2591 case 0x30:
2592 PDEBUG(D_PROBE, "Sensor is an OV7630/OV7635");
2593 PDEBUG(D_ERR,
2594 "7630 is not supported by this driver");
2595 return -1;
2596 case 0x40:
2597 PDEBUG(D_PROBE, "Sensor is an OV7645");
2598 sd->sensor = SEN_OV7640;
2599 break;
2600 case 0x45:
2601 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2602 sd->sensor = SEN_OV7640;
2603 break;
2604 case 0x48:
2605 PDEBUG(D_PROBE, "Sensor is an OV7648");
2606 sd->sensor = SEN_OV7648;
2607 break;
2608 default:
2609 PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2610 return -1;
2612 } else {
2613 PDEBUG(D_PROBE, "Sensor is an OV7620");
2614 sd->sensor = SEN_OV7620;
2616 } else {
2617 PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3);
2618 return -1;
2621 /* Set sensor-specific vars */
2622 return 0;
2625 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2626 static int ov6xx0_configure(struct sd *sd)
2628 int rc;
2629 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2631 /* Detect sensor (sub)type */
2632 rc = i2c_r(sd, OV7610_REG_COM_I);
2633 if (rc < 0) {
2634 PDEBUG(D_ERR, "Error detecting sensor type");
2635 return -1;
2638 /* Ugh. The first two bits are the version bits, but
2639 * the entire register value must be used. I guess OVT
2640 * underestimated how many variants they would make. */
2641 switch (rc) {
2642 case 0x00:
2643 sd->sensor = SEN_OV6630;
2644 PDEBUG(D_ERR,
2645 "WARNING: Sensor is an OV66308. Your camera may have");
2646 PDEBUG(D_ERR, "been misdetected in previous driver versions.");
2647 break;
2648 case 0x01:
2649 sd->sensor = SEN_OV6620;
2650 PDEBUG(D_PROBE, "Sensor is an OV6620");
2651 break;
2652 case 0x02:
2653 sd->sensor = SEN_OV6630;
2654 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2655 break;
2656 case 0x03:
2657 sd->sensor = SEN_OV66308AF;
2658 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2659 break;
2660 case 0x90:
2661 sd->sensor = SEN_OV6630;
2662 PDEBUG(D_ERR,
2663 "WARNING: Sensor is an OV66307. Your camera may have");
2664 PDEBUG(D_ERR, "been misdetected in previous driver versions.");
2665 break;
2666 default:
2667 PDEBUG(D_ERR, "FATAL: Unknown sensor version: 0x%02x", rc);
2668 return -1;
2671 /* Set sensor-specific vars */
2672 sd->sif = 1;
2674 return 0;
2677 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2678 static void ov51x_led_control(struct sd *sd, int on)
2680 if (sd->invert_led)
2681 on = !on;
2683 switch (sd->bridge) {
2684 /* OV511 has no LED control */
2685 case BRIDGE_OV511PLUS:
2686 reg_w(sd, R511_SYS_LED_CTL, on ? 1 : 0);
2687 break;
2688 case BRIDGE_OV518:
2689 case BRIDGE_OV518PLUS:
2690 reg_w_mask(sd, R518_GPIO_OUT, on ? 0x02 : 0x00, 0x02);
2691 break;
2692 case BRIDGE_OV519:
2693 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, !on, 1); /* 0 / 1 */
2694 break;
2698 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2700 struct sd *sd = (struct sd *) gspca_dev;
2702 if (!sd->snapshot_needs_reset)
2703 return;
2705 /* Note it is important that we clear sd->snapshot_needs_reset,
2706 before actually clearing the snapshot state in the bridge
2707 otherwise we might race with the pkt_scan interrupt handler */
2708 sd->snapshot_needs_reset = 0;
2710 switch (sd->bridge) {
2711 case BRIDGE_OV511:
2712 case BRIDGE_OV511PLUS:
2713 reg_w(sd, R51x_SYS_SNAP, 0x02);
2714 reg_w(sd, R51x_SYS_SNAP, 0x00);
2715 break;
2716 case BRIDGE_OV518:
2717 case BRIDGE_OV518PLUS:
2718 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2719 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2720 break;
2721 case BRIDGE_OV519:
2722 reg_w(sd, R51x_SYS_RESET, 0x40);
2723 reg_w(sd, R51x_SYS_RESET, 0x00);
2724 break;
2728 static int ov51x_upload_quan_tables(struct sd *sd)
2730 const unsigned char yQuanTable511[] = {
2731 0, 1, 1, 2, 2, 3, 3, 4,
2732 1, 1, 1, 2, 2, 3, 4, 4,
2733 1, 1, 2, 2, 3, 4, 4, 4,
2734 2, 2, 2, 3, 4, 4, 4, 4,
2735 2, 2, 3, 4, 4, 5, 5, 5,
2736 3, 3, 4, 4, 5, 5, 5, 5,
2737 3, 4, 4, 4, 5, 5, 5, 5,
2738 4, 4, 4, 4, 5, 5, 5, 5
2741 const unsigned char uvQuanTable511[] = {
2742 0, 2, 2, 3, 4, 4, 4, 4,
2743 2, 2, 2, 4, 4, 4, 4, 4,
2744 2, 2, 3, 4, 4, 4, 4, 4,
2745 3, 4, 4, 4, 4, 4, 4, 4,
2746 4, 4, 4, 4, 4, 4, 4, 4,
2747 4, 4, 4, 4, 4, 4, 4, 4,
2748 4, 4, 4, 4, 4, 4, 4, 4,
2749 4, 4, 4, 4, 4, 4, 4, 4
2752 /* OV518 quantization tables are 8x4 (instead of 8x8) */
2753 const unsigned char yQuanTable518[] = {
2754 5, 4, 5, 6, 6, 7, 7, 7,
2755 5, 5, 5, 5, 6, 7, 7, 7,
2756 6, 6, 6, 6, 7, 7, 7, 8,
2757 7, 7, 6, 7, 7, 7, 8, 8
2760 const unsigned char uvQuanTable518[] = {
2761 6, 6, 6, 7, 7, 7, 7, 7,
2762 6, 6, 6, 7, 7, 7, 7, 7,
2763 6, 6, 6, 7, 7, 7, 7, 8,
2764 7, 7, 7, 7, 7, 7, 8, 8
2767 const unsigned char *pYTable, *pUVTable;
2768 unsigned char val0, val1;
2769 int i, size, rc, reg = R51x_COMP_LUT_BEGIN;
2771 PDEBUG(D_PROBE, "Uploading quantization tables");
2773 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2774 pYTable = yQuanTable511;
2775 pUVTable = uvQuanTable511;
2776 size = 32;
2777 } else {
2778 pYTable = yQuanTable518;
2779 pUVTable = uvQuanTable518;
2780 size = 16;
2783 for (i = 0; i < size; i++) {
2784 val0 = *pYTable++;
2785 val1 = *pYTable++;
2786 val0 &= 0x0f;
2787 val1 &= 0x0f;
2788 val0 |= val1 << 4;
2789 rc = reg_w(sd, reg, val0);
2790 if (rc < 0)
2791 return rc;
2793 val0 = *pUVTable++;
2794 val1 = *pUVTable++;
2795 val0 &= 0x0f;
2796 val1 &= 0x0f;
2797 val0 |= val1 << 4;
2798 rc = reg_w(sd, reg + size, val0);
2799 if (rc < 0)
2800 return rc;
2802 reg++;
2805 return 0;
2808 /* This initializes the OV511/OV511+ and the sensor */
2809 static int ov511_configure(struct gspca_dev *gspca_dev)
2811 struct sd *sd = (struct sd *) gspca_dev;
2812 int rc;
2814 /* For 511 and 511+ */
2815 const struct ov_regvals init_511[] = {
2816 { R51x_SYS_RESET, 0x7f },
2817 { R51x_SYS_INIT, 0x01 },
2818 { R51x_SYS_RESET, 0x7f },
2819 { R51x_SYS_INIT, 0x01 },
2820 { R51x_SYS_RESET, 0x3f },
2821 { R51x_SYS_INIT, 0x01 },
2822 { R51x_SYS_RESET, 0x3d },
2825 const struct ov_regvals norm_511[] = {
2826 { R511_DRAM_FLOW_CTL, 0x01 },
2827 { R51x_SYS_SNAP, 0x00 },
2828 { R51x_SYS_SNAP, 0x02 },
2829 { R51x_SYS_SNAP, 0x00 },
2830 { R511_FIFO_OPTS, 0x1f },
2831 { R511_COMP_EN, 0x00 },
2832 { R511_COMP_LUT_EN, 0x03 },
2835 const struct ov_regvals norm_511_p[] = {
2836 { R511_DRAM_FLOW_CTL, 0xff },
2837 { R51x_SYS_SNAP, 0x00 },
2838 { R51x_SYS_SNAP, 0x02 },
2839 { R51x_SYS_SNAP, 0x00 },
2840 { R511_FIFO_OPTS, 0xff },
2841 { R511_COMP_EN, 0x00 },
2842 { R511_COMP_LUT_EN, 0x03 },
2845 const struct ov_regvals compress_511[] = {
2846 { 0x70, 0x1f },
2847 { 0x71, 0x05 },
2848 { 0x72, 0x06 },
2849 { 0x73, 0x06 },
2850 { 0x74, 0x14 },
2851 { 0x75, 0x03 },
2852 { 0x76, 0x04 },
2853 { 0x77, 0x04 },
2856 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
2858 rc = write_regvals(sd, init_511, ARRAY_SIZE(init_511));
2859 if (rc < 0)
2860 return rc;
2862 switch (sd->bridge) {
2863 case BRIDGE_OV511:
2864 rc = write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
2865 if (rc < 0)
2866 return rc;
2867 break;
2868 case BRIDGE_OV511PLUS:
2869 rc = write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
2870 if (rc < 0)
2871 return rc;
2872 break;
2875 /* Init compression */
2876 rc = write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
2877 if (rc < 0)
2878 return rc;
2880 rc = ov51x_upload_quan_tables(sd);
2881 if (rc < 0) {
2882 PDEBUG(D_ERR, "Error uploading quantization tables");
2883 return rc;
2886 return 0;
2889 /* This initializes the OV518/OV518+ and the sensor */
2890 static int ov518_configure(struct gspca_dev *gspca_dev)
2892 struct sd *sd = (struct sd *) gspca_dev;
2893 int rc;
2895 /* For 518 and 518+ */
2896 const struct ov_regvals init_518[] = {
2897 { R51x_SYS_RESET, 0x40 },
2898 { R51x_SYS_INIT, 0xe1 },
2899 { R51x_SYS_RESET, 0x3e },
2900 { R51x_SYS_INIT, 0xe1 },
2901 { R51x_SYS_RESET, 0x00 },
2902 { R51x_SYS_INIT, 0xe1 },
2903 { 0x46, 0x00 },
2904 { 0x5d, 0x03 },
2907 const struct ov_regvals norm_518[] = {
2908 { R51x_SYS_SNAP, 0x02 }, /* Reset */
2909 { R51x_SYS_SNAP, 0x01 }, /* Enable */
2910 { 0x31, 0x0f },
2911 { 0x5d, 0x03 },
2912 { 0x24, 0x9f },
2913 { 0x25, 0x90 },
2914 { 0x20, 0x00 },
2915 { 0x51, 0x04 },
2916 { 0x71, 0x19 },
2917 { 0x2f, 0x80 },
2920 const struct ov_regvals norm_518_p[] = {
2921 { R51x_SYS_SNAP, 0x02 }, /* Reset */
2922 { R51x_SYS_SNAP, 0x01 }, /* Enable */
2923 { 0x31, 0x0f },
2924 { 0x5d, 0x03 },
2925 { 0x24, 0x9f },
2926 { 0x25, 0x90 },
2927 { 0x20, 0x60 },
2928 { 0x51, 0x02 },
2929 { 0x71, 0x19 },
2930 { 0x40, 0xff },
2931 { 0x41, 0x42 },
2932 { 0x46, 0x00 },
2933 { 0x33, 0x04 },
2934 { 0x21, 0x19 },
2935 { 0x3f, 0x10 },
2936 { 0x2f, 0x80 },
2939 /* First 5 bits of custom ID reg are a revision ID on OV518 */
2940 PDEBUG(D_PROBE, "Device revision %d",
2941 0x1F & reg_r(sd, R51x_SYS_CUST_ID));
2943 rc = write_regvals(sd, init_518, ARRAY_SIZE(init_518));
2944 if (rc < 0)
2945 return rc;
2947 /* Set LED GPIO pin to output mode */
2948 rc = reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
2949 if (rc < 0)
2950 return rc;
2952 switch (sd->bridge) {
2953 case BRIDGE_OV518:
2954 rc = write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
2955 if (rc < 0)
2956 return rc;
2957 break;
2958 case BRIDGE_OV518PLUS:
2959 rc = write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
2960 if (rc < 0)
2961 return rc;
2962 break;
2965 rc = ov51x_upload_quan_tables(sd);
2966 if (rc < 0) {
2967 PDEBUG(D_ERR, "Error uploading quantization tables");
2968 return rc;
2971 rc = reg_w(sd, 0x2f, 0x80);
2972 if (rc < 0)
2973 return rc;
2975 return 0;
2978 static int ov519_configure(struct sd *sd)
2980 static const struct ov_regvals init_519[] = {
2981 { 0x5a, 0x6d }, /* EnableSystem */
2982 { 0x53, 0x9b },
2983 { 0x54, 0xff }, /* set bit2 to enable jpeg */
2984 { 0x5d, 0x03 },
2985 { 0x49, 0x01 },
2986 { 0x48, 0x00 },
2987 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
2988 * detection will fail. This deserves further investigation. */
2989 { OV519_GPIO_IO_CTRL0, 0xee },
2990 { 0x51, 0x0f }, /* SetUsbInit */
2991 { 0x51, 0x00 },
2992 { 0x22, 0x00 },
2993 /* windows reads 0x55 at this point*/
2996 return write_regvals(sd, init_519, ARRAY_SIZE(init_519));
2999 static int ovfx2_configure(struct sd *sd)
3001 static const struct ov_regvals init_fx2[] = {
3002 { 0x00, 0x60 },
3003 { 0x02, 0x01 },
3004 { 0x0f, 0x1d },
3005 { 0xe9, 0x82 },
3006 { 0xea, 0xc7 },
3007 { 0xeb, 0x10 },
3008 { 0xec, 0xf6 },
3011 sd->stopped = 1;
3013 return write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3016 /* this function is called at probe time */
3017 static int sd_config(struct gspca_dev *gspca_dev,
3018 const struct usb_device_id *id)
3020 struct sd *sd = (struct sd *) gspca_dev;
3021 struct cam *cam = &gspca_dev->cam;
3022 int ret = 0;
3024 sd->bridge = id->driver_info & BRIDGE_MASK;
3025 sd->invert_led = id->driver_info & BRIDGE_INVERT_LED;
3027 switch (sd->bridge) {
3028 case BRIDGE_OV511:
3029 case BRIDGE_OV511PLUS:
3030 ret = ov511_configure(gspca_dev);
3031 break;
3032 case BRIDGE_OV518:
3033 case BRIDGE_OV518PLUS:
3034 ret = ov518_configure(gspca_dev);
3035 break;
3036 case BRIDGE_OV519:
3037 ret = ov519_configure(sd);
3038 break;
3039 case BRIDGE_OVFX2:
3040 ret = ovfx2_configure(sd);
3041 cam->bulk_size = OVFX2_BULK_SIZE;
3042 cam->bulk_nurbs = MAX_NURBS;
3043 cam->bulk = 1;
3044 break;
3045 case BRIDGE_W9968CF:
3046 ret = w9968cf_configure(sd);
3047 cam->reverse_alts = 1;
3048 break;
3051 if (ret)
3052 goto error;
3054 ov51x_led_control(sd, 0); /* turn LED off */
3056 /* The OV519 must be more aggressive about sensor detection since
3057 * I2C write will never fail if the sensor is not present. We have
3058 * to try to initialize the sensor to detect its presence */
3060 /* Test for 76xx */
3061 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3062 if (ov7xx0_configure(sd) < 0) {
3063 PDEBUG(D_ERR, "Failed to configure OV7xx0");
3064 goto error;
3066 /* Test for 6xx0 */
3067 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3068 if (ov6xx0_configure(sd) < 0) {
3069 PDEBUG(D_ERR, "Failed to configure OV6xx0");
3070 goto error;
3072 /* Test for 8xx0 */
3073 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3074 if (ov8xx0_configure(sd) < 0) {
3075 PDEBUG(D_ERR, "Failed to configure OV8xx0");
3076 goto error;
3078 /* Test for 3xxx / 2xxx */
3079 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3080 if (ov_hires_configure(sd) < 0) {
3081 PDEBUG(D_ERR, "Failed to configure high res OV");
3082 goto error;
3084 } else {
3085 PDEBUG(D_ERR, "Can't determine sensor slave IDs");
3086 goto error;
3089 switch (sd->bridge) {
3090 case BRIDGE_OV511:
3091 case BRIDGE_OV511PLUS:
3092 if (!sd->sif) {
3093 cam->cam_mode = ov511_vga_mode;
3094 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3095 } else {
3096 cam->cam_mode = ov511_sif_mode;
3097 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3099 break;
3100 case BRIDGE_OV518:
3101 case BRIDGE_OV518PLUS:
3102 if (!sd->sif) {
3103 cam->cam_mode = ov518_vga_mode;
3104 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3105 } else {
3106 cam->cam_mode = ov518_sif_mode;
3107 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3109 break;
3110 case BRIDGE_OV519:
3111 if (!sd->sif) {
3112 cam->cam_mode = ov519_vga_mode;
3113 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3114 } else {
3115 cam->cam_mode = ov519_sif_mode;
3116 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3118 break;
3119 case BRIDGE_OVFX2:
3120 if (sd->sensor == SEN_OV2610) {
3121 cam->cam_mode = ovfx2_ov2610_mode;
3122 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3123 } else if (sd->sensor == SEN_OV3610) {
3124 cam->cam_mode = ovfx2_ov3610_mode;
3125 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3126 } else if (!sd->sif) {
3127 cam->cam_mode = ov519_vga_mode;
3128 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3129 } else {
3130 cam->cam_mode = ov519_sif_mode;
3131 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3133 break;
3134 case BRIDGE_W9968CF:
3135 cam->cam_mode = w9968cf_vga_mode;
3136 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3137 if (sd->sif)
3138 cam->nmodes--;
3140 /* w9968cf needs initialisation once the sensor is known */
3141 if (w9968cf_init(sd) < 0)
3142 goto error;
3143 break;
3145 sd->brightness = BRIGHTNESS_DEF;
3146 if (sd->sensor == SEN_OV6630 || sd->sensor == SEN_OV66308AF)
3147 sd->contrast = 200; /* The default is too low for the ov6630 */
3148 else
3149 sd->contrast = CONTRAST_DEF;
3150 sd->colors = COLOR_DEF;
3151 sd->hflip = HFLIP_DEF;
3152 sd->vflip = VFLIP_DEF;
3153 sd->autobrightness = AUTOBRIGHT_DEF;
3154 if (sd->sensor == SEN_OV7670) {
3155 sd->freq = OV7670_FREQ_DEF;
3156 gspca_dev->ctrl_dis = (1 << FREQ_IDX) | (1 << COLOR_IDX);
3157 } else {
3158 sd->freq = FREQ_DEF;
3159 gspca_dev->ctrl_dis = (1 << HFLIP_IDX) | (1 << VFLIP_IDX) |
3160 (1 << OV7670_FREQ_IDX);
3162 sd->quality = QUALITY_DEF;
3163 if (sd->sensor == SEN_OV7640 ||
3164 sd->sensor == SEN_OV7648)
3165 gspca_dev->ctrl_dis |= (1 << AUTOBRIGHT_IDX) |
3166 (1 << CONTRAST_IDX);
3167 if (sd->sensor == SEN_OV7670)
3168 gspca_dev->ctrl_dis |= 1 << AUTOBRIGHT_IDX;
3169 /* OV8610 Frequency filter control should work but needs testing */
3170 if (sd->sensor == SEN_OV8610)
3171 gspca_dev->ctrl_dis |= 1 << FREQ_IDX;
3172 /* No controls for the OV2610/OV3610 */
3173 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
3174 gspca_dev->ctrl_dis |= 0xFF;
3176 return 0;
3177 error:
3178 PDEBUG(D_ERR, "OV519 Config failed");
3179 return -EBUSY;
3182 /* this function is called at probe and resume time */
3183 static int sd_init(struct gspca_dev *gspca_dev)
3185 struct sd *sd = (struct sd *) gspca_dev;
3187 /* initialize the sensor */
3188 switch (sd->sensor) {
3189 case SEN_OV2610:
3190 if (write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610)))
3191 return -EIO;
3192 /* Enable autogain, autoexpo, awb, bandfilter */
3193 if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
3194 return -EIO;
3195 break;
3196 case SEN_OV3610:
3197 if (write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b)))
3198 return -EIO;
3199 /* Enable autogain, autoexpo, awb, bandfilter */
3200 if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
3201 return -EIO;
3202 break;
3203 case SEN_OV6620:
3204 if (write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20)))
3205 return -EIO;
3206 break;
3207 case SEN_OV6630:
3208 case SEN_OV66308AF:
3209 if (write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30)))
3210 return -EIO;
3211 break;
3212 default:
3213 /* case SEN_OV7610: */
3214 /* case SEN_OV76BE: */
3215 if (write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610)))
3216 return -EIO;
3217 if (i2c_w_mask(sd, 0x0e, 0x00, 0x40))
3218 return -EIO;
3219 break;
3220 case SEN_OV7620:
3221 case SEN_OV7620AE:
3222 if (write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620)))
3223 return -EIO;
3224 break;
3225 case SEN_OV7640:
3226 case SEN_OV7648:
3227 if (write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640)))
3228 return -EIO;
3229 break;
3230 case SEN_OV7670:
3231 if (write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670)))
3232 return -EIO;
3233 break;
3234 case SEN_OV8610:
3235 if (write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610)))
3236 return -EIO;
3237 break;
3239 return 0;
3242 /* Set up the OV511/OV511+ with the given image parameters.
3244 * Do not put any sensor-specific code in here (including I2C I/O functions)
3246 static int ov511_mode_init_regs(struct sd *sd)
3248 int hsegs, vsegs, packet_size, fps, needed;
3249 int interlaced = 0;
3250 struct usb_host_interface *alt;
3251 struct usb_interface *intf;
3253 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3254 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3255 if (!alt) {
3256 PDEBUG(D_ERR, "Couldn't get altsetting");
3257 return -EIO;
3260 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3261 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3263 reg_w(sd, R511_CAM_UV_EN, 0x01);
3264 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3265 reg_w(sd, R511_SNAP_OPTS, 0x03);
3267 /* Here I'm assuming that snapshot size == image size.
3268 * I hope that's always true. --claudio
3270 hsegs = (sd->gspca_dev.width >> 3) - 1;
3271 vsegs = (sd->gspca_dev.height >> 3) - 1;
3273 reg_w(sd, R511_CAM_PXCNT, hsegs);
3274 reg_w(sd, R511_CAM_LNCNT, vsegs);
3275 reg_w(sd, R511_CAM_PXDIV, 0x00);
3276 reg_w(sd, R511_CAM_LNDIV, 0x00);
3278 /* YUV420, low pass filter on */
3279 reg_w(sd, R511_CAM_OPTS, 0x03);
3281 /* Snapshot additions */
3282 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3283 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3284 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3285 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3287 /******** Set the framerate ********/
3288 if (frame_rate > 0)
3289 sd->frame_rate = frame_rate;
3291 switch (sd->sensor) {
3292 case SEN_OV6620:
3293 /* No framerate control, doesn't like higher rates yet */
3294 sd->clockdiv = 3;
3295 break;
3297 case SEN_OV7620:
3298 case SEN_OV7620AE:
3299 case SEN_OV7640:
3300 case SEN_OV7648:
3301 case SEN_OV76BE:
3302 if (sd->gspca_dev.width == 320)
3303 interlaced = 1;
3304 /* Fall through */
3305 case SEN_OV6630:
3306 case SEN_OV7610:
3307 case SEN_OV7670:
3308 switch (sd->frame_rate) {
3309 case 30:
3310 case 25:
3311 /* Not enough bandwidth to do 640x480 @ 30 fps */
3312 if (sd->gspca_dev.width != 640) {
3313 sd->clockdiv = 0;
3314 break;
3316 /* Fall through for 640x480 case */
3317 default:
3318 /* case 20: */
3319 /* case 15: */
3320 sd->clockdiv = 1;
3321 break;
3322 case 10:
3323 sd->clockdiv = 2;
3324 break;
3325 case 5:
3326 sd->clockdiv = 5;
3327 break;
3329 if (interlaced) {
3330 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3331 /* Higher then 10 does not work */
3332 if (sd->clockdiv > 10)
3333 sd->clockdiv = 10;
3335 break;
3337 case SEN_OV8610:
3338 /* No framerate control ?? */
3339 sd->clockdiv = 0;
3340 break;
3343 /* Check if we have enough bandwidth to disable compression */
3344 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3345 needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3346 /* 1400 is a conservative estimate of the max nr of isoc packets/sec */
3347 if (needed > 1400 * packet_size) {
3348 /* Enable Y and UV quantization and compression */
3349 reg_w(sd, R511_COMP_EN, 0x07);
3350 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3351 } else {
3352 reg_w(sd, R511_COMP_EN, 0x06);
3353 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3356 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3357 reg_w(sd, R51x_SYS_RESET, 0);
3359 return 0;
3362 /* Sets up the OV518/OV518+ with the given image parameters
3364 * OV518 needs a completely different approach, until we can figure out what
3365 * the individual registers do. Also, only 15 FPS is supported now.
3367 * Do not put any sensor-specific code in here (including I2C I/O functions)
3369 static int ov518_mode_init_regs(struct sd *sd)
3371 int hsegs, vsegs, packet_size;
3372 struct usb_host_interface *alt;
3373 struct usb_interface *intf;
3375 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3376 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3377 if (!alt) {
3378 PDEBUG(D_ERR, "Couldn't get altsetting");
3379 return -EIO;
3382 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3383 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3385 /******** Set the mode ********/
3387 reg_w(sd, 0x2b, 0);
3388 reg_w(sd, 0x2c, 0);
3389 reg_w(sd, 0x2d, 0);
3390 reg_w(sd, 0x2e, 0);
3391 reg_w(sd, 0x3b, 0);
3392 reg_w(sd, 0x3c, 0);
3393 reg_w(sd, 0x3d, 0);
3394 reg_w(sd, 0x3e, 0);
3396 if (sd->bridge == BRIDGE_OV518) {
3397 /* Set 8-bit (YVYU) input format */
3398 reg_w_mask(sd, 0x20, 0x08, 0x08);
3400 /* Set 12-bit (4:2:0) output format */
3401 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3402 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3403 } else {
3404 reg_w(sd, 0x28, 0x80);
3405 reg_w(sd, 0x38, 0x80);
3408 hsegs = sd->gspca_dev.width / 16;
3409 vsegs = sd->gspca_dev.height / 4;
3411 reg_w(sd, 0x29, hsegs);
3412 reg_w(sd, 0x2a, vsegs);
3414 reg_w(sd, 0x39, hsegs);
3415 reg_w(sd, 0x3a, vsegs);
3417 /* Windows driver does this here; who knows why */
3418 reg_w(sd, 0x2f, 0x80);
3420 /******** Set the framerate ********/
3421 sd->clockdiv = 1;
3423 /* Mode independent, but framerate dependent, regs */
3424 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3425 reg_w(sd, 0x51, 0x04);
3426 reg_w(sd, 0x22, 0x18);
3427 reg_w(sd, 0x23, 0xff);
3429 if (sd->bridge == BRIDGE_OV518PLUS) {
3430 switch (sd->sensor) {
3431 case SEN_OV7620AE:
3432 if (sd->gspca_dev.width == 320) {
3433 reg_w(sd, 0x20, 0x00);
3434 reg_w(sd, 0x21, 0x19);
3435 } else {
3436 reg_w(sd, 0x20, 0x60);
3437 reg_w(sd, 0x21, 0x1f);
3439 break;
3440 case SEN_OV7620:
3441 reg_w(sd, 0x20, 0x00);
3442 reg_w(sd, 0x21, 0x19);
3443 break;
3444 default:
3445 reg_w(sd, 0x21, 0x19);
3447 } else
3448 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3450 /* Bit 5 is what matters here. Of course, it is "reserved" */
3451 i2c_w(sd, 0x54, 0x23);
3453 reg_w(sd, 0x2f, 0x80);
3455 if (sd->bridge == BRIDGE_OV518PLUS) {
3456 reg_w(sd, 0x24, 0x94);
3457 reg_w(sd, 0x25, 0x90);
3458 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3459 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3460 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3461 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3462 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3463 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3464 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3465 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3466 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3467 } else {
3468 reg_w(sd, 0x24, 0x9f);
3469 reg_w(sd, 0x25, 0x90);
3470 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3471 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3472 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3473 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3474 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3475 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3476 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3477 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3478 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3481 reg_w(sd, 0x2f, 0x80);
3483 return 0;
3487 /* Sets up the OV519 with the given image parameters
3489 * OV519 needs a completely different approach, until we can figure out what
3490 * the individual registers do.
3492 * Do not put any sensor-specific code in here (including I2C I/O functions)
3494 static int ov519_mode_init_regs(struct sd *sd)
3496 static const struct ov_regvals mode_init_519_ov7670[] = {
3497 { 0x5d, 0x03 }, /* Turn off suspend mode */
3498 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3499 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
3500 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3501 { 0xa3, 0x18 },
3502 { 0xa4, 0x04 },
3503 { 0xa5, 0x28 },
3504 { 0x37, 0x00 }, /* SetUsbInit */
3505 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3506 /* Enable both fields, YUV Input, disable defect comp (why?) */
3507 { 0x20, 0x0c },
3508 { 0x21, 0x38 },
3509 { 0x22, 0x1d },
3510 { 0x17, 0x50 }, /* undocumented */
3511 { 0x37, 0x00 }, /* undocumented */
3512 { 0x40, 0xff }, /* I2C timeout counter */
3513 { 0x46, 0x00 }, /* I2C clock prescaler */
3514 { 0x59, 0x04 }, /* new from windrv 090403 */
3515 { 0xff, 0x00 }, /* undocumented */
3516 /* windows reads 0x55 at this point, why? */
3519 static const struct ov_regvals mode_init_519[] = {
3520 { 0x5d, 0x03 }, /* Turn off suspend mode */
3521 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3522 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
3523 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3524 { 0xa3, 0x18 },
3525 { 0xa4, 0x04 },
3526 { 0xa5, 0x28 },
3527 { 0x37, 0x00 }, /* SetUsbInit */
3528 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3529 /* Enable both fields, YUV Input, disable defect comp (why?) */
3530 { 0x22, 0x1d },
3531 { 0x17, 0x50 }, /* undocumented */
3532 { 0x37, 0x00 }, /* undocumented */
3533 { 0x40, 0xff }, /* I2C timeout counter */
3534 { 0x46, 0x00 }, /* I2C clock prescaler */
3535 { 0x59, 0x04 }, /* new from windrv 090403 */
3536 { 0xff, 0x00 }, /* undocumented */
3537 /* windows reads 0x55 at this point, why? */
3540 /******** Set the mode ********/
3541 if (sd->sensor != SEN_OV7670) {
3542 if (write_regvals(sd, mode_init_519,
3543 ARRAY_SIZE(mode_init_519)))
3544 return -EIO;
3545 if (sd->sensor == SEN_OV7640 ||
3546 sd->sensor == SEN_OV7648) {
3547 /* Select 8-bit input mode */
3548 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3550 } else {
3551 if (write_regvals(sd, mode_init_519_ov7670,
3552 ARRAY_SIZE(mode_init_519_ov7670)))
3553 return -EIO;
3556 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
3557 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
3558 if (sd->sensor == SEN_OV7670 &&
3559 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3560 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3561 else if (sd->sensor == SEN_OV7648 &&
3562 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3563 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3564 else
3565 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3566 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3567 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3568 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3569 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3570 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3571 reg_w(sd, 0x26, 0x00); /* Undocumented */
3573 /******** Set the framerate ********/
3574 if (frame_rate > 0)
3575 sd->frame_rate = frame_rate;
3577 sd->clockdiv = 0;
3578 switch (sd->sensor) {
3579 case SEN_OV7640:
3580 case SEN_OV7648:
3581 switch (sd->frame_rate) {
3582 default:
3583 /* case 30: */
3584 reg_w(sd, 0xa4, 0x0c);
3585 reg_w(sd, 0x23, 0xff);
3586 break;
3587 case 25:
3588 reg_w(sd, 0xa4, 0x0c);
3589 reg_w(sd, 0x23, 0x1f);
3590 break;
3591 case 20:
3592 reg_w(sd, 0xa4, 0x0c);
3593 reg_w(sd, 0x23, 0x1b);
3594 break;
3595 case 15:
3596 reg_w(sd, 0xa4, 0x04);
3597 reg_w(sd, 0x23, 0xff);
3598 sd->clockdiv = 1;
3599 break;
3600 case 10:
3601 reg_w(sd, 0xa4, 0x04);
3602 reg_w(sd, 0x23, 0x1f);
3603 sd->clockdiv = 1;
3604 break;
3605 case 5:
3606 reg_w(sd, 0xa4, 0x04);
3607 reg_w(sd, 0x23, 0x1b);
3608 sd->clockdiv = 1;
3609 break;
3611 break;
3612 case SEN_OV8610:
3613 switch (sd->frame_rate) {
3614 default: /* 15 fps */
3615 /* case 15: */
3616 reg_w(sd, 0xa4, 0x06);
3617 reg_w(sd, 0x23, 0xff);
3618 break;
3619 case 10:
3620 reg_w(sd, 0xa4, 0x06);
3621 reg_w(sd, 0x23, 0x1f);
3622 break;
3623 case 5:
3624 reg_w(sd, 0xa4, 0x06);
3625 reg_w(sd, 0x23, 0x1b);
3626 break;
3628 break;
3629 case SEN_OV7670: /* guesses, based on 7640 */
3630 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3631 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3632 reg_w(sd, 0xa4, 0x10);
3633 switch (sd->frame_rate) {
3634 case 30:
3635 reg_w(sd, 0x23, 0xff);
3636 break;
3637 case 20:
3638 reg_w(sd, 0x23, 0x1b);
3639 break;
3640 default:
3641 /* case 15: */
3642 reg_w(sd, 0x23, 0xff);
3643 sd->clockdiv = 1;
3644 break;
3646 break;
3648 return 0;
3651 static int mode_init_ov_sensor_regs(struct sd *sd)
3653 struct gspca_dev *gspca_dev;
3654 int qvga, xstart, xend, ystart, yend;
3655 __u8 v;
3657 gspca_dev = &sd->gspca_dev;
3658 qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
3660 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3661 switch (sd->sensor) {
3662 case SEN_OV2610:
3663 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3664 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3665 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3666 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3667 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3668 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3669 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3670 return 0;
3671 case SEN_OV3610:
3672 if (qvga) {
3673 xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
3674 ystart = (776 - gspca_dev->height) / 2;
3675 } else {
3676 xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
3677 ystart = (1544 - gspca_dev->height) / 2;
3679 xend = xstart + gspca_dev->width;
3680 yend = ystart + gspca_dev->height;
3681 /* Writing to the COMH register resets the other windowing regs
3682 to their default values, so we must do this first. */
3683 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3684 i2c_w_mask(sd, 0x32,
3685 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3686 0x3f);
3687 i2c_w_mask(sd, 0x03,
3688 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3689 0x0f);
3690 i2c_w(sd, 0x17, xstart >> 4);
3691 i2c_w(sd, 0x18, xend >> 4);
3692 i2c_w(sd, 0x19, ystart >> 3);
3693 i2c_w(sd, 0x1a, yend >> 3);
3694 return 0;
3695 case SEN_OV8610:
3696 /* For OV8610 qvga means qsvga */
3697 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3698 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3699 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3700 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3701 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3702 break;
3703 case SEN_OV7610:
3704 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3705 i2c_w(sd, 0x35, qvga?0x1e:0x9e);
3706 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3707 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3708 break;
3709 case SEN_OV7620:
3710 case SEN_OV7620AE:
3711 case SEN_OV76BE:
3712 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3713 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3714 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3715 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3716 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3717 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3718 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3719 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3720 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3721 if (sd->sensor == SEN_OV76BE)
3722 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3723 break;
3724 case SEN_OV7640:
3725 case SEN_OV7648:
3726 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3727 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3728 /* Setting this undocumented bit in qvga mode removes a very
3729 annoying vertical shaking of the image */
3730 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3731 /* Unknown */
3732 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3733 /* Allow higher automatic gain (to allow higher framerates) */
3734 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3735 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3736 break;
3737 case SEN_OV7670:
3738 /* set COM7_FMT_VGA or COM7_FMT_QVGA
3739 * do we need to set anything else?
3740 * HSTART etc are set in set_ov_sensor_window itself */
3741 i2c_w_mask(sd, OV7670_REG_COM7,
3742 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
3743 OV7670_COM7_FMT_MASK);
3744 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3745 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_AWB,
3746 OV7670_COM8_AWB);
3747 if (qvga) { /* QVGA from ov7670.c by
3748 * Jonathan Corbet */
3749 xstart = 164;
3750 xend = 28;
3751 ystart = 14;
3752 yend = 494;
3753 } else { /* VGA */
3754 xstart = 158;
3755 xend = 14;
3756 ystart = 10;
3757 yend = 490;
3759 /* OV7670 hardware window registers are split across
3760 * multiple locations */
3761 i2c_w(sd, OV7670_REG_HSTART, xstart >> 3);
3762 i2c_w(sd, OV7670_REG_HSTOP, xend >> 3);
3763 v = i2c_r(sd, OV7670_REG_HREF);
3764 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
3765 msleep(10); /* need to sleep between read and write to
3766 * same reg! */
3767 i2c_w(sd, OV7670_REG_HREF, v);
3769 i2c_w(sd, OV7670_REG_VSTART, ystart >> 2);
3770 i2c_w(sd, OV7670_REG_VSTOP, yend >> 2);
3771 v = i2c_r(sd, OV7670_REG_VREF);
3772 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
3773 msleep(10); /* need to sleep between read and write to
3774 * same reg! */
3775 i2c_w(sd, OV7670_REG_VREF, v);
3776 break;
3777 case SEN_OV6620:
3778 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3779 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3780 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3781 break;
3782 case SEN_OV6630:
3783 case SEN_OV66308AF:
3784 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3785 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3786 break;
3787 default:
3788 return -EINVAL;
3791 /******** Clock programming ********/
3792 i2c_w(sd, 0x11, sd->clockdiv);
3794 return 0;
3797 static void sethvflip(struct sd *sd)
3799 if (sd->sensor != SEN_OV7670)
3800 return;
3801 if (sd->gspca_dev.streaming)
3802 ov51x_stop(sd);
3803 i2c_w_mask(sd, OV7670_REG_MVFP,
3804 OV7670_MVFP_MIRROR * sd->hflip
3805 | OV7670_MVFP_VFLIP * sd->vflip,
3806 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
3807 if (sd->gspca_dev.streaming)
3808 ov51x_restart(sd);
3811 static int set_ov_sensor_window(struct sd *sd)
3813 struct gspca_dev *gspca_dev;
3814 int qvga, crop;
3815 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
3816 int ret;
3818 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
3819 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610 ||
3820 sd->sensor == SEN_OV7670)
3821 return mode_init_ov_sensor_regs(sd);
3823 gspca_dev = &sd->gspca_dev;
3824 qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
3825 crop = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 2;
3827 /* The different sensor ICs handle setting up of window differently.
3828 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
3829 switch (sd->sensor) {
3830 case SEN_OV8610:
3831 hwsbase = 0x1e;
3832 hwebase = 0x1e;
3833 vwsbase = 0x02;
3834 vwebase = 0x02;
3835 break;
3836 case SEN_OV7610:
3837 case SEN_OV76BE:
3838 hwsbase = 0x38;
3839 hwebase = 0x3a;
3840 vwsbase = vwebase = 0x05;
3841 break;
3842 case SEN_OV6620:
3843 case SEN_OV6630:
3844 case SEN_OV66308AF:
3845 hwsbase = 0x38;
3846 hwebase = 0x3a;
3847 vwsbase = 0x05;
3848 vwebase = 0x06;
3849 if (sd->sensor == SEN_OV66308AF && qvga)
3850 /* HDG: this fixes U and V getting swapped */
3851 hwsbase++;
3852 if (crop) {
3853 hwsbase += 8;
3854 hwebase += 8;
3855 vwsbase += 11;
3856 vwebase += 11;
3858 break;
3859 case SEN_OV7620:
3860 case SEN_OV7620AE:
3861 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
3862 hwebase = 0x2f;
3863 vwsbase = vwebase = 0x05;
3864 break;
3865 case SEN_OV7640:
3866 case SEN_OV7648:
3867 hwsbase = 0x1a;
3868 hwebase = 0x1a;
3869 vwsbase = vwebase = 0x03;
3870 break;
3871 default:
3872 return -EINVAL;
3875 switch (sd->sensor) {
3876 case SEN_OV6620:
3877 case SEN_OV6630:
3878 case SEN_OV66308AF:
3879 if (qvga) { /* QCIF */
3880 hwscale = 0;
3881 vwscale = 0;
3882 } else { /* CIF */
3883 hwscale = 1;
3884 vwscale = 1; /* The datasheet says 0;
3885 * it's wrong */
3887 break;
3888 case SEN_OV8610:
3889 if (qvga) { /* QSVGA */
3890 hwscale = 1;
3891 vwscale = 1;
3892 } else { /* SVGA */
3893 hwscale = 2;
3894 vwscale = 2;
3896 break;
3897 default: /* SEN_OV7xx0 */
3898 if (qvga) { /* QVGA */
3899 hwscale = 1;
3900 vwscale = 0;
3901 } else { /* VGA */
3902 hwscale = 2;
3903 vwscale = 1;
3907 ret = mode_init_ov_sensor_regs(sd);
3908 if (ret < 0)
3909 return ret;
3911 i2c_w(sd, 0x17, hwsbase);
3912 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
3913 i2c_w(sd, 0x19, vwsbase);
3914 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
3916 return 0;
3919 /* -- start the camera -- */
3920 static int sd_start(struct gspca_dev *gspca_dev)
3922 struct sd *sd = (struct sd *) gspca_dev;
3923 int ret = 0;
3925 /* Default for most bridges, allow bridge_mode_init_regs to override */
3926 sd->sensor_width = sd->gspca_dev.width;
3927 sd->sensor_height = sd->gspca_dev.height;
3929 switch (sd->bridge) {
3930 case BRIDGE_OV511:
3931 case BRIDGE_OV511PLUS:
3932 ret = ov511_mode_init_regs(sd);
3933 break;
3934 case BRIDGE_OV518:
3935 case BRIDGE_OV518PLUS:
3936 ret = ov518_mode_init_regs(sd);
3937 break;
3938 case BRIDGE_OV519:
3939 ret = ov519_mode_init_regs(sd);
3940 break;
3941 /* case BRIDGE_OVFX2: nothing to do */
3942 case BRIDGE_W9968CF:
3943 ret = w9968cf_mode_init_regs(sd);
3944 break;
3946 if (ret < 0)
3947 goto out;
3949 ret = set_ov_sensor_window(sd);
3950 if (ret < 0)
3951 goto out;
3953 setcontrast(gspca_dev);
3954 setbrightness(gspca_dev);
3955 setcolors(gspca_dev);
3956 sethvflip(sd);
3957 setautobrightness(sd);
3958 setfreq(sd);
3960 /* Force clear snapshot state in case the snapshot button was
3961 pressed while we weren't streaming */
3962 sd->snapshot_needs_reset = 1;
3963 sd_reset_snapshot(gspca_dev);
3964 sd->snapshot_pressed = 0;
3966 sd->first_frame = 3;
3968 ret = ov51x_restart(sd);
3969 if (ret < 0)
3970 goto out;
3971 ov51x_led_control(sd, 1);
3972 return 0;
3973 out:
3974 PDEBUG(D_ERR, "camera start error:%d", ret);
3975 return ret;
3978 static void sd_stopN(struct gspca_dev *gspca_dev)
3980 struct sd *sd = (struct sd *) gspca_dev;
3982 ov51x_stop(sd);
3983 ov51x_led_control(sd, 0);
3986 static void sd_stop0(struct gspca_dev *gspca_dev)
3988 struct sd *sd = (struct sd *) gspca_dev;
3990 if (sd->bridge == BRIDGE_W9968CF)
3991 w9968cf_stop0(sd);
3994 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
3996 struct sd *sd = (struct sd *) gspca_dev;
3998 if (sd->snapshot_pressed != state) {
3999 #ifdef CONFIG_INPUT
4000 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4001 input_sync(gspca_dev->input_dev);
4002 #endif
4003 if (state)
4004 sd->snapshot_needs_reset = 1;
4006 sd->snapshot_pressed = state;
4007 } else {
4008 /* On the ov511 / ov519 we need to reset the button state
4009 multiple times, as resetting does not work as long as the
4010 button stays pressed */
4011 switch (sd->bridge) {
4012 case BRIDGE_OV511:
4013 case BRIDGE_OV511PLUS:
4014 case BRIDGE_OV519:
4015 if (state)
4016 sd->snapshot_needs_reset = 1;
4017 break;
4022 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4023 u8 *in, /* isoc packet */
4024 int len) /* iso packet length */
4026 struct sd *sd = (struct sd *) gspca_dev;
4028 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4029 * byte non-zero. The EOF packet has image width/height in the
4030 * 10th and 11th bytes. The 9th byte is given as follows:
4032 * bit 7: EOF
4033 * 6: compression enabled
4034 * 5: 422/420/400 modes
4035 * 4: 422/420/400 modes
4036 * 3: 1
4037 * 2: snapshot button on
4038 * 1: snapshot frame
4039 * 0: even/odd field
4041 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4042 (in[8] & 0x08)) {
4043 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4044 if (in[8] & 0x80) {
4045 /* Frame end */
4046 if ((in[9] + 1) * 8 != gspca_dev->width ||
4047 (in[10] + 1) * 8 != gspca_dev->height) {
4048 PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
4049 " requested: %dx%d\n",
4050 (in[9] + 1) * 8, (in[10] + 1) * 8,
4051 gspca_dev->width, gspca_dev->height);
4052 gspca_dev->last_packet_type = DISCARD_PACKET;
4053 return;
4055 /* Add 11 byte footer to frame, might be usefull */
4056 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4057 return;
4058 } else {
4059 /* Frame start */
4060 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4061 sd->packet_nr = 0;
4065 /* Ignore the packet number */
4066 len--;
4068 /* intermediate packet */
4069 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4072 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4073 u8 *data, /* isoc packet */
4074 int len) /* iso packet length */
4076 struct sd *sd = (struct sd *) gspca_dev;
4078 /* A false positive here is likely, until OVT gives me
4079 * the definitive SOF/EOF format */
4080 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4081 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4082 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4083 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4084 sd->packet_nr = 0;
4087 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4088 return;
4090 /* Does this device use packet numbers ? */
4091 if (len & 7) {
4092 len--;
4093 if (sd->packet_nr == data[len])
4094 sd->packet_nr++;
4095 /* The last few packets of the frame (which are all 0's
4096 except that they may contain part of the footer), are
4097 numbered 0 */
4098 else if (sd->packet_nr == 0 || data[len]) {
4099 PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
4100 (int)data[len], (int)sd->packet_nr);
4101 gspca_dev->last_packet_type = DISCARD_PACKET;
4102 return;
4106 /* intermediate packet */
4107 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4110 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4111 u8 *data, /* isoc packet */
4112 int len) /* iso packet length */
4114 /* Header of ov519 is 16 bytes:
4115 * Byte Value Description
4116 * 0 0xff magic
4117 * 1 0xff magic
4118 * 2 0xff magic
4119 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4120 * 9 0xXX 0x01 initial frame without data,
4121 * 0x00 standard frame with image
4122 * 14 Lo in EOF: length of image data / 8
4123 * 15 Hi
4126 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4127 switch (data[3]) {
4128 case 0x50: /* start of frame */
4129 /* Don't check the button state here, as the state
4130 usually (always ?) changes at EOF and checking it
4131 here leads to unnecessary snapshot state resets. */
4132 #define HDRSZ 16
4133 data += HDRSZ;
4134 len -= HDRSZ;
4135 #undef HDRSZ
4136 if (data[0] == 0xff || data[1] == 0xd8)
4137 gspca_frame_add(gspca_dev, FIRST_PACKET,
4138 data, len);
4139 else
4140 gspca_dev->last_packet_type = DISCARD_PACKET;
4141 return;
4142 case 0x51: /* end of frame */
4143 ov51x_handle_button(gspca_dev, data[11] & 1);
4144 if (data[9] != 0)
4145 gspca_dev->last_packet_type = DISCARD_PACKET;
4146 gspca_frame_add(gspca_dev, LAST_PACKET,
4147 NULL, 0);
4148 return;
4152 /* intermediate packet */
4153 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4156 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4157 u8 *data, /* isoc packet */
4158 int len) /* iso packet length */
4160 struct sd *sd = (struct sd *) gspca_dev;
4162 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4164 /* A short read signals EOF */
4165 if (len < OVFX2_BULK_SIZE) {
4166 /* If the frame is short, and it is one of the first ones
4167 the sensor and bridge are still syncing, so drop it. */
4168 if (sd->first_frame) {
4169 sd->first_frame--;
4170 if (gspca_dev->image_len <
4171 sd->gspca_dev.width * sd->gspca_dev.height)
4172 gspca_dev->last_packet_type = DISCARD_PACKET;
4174 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4175 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4179 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4180 u8 *data, /* isoc packet */
4181 int len) /* iso packet length */
4183 struct sd *sd = (struct sd *) gspca_dev;
4185 switch (sd->bridge) {
4186 case BRIDGE_OV511:
4187 case BRIDGE_OV511PLUS:
4188 ov511_pkt_scan(gspca_dev, data, len);
4189 break;
4190 case BRIDGE_OV518:
4191 case BRIDGE_OV518PLUS:
4192 ov518_pkt_scan(gspca_dev, data, len);
4193 break;
4194 case BRIDGE_OV519:
4195 ov519_pkt_scan(gspca_dev, data, len);
4196 break;
4197 case BRIDGE_OVFX2:
4198 ovfx2_pkt_scan(gspca_dev, data, len);
4199 break;
4200 case BRIDGE_W9968CF:
4201 w9968cf_pkt_scan(gspca_dev, data, len);
4202 break;
4206 /* -- management routines -- */
4208 static void setbrightness(struct gspca_dev *gspca_dev)
4210 struct sd *sd = (struct sd *) gspca_dev;
4211 int val;
4213 val = sd->brightness;
4214 switch (sd->sensor) {
4215 case SEN_OV8610:
4216 case SEN_OV7610:
4217 case SEN_OV76BE:
4218 case SEN_OV6620:
4219 case SEN_OV6630:
4220 case SEN_OV66308AF:
4221 case SEN_OV7640:
4222 case SEN_OV7648:
4223 i2c_w(sd, OV7610_REG_BRT, val);
4224 break;
4225 case SEN_OV7620:
4226 case SEN_OV7620AE:
4227 /* 7620 doesn't like manual changes when in auto mode */
4228 if (!sd->autobrightness)
4229 i2c_w(sd, OV7610_REG_BRT, val);
4230 break;
4231 case SEN_OV7670:
4232 /*win trace
4233 * i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_AEC); */
4234 i2c_w(sd, OV7670_REG_BRIGHT, ov7670_abs_to_sm(val));
4235 break;
4239 static void setcontrast(struct gspca_dev *gspca_dev)
4241 struct sd *sd = (struct sd *) gspca_dev;
4242 int val;
4244 val = sd->contrast;
4245 switch (sd->sensor) {
4246 case SEN_OV7610:
4247 case SEN_OV6620:
4248 i2c_w(sd, OV7610_REG_CNT, val);
4249 break;
4250 case SEN_OV6630:
4251 case SEN_OV66308AF:
4252 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4253 break;
4254 case SEN_OV8610: {
4255 static const __u8 ctab[] = {
4256 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4259 /* Use Y gamma control instead. Bit 0 enables it. */
4260 i2c_w(sd, 0x64, ctab[val >> 5]);
4261 break;
4263 case SEN_OV7620:
4264 case SEN_OV7620AE: {
4265 static const __u8 ctab[] = {
4266 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4267 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4270 /* Use Y gamma control instead. Bit 0 enables it. */
4271 i2c_w(sd, 0x64, ctab[val >> 4]);
4272 break;
4274 case SEN_OV7670:
4275 /* check that this isn't just the same as ov7610 */
4276 i2c_w(sd, OV7670_REG_CONTRAS, val >> 1);
4277 break;
4281 static void setcolors(struct gspca_dev *gspca_dev)
4283 struct sd *sd = (struct sd *) gspca_dev;
4284 int val;
4286 val = sd->colors;
4287 switch (sd->sensor) {
4288 case SEN_OV8610:
4289 case SEN_OV7610:
4290 case SEN_OV76BE:
4291 case SEN_OV6620:
4292 case SEN_OV6630:
4293 case SEN_OV66308AF:
4294 i2c_w(sd, OV7610_REG_SAT, val);
4295 break;
4296 case SEN_OV7620:
4297 case SEN_OV7620AE:
4298 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4299 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4300 if (rc < 0)
4301 goto out; */
4302 i2c_w(sd, OV7610_REG_SAT, val);
4303 break;
4304 case SEN_OV7640:
4305 case SEN_OV7648:
4306 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4307 break;
4308 case SEN_OV7670:
4309 /* supported later once I work out how to do it
4310 * transparently fail now! */
4311 /* set REG_COM13 values for UV sat auto mode */
4312 break;
4316 static void setautobrightness(struct sd *sd)
4318 if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7648 ||
4319 sd->sensor == SEN_OV7670 ||
4320 sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
4321 return;
4323 i2c_w_mask(sd, 0x2d, sd->autobrightness ? 0x10 : 0x00, 0x10);
4326 static void setfreq(struct sd *sd)
4328 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
4329 return;
4331 if (sd->sensor == SEN_OV7670) {
4332 switch (sd->freq) {
4333 case 0: /* Banding filter disabled */
4334 i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_BFILT);
4335 break;
4336 case 1: /* 50 hz */
4337 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4338 OV7670_COM8_BFILT);
4339 i2c_w_mask(sd, OV7670_REG_COM11, 0x08, 0x18);
4340 break;
4341 case 2: /* 60 hz */
4342 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4343 OV7670_COM8_BFILT);
4344 i2c_w_mask(sd, OV7670_REG_COM11, 0x00, 0x18);
4345 break;
4346 case 3: /* Auto hz */
4347 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4348 OV7670_COM8_BFILT);
4349 i2c_w_mask(sd, OV7670_REG_COM11, OV7670_COM11_HZAUTO,
4350 0x18);
4351 break;
4353 } else {
4354 switch (sd->freq) {
4355 case 0: /* Banding filter disabled */
4356 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4357 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4358 break;
4359 case 1: /* 50 hz (filter on and framerate adj) */
4360 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4361 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4362 /* 20 fps -> 16.667 fps */
4363 if (sd->sensor == SEN_OV6620 ||
4364 sd->sensor == SEN_OV6630 ||
4365 sd->sensor == SEN_OV66308AF)
4366 i2c_w(sd, 0x2b, 0x5e);
4367 else
4368 i2c_w(sd, 0x2b, 0xac);
4369 break;
4370 case 2: /* 60 hz (filter on, ...) */
4371 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4372 if (sd->sensor == SEN_OV6620 ||
4373 sd->sensor == SEN_OV6630 ||
4374 sd->sensor == SEN_OV66308AF) {
4375 /* 20 fps -> 15 fps */
4376 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4377 i2c_w(sd, 0x2b, 0xa8);
4378 } else {
4379 /* no framerate adj. */
4380 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4382 break;
4387 static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
4389 struct sd *sd = (struct sd *) gspca_dev;
4391 sd->brightness = val;
4392 if (gspca_dev->streaming)
4393 setbrightness(gspca_dev);
4394 return 0;
4397 static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
4399 struct sd *sd = (struct sd *) gspca_dev;
4401 *val = sd->brightness;
4402 return 0;
4405 static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val)
4407 struct sd *sd = (struct sd *) gspca_dev;
4409 sd->contrast = val;
4410 if (gspca_dev->streaming)
4411 setcontrast(gspca_dev);
4412 return 0;
4415 static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val)
4417 struct sd *sd = (struct sd *) gspca_dev;
4419 *val = sd->contrast;
4420 return 0;
4423 static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val)
4425 struct sd *sd = (struct sd *) gspca_dev;
4427 sd->colors = val;
4428 if (gspca_dev->streaming)
4429 setcolors(gspca_dev);
4430 return 0;
4433 static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val)
4435 struct sd *sd = (struct sd *) gspca_dev;
4437 *val = sd->colors;
4438 return 0;
4441 static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val)
4443 struct sd *sd = (struct sd *) gspca_dev;
4445 sd->hflip = val;
4446 if (gspca_dev->streaming)
4447 sethvflip(sd);
4448 return 0;
4451 static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val)
4453 struct sd *sd = (struct sd *) gspca_dev;
4455 *val = sd->hflip;
4456 return 0;
4459 static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val)
4461 struct sd *sd = (struct sd *) gspca_dev;
4463 sd->vflip = val;
4464 if (gspca_dev->streaming)
4465 sethvflip(sd);
4466 return 0;
4469 static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val)
4471 struct sd *sd = (struct sd *) gspca_dev;
4473 *val = sd->vflip;
4474 return 0;
4477 static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val)
4479 struct sd *sd = (struct sd *) gspca_dev;
4481 sd->autobrightness = val;
4482 if (gspca_dev->streaming)
4483 setautobrightness(sd);
4484 return 0;
4487 static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val)
4489 struct sd *sd = (struct sd *) gspca_dev;
4491 *val = sd->autobrightness;
4492 return 0;
4495 static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
4497 struct sd *sd = (struct sd *) gspca_dev;
4499 sd->freq = val;
4500 if (gspca_dev->streaming) {
4501 setfreq(sd);
4502 /* Ugly but necessary */
4503 if (sd->bridge == BRIDGE_W9968CF)
4504 w9968cf_set_crop_window(sd);
4506 return 0;
4509 static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
4511 struct sd *sd = (struct sd *) gspca_dev;
4513 *val = sd->freq;
4514 return 0;
4517 static int sd_querymenu(struct gspca_dev *gspca_dev,
4518 struct v4l2_querymenu *menu)
4520 struct sd *sd = (struct sd *) gspca_dev;
4522 switch (menu->id) {
4523 case V4L2_CID_POWER_LINE_FREQUENCY:
4524 switch (menu->index) {
4525 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
4526 strcpy((char *) menu->name, "NoFliker");
4527 return 0;
4528 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
4529 strcpy((char *) menu->name, "50 Hz");
4530 return 0;
4531 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
4532 strcpy((char *) menu->name, "60 Hz");
4533 return 0;
4534 case 3:
4535 if (sd->sensor != SEN_OV7670)
4536 return -EINVAL;
4538 strcpy((char *) menu->name, "Automatic");
4539 return 0;
4541 break;
4543 return -EINVAL;
4546 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4547 struct v4l2_jpegcompression *jcomp)
4549 struct sd *sd = (struct sd *) gspca_dev;
4551 if (sd->bridge != BRIDGE_W9968CF)
4552 return -EINVAL;
4554 memset(jcomp, 0, sizeof *jcomp);
4555 jcomp->quality = sd->quality;
4556 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4557 V4L2_JPEG_MARKER_DRI;
4558 return 0;
4561 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4562 struct v4l2_jpegcompression *jcomp)
4564 struct sd *sd = (struct sd *) gspca_dev;
4566 if (sd->bridge != BRIDGE_W9968CF)
4567 return -EINVAL;
4569 if (gspca_dev->streaming)
4570 return -EBUSY;
4572 if (jcomp->quality < QUALITY_MIN)
4573 sd->quality = QUALITY_MIN;
4574 else if (jcomp->quality > QUALITY_MAX)
4575 sd->quality = QUALITY_MAX;
4576 else
4577 sd->quality = jcomp->quality;
4579 /* Return resulting jcomp params to app */
4580 sd_get_jcomp(gspca_dev, jcomp);
4582 return 0;
4585 /* sub-driver description */
4586 static const struct sd_desc sd_desc = {
4587 .name = MODULE_NAME,
4588 .ctrls = sd_ctrls,
4589 .nctrls = ARRAY_SIZE(sd_ctrls),
4590 .config = sd_config,
4591 .init = sd_init,
4592 .start = sd_start,
4593 .stopN = sd_stopN,
4594 .stop0 = sd_stop0,
4595 .pkt_scan = sd_pkt_scan,
4596 .dq_callback = sd_reset_snapshot,
4597 .querymenu = sd_querymenu,
4598 .get_jcomp = sd_get_jcomp,
4599 .set_jcomp = sd_set_jcomp,
4600 #ifdef CONFIG_INPUT
4601 .other_input = 1,
4602 #endif
4605 /* -- module initialisation -- */
4606 static const __devinitdata struct usb_device_id device_table[] = {
4607 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4608 {USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 },
4609 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4610 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4611 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4612 {USB_DEVICE(0x041e, 0x4064),
4613 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4614 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4615 {USB_DEVICE(0x041e, 0x4068),
4616 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4617 {USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 },
4618 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4619 {USB_DEVICE(0x054c, 0x0155),
4620 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4621 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4622 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4623 {USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 },
4624 {USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 },
4625 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4626 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4627 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4628 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4629 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4630 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4631 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4632 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4633 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4634 {USB_DEVICE(0x8020, 0xEF04), .driver_info = BRIDGE_OVFX2 },
4638 MODULE_DEVICE_TABLE(usb, device_table);
4640 /* -- device connect -- */
4641 static int sd_probe(struct usb_interface *intf,
4642 const struct usb_device_id *id)
4644 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4645 THIS_MODULE);
4648 static struct usb_driver sd_driver = {
4649 .name = MODULE_NAME,
4650 .id_table = device_table,
4651 .probe = sd_probe,
4652 .disconnect = gspca_disconnect,
4653 #ifdef CONFIG_PM
4654 .suspend = gspca_suspend,
4655 .resume = gspca_resume,
4656 #endif
4659 /* -- module insert / remove -- */
4660 static int __init sd_mod_init(void)
4662 int ret;
4663 ret = usb_register(&sd_driver);
4664 if (ret < 0)
4665 return ret;
4666 PDEBUG(D_PROBE, "registered");
4667 return 0;
4669 static void __exit sd_mod_exit(void)
4671 usb_deregister(&sd_driver);
4672 PDEBUG(D_PROBE, "deregistered");
4675 module_init(sd_mod_init);
4676 module_exit(sd_mod_exit);
4678 module_param(frame_rate, int, 0644);
4679 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");