GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / crypto / mv_cesa.c
blob7b5ec12fe44d6db5b5a3c208446208a5b2986fbc
1 /*
2 * Support for Marvell's crypto engine which can be found on some Orion5X
3 * boards.
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6 * License: GPLv2
8 */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/sha.h>
21 #include "mv_cesa.h"
23 #define MV_CESA "MV-CESA:"
24 #define MAX_HW_HASH_SIZE 0xFFFF
27 * STM:
28 * /---------------------------------------\
29 * | | request complete
30 * \./ |
31 * IDLE -> new request -> BUSY -> done -> DEQUEUE
32 * /°\ |
33 * | | more scatter entries
34 * \________________/
36 enum engine_status {
37 ENGINE_IDLE,
38 ENGINE_BUSY,
39 ENGINE_W_DEQUEUE,
42 /**
43 * struct req_progress - used for every crypt request
44 * @src_sg_it: sg iterator for src
45 * @dst_sg_it: sg iterator for dst
46 * @sg_src_left: bytes left in src to process (scatter list)
47 * @src_start: offset to add to src start position (scatter list)
48 * @crypt_len: length of current hw crypt/hash process
49 * @hw_nbytes: total bytes to process in hw for this request
50 * @copy_back: whether to copy data back (crypt) or not (hash)
51 * @sg_dst_left: bytes left dst to process in this scatter list
52 * @dst_start: offset to add to dst start position (scatter list)
53 * @hw_processed_bytes: number of bytes processed by hw (request).
55 * sg helper are used to iterate over the scatterlist. Since the size of the
56 * SRAM may be less than the scatter size, this struct struct is used to keep
57 * track of progress within current scatterlist.
59 struct req_progress {
60 struct sg_mapping_iter src_sg_it;
61 struct sg_mapping_iter dst_sg_it;
62 void (*complete) (void);
63 void (*process) (int is_first);
65 /* src mostly */
66 int sg_src_left;
67 int src_start;
68 int crypt_len;
69 int hw_nbytes;
70 /* dst mostly */
71 int copy_back;
72 int sg_dst_left;
73 int dst_start;
74 int hw_processed_bytes;
77 struct crypto_priv {
78 void __iomem *reg;
79 void __iomem *sram;
80 int irq;
81 struct task_struct *queue_th;
83 /* the lock protects queue and eng_st */
84 spinlock_t lock;
85 struct crypto_queue queue;
86 enum engine_status eng_st;
87 struct crypto_async_request *cur_req;
88 struct req_progress p;
89 int max_req_size;
90 int sram_size;
91 int has_sha1;
92 int has_hmac_sha1;
95 static struct crypto_priv *cpg;
97 struct mv_ctx {
98 u8 aes_enc_key[AES_KEY_LEN];
99 u32 aes_dec_key[8];
100 int key_len;
101 u32 need_calc_aes_dkey;
104 enum crypto_op {
105 COP_AES_ECB,
106 COP_AES_CBC,
109 struct mv_req_ctx {
110 enum crypto_op op;
111 int decrypt;
114 enum hash_op {
115 COP_SHA1,
116 COP_HMAC_SHA1
119 struct mv_tfm_hash_ctx {
120 struct crypto_shash *fallback;
121 struct crypto_shash *base_hash;
122 u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
123 int count_add;
124 enum hash_op op;
127 struct mv_req_hash_ctx {
128 u64 count;
129 u32 state[SHA1_DIGEST_SIZE / 4];
130 u8 buffer[SHA1_BLOCK_SIZE];
131 int first_hash; /* marks that we don't have previous state */
132 int last_chunk; /* marks that this is the 'final' request */
133 int extra_bytes; /* unprocessed bytes in buffer */
134 enum hash_op op;
135 int count_add;
136 struct scatterlist dummysg;
139 static void compute_aes_dec_key(struct mv_ctx *ctx)
141 struct crypto_aes_ctx gen_aes_key;
142 int key_pos;
144 if (!ctx->need_calc_aes_dkey)
145 return;
147 crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
149 key_pos = ctx->key_len + 24;
150 memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
151 switch (ctx->key_len) {
152 case AES_KEYSIZE_256:
153 key_pos -= 2;
154 /* fall */
155 case AES_KEYSIZE_192:
156 key_pos -= 2;
157 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
158 4 * 4);
159 break;
161 ctx->need_calc_aes_dkey = 0;
164 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
165 unsigned int len)
167 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
168 struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
170 switch (len) {
171 case AES_KEYSIZE_128:
172 case AES_KEYSIZE_192:
173 case AES_KEYSIZE_256:
174 break;
175 default:
176 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
177 return -EINVAL;
179 ctx->key_len = len;
180 ctx->need_calc_aes_dkey = 1;
182 memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
183 return 0;
186 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
188 int ret;
189 void *sbuf;
190 int copied = 0;
192 while (1) {
193 if (!p->sg_src_left) {
194 ret = sg_miter_next(&p->src_sg_it);
195 BUG_ON(!ret);
196 p->sg_src_left = p->src_sg_it.length;
197 p->src_start = 0;
200 sbuf = p->src_sg_it.addr + p->src_start;
202 if (p->sg_src_left <= len - copied) {
203 memcpy(dbuf + copied, sbuf, p->sg_src_left);
204 copied += p->sg_src_left;
205 p->sg_src_left = 0;
206 if (copied >= len)
207 break;
208 } else {
209 int copy_len = len - copied;
210 memcpy(dbuf + copied, sbuf, copy_len);
211 p->src_start += copy_len;
212 p->sg_src_left -= copy_len;
213 break;
218 static void setup_data_in(void)
220 struct req_progress *p = &cpg->p;
221 int data_in_sram =
222 min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
223 copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
224 data_in_sram - p->crypt_len);
225 p->crypt_len = data_in_sram;
228 static void mv_process_current_q(int first_block)
230 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
231 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
232 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
233 struct sec_accel_config op;
235 switch (req_ctx->op) {
236 case COP_AES_ECB:
237 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
238 break;
239 case COP_AES_CBC:
240 default:
241 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
242 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
243 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
244 if (first_block)
245 memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
246 break;
248 if (req_ctx->decrypt) {
249 op.config |= CFG_DIR_DEC;
250 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
251 AES_KEY_LEN);
252 } else {
253 op.config |= CFG_DIR_ENC;
254 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
255 AES_KEY_LEN);
258 switch (ctx->key_len) {
259 case AES_KEYSIZE_128:
260 op.config |= CFG_AES_LEN_128;
261 break;
262 case AES_KEYSIZE_192:
263 op.config |= CFG_AES_LEN_192;
264 break;
265 case AES_KEYSIZE_256:
266 op.config |= CFG_AES_LEN_256;
267 break;
269 op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
270 ENC_P_DST(SRAM_DATA_OUT_START);
271 op.enc_key_p = SRAM_DATA_KEY_P;
273 setup_data_in();
274 op.enc_len = cpg->p.crypt_len;
275 memcpy(cpg->sram + SRAM_CONFIG, &op,
276 sizeof(struct sec_accel_config));
278 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
279 /* GO */
280 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
284 static void mv_crypto_algo_completion(void)
286 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
287 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
289 sg_miter_stop(&cpg->p.src_sg_it);
290 sg_miter_stop(&cpg->p.dst_sg_it);
292 if (req_ctx->op != COP_AES_CBC)
293 return ;
295 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
298 static void mv_process_hash_current(int first_block)
300 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
301 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
302 struct req_progress *p = &cpg->p;
303 struct sec_accel_config op = { 0 };
304 int is_last;
306 switch (req_ctx->op) {
307 case COP_SHA1:
308 default:
309 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
310 break;
311 case COP_HMAC_SHA1:
312 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
313 break;
316 op.mac_src_p =
317 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
318 req_ctx->
319 count);
321 setup_data_in();
323 op.mac_digest =
324 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
325 op.mac_iv =
326 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
327 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
329 is_last = req_ctx->last_chunk
330 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
331 && (req_ctx->count <= MAX_HW_HASH_SIZE);
332 if (req_ctx->first_hash) {
333 if (is_last)
334 op.config |= CFG_NOT_FRAG;
335 else
336 op.config |= CFG_FIRST_FRAG;
338 req_ctx->first_hash = 0;
339 } else {
340 if (is_last)
341 op.config |= CFG_LAST_FRAG;
342 else
343 op.config |= CFG_MID_FRAG;
346 memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
348 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
349 /* GO */
350 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
354 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
355 struct shash_desc *desc)
357 int i;
358 struct sha1_state shash_state;
360 shash_state.count = ctx->count + ctx->count_add;
361 for (i = 0; i < 5; i++)
362 shash_state.state[i] = ctx->state[i];
363 memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
364 return crypto_shash_import(desc, &shash_state);
367 static int mv_hash_final_fallback(struct ahash_request *req)
369 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
370 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
371 struct {
372 struct shash_desc shash;
373 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
374 } desc;
375 int rc;
377 desc.shash.tfm = tfm_ctx->fallback;
378 desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
379 if (unlikely(req_ctx->first_hash)) {
380 crypto_shash_init(&desc.shash);
381 crypto_shash_update(&desc.shash, req_ctx->buffer,
382 req_ctx->extra_bytes);
383 } else {
384 /* only SHA1 for now....
386 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
387 if (rc)
388 goto out;
390 rc = crypto_shash_final(&desc.shash, req->result);
391 out:
392 return rc;
395 static void mv_hash_algo_completion(void)
397 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
398 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
400 if (ctx->extra_bytes)
401 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
402 sg_miter_stop(&cpg->p.src_sg_it);
404 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
405 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
406 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
407 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
408 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
410 if (likely(ctx->last_chunk)) {
411 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
412 memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
413 crypto_ahash_digestsize(crypto_ahash_reqtfm
414 (req)));
415 } else
416 mv_hash_final_fallback(req);
420 static void dequeue_complete_req(void)
422 struct crypto_async_request *req = cpg->cur_req;
423 void *buf;
424 int ret;
425 cpg->p.hw_processed_bytes += cpg->p.crypt_len;
426 if (cpg->p.copy_back) {
427 int need_copy_len = cpg->p.crypt_len;
428 int sram_offset = 0;
429 do {
430 int dst_copy;
432 if (!cpg->p.sg_dst_left) {
433 ret = sg_miter_next(&cpg->p.dst_sg_it);
434 BUG_ON(!ret);
435 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
436 cpg->p.dst_start = 0;
439 buf = cpg->p.dst_sg_it.addr;
440 buf += cpg->p.dst_start;
442 dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
444 memcpy(buf,
445 cpg->sram + SRAM_DATA_OUT_START + sram_offset,
446 dst_copy);
447 sram_offset += dst_copy;
448 cpg->p.sg_dst_left -= dst_copy;
449 need_copy_len -= dst_copy;
450 cpg->p.dst_start += dst_copy;
451 } while (need_copy_len > 0);
454 cpg->p.crypt_len = 0;
456 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
457 if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
458 /* process next scatter list entry */
459 cpg->eng_st = ENGINE_BUSY;
460 cpg->p.process(0);
461 } else {
462 cpg->p.complete();
463 cpg->eng_st = ENGINE_IDLE;
464 local_bh_disable();
465 req->complete(req, 0);
466 local_bh_enable();
470 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
472 int i = 0;
473 size_t cur_len;
475 while (1) {
476 cur_len = sl[i].length;
477 ++i;
478 if (total_bytes > cur_len)
479 total_bytes -= cur_len;
480 else
481 break;
484 return i;
487 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
489 struct req_progress *p = &cpg->p;
490 int num_sgs;
492 cpg->cur_req = &req->base;
493 memset(p, 0, sizeof(struct req_progress));
494 p->hw_nbytes = req->nbytes;
495 p->complete = mv_crypto_algo_completion;
496 p->process = mv_process_current_q;
497 p->copy_back = 1;
499 num_sgs = count_sgs(req->src, req->nbytes);
500 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
502 num_sgs = count_sgs(req->dst, req->nbytes);
503 sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
505 mv_process_current_q(1);
508 static void mv_start_new_hash_req(struct ahash_request *req)
510 struct req_progress *p = &cpg->p;
511 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
512 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
513 int num_sgs, hw_bytes, old_extra_bytes, rc;
514 cpg->cur_req = &req->base;
515 memset(p, 0, sizeof(struct req_progress));
516 hw_bytes = req->nbytes + ctx->extra_bytes;
517 old_extra_bytes = ctx->extra_bytes;
519 if (unlikely(ctx->extra_bytes)) {
520 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
521 ctx->extra_bytes);
522 p->crypt_len = ctx->extra_bytes;
525 memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
527 if (unlikely(!ctx->first_hash)) {
528 writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
529 writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
530 writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
531 writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
532 writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
535 ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
536 if (ctx->extra_bytes != 0
537 && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
538 hw_bytes -= ctx->extra_bytes;
539 else
540 ctx->extra_bytes = 0;
542 num_sgs = count_sgs(req->src, req->nbytes);
543 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
545 if (hw_bytes) {
546 p->hw_nbytes = hw_bytes;
547 p->complete = mv_hash_algo_completion;
548 p->process = mv_process_hash_current;
550 mv_process_hash_current(1);
551 } else {
552 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
553 ctx->extra_bytes - old_extra_bytes);
554 sg_miter_stop(&p->src_sg_it);
555 if (ctx->last_chunk)
556 rc = mv_hash_final_fallback(req);
557 else
558 rc = 0;
559 cpg->eng_st = ENGINE_IDLE;
560 local_bh_disable();
561 req->base.complete(&req->base, rc);
562 local_bh_enable();
566 static int queue_manag(void *data)
568 cpg->eng_st = ENGINE_IDLE;
569 do {
570 struct crypto_async_request *async_req = NULL;
571 struct crypto_async_request *backlog;
573 __set_current_state(TASK_INTERRUPTIBLE);
575 if (cpg->eng_st == ENGINE_W_DEQUEUE)
576 dequeue_complete_req();
578 spin_lock_irq(&cpg->lock);
579 if (cpg->eng_st == ENGINE_IDLE) {
580 backlog = crypto_get_backlog(&cpg->queue);
581 async_req = crypto_dequeue_request(&cpg->queue);
582 if (async_req) {
583 BUG_ON(cpg->eng_st != ENGINE_IDLE);
584 cpg->eng_st = ENGINE_BUSY;
587 spin_unlock_irq(&cpg->lock);
589 if (backlog) {
590 backlog->complete(backlog, -EINPROGRESS);
591 backlog = NULL;
594 if (async_req) {
595 if (async_req->tfm->__crt_alg->cra_type !=
596 &crypto_ahash_type) {
597 struct ablkcipher_request *req =
598 container_of(async_req,
599 struct ablkcipher_request,
600 base);
601 mv_start_new_crypt_req(req);
602 } else {
603 struct ahash_request *req =
604 ahash_request_cast(async_req);
605 mv_start_new_hash_req(req);
607 async_req = NULL;
610 schedule();
612 } while (!kthread_should_stop());
613 return 0;
616 static int mv_handle_req(struct crypto_async_request *req)
618 unsigned long flags;
619 int ret;
621 spin_lock_irqsave(&cpg->lock, flags);
622 ret = crypto_enqueue_request(&cpg->queue, req);
623 spin_unlock_irqrestore(&cpg->lock, flags);
624 wake_up_process(cpg->queue_th);
625 return ret;
628 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
630 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
632 req_ctx->op = COP_AES_ECB;
633 req_ctx->decrypt = 0;
635 return mv_handle_req(&req->base);
638 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
640 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
641 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
643 req_ctx->op = COP_AES_ECB;
644 req_ctx->decrypt = 1;
646 compute_aes_dec_key(ctx);
647 return mv_handle_req(&req->base);
650 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
652 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
654 req_ctx->op = COP_AES_CBC;
655 req_ctx->decrypt = 0;
657 return mv_handle_req(&req->base);
660 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
662 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
663 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
665 req_ctx->op = COP_AES_CBC;
666 req_ctx->decrypt = 1;
668 compute_aes_dec_key(ctx);
669 return mv_handle_req(&req->base);
672 static int mv_cra_init(struct crypto_tfm *tfm)
674 tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
675 return 0;
678 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
679 int is_last, unsigned int req_len,
680 int count_add)
682 memset(ctx, 0, sizeof(*ctx));
683 ctx->op = op;
684 ctx->count = req_len;
685 ctx->first_hash = 1;
686 ctx->last_chunk = is_last;
687 ctx->count_add = count_add;
690 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
691 unsigned req_len)
693 ctx->last_chunk = is_last;
694 ctx->count += req_len;
697 static int mv_hash_init(struct ahash_request *req)
699 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
700 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
701 tfm_ctx->count_add);
702 return 0;
705 static int mv_hash_update(struct ahash_request *req)
707 if (!req->nbytes)
708 return 0;
710 mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
711 return mv_handle_req(&req->base);
714 static int mv_hash_final(struct ahash_request *req)
716 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
717 /* dummy buffer of 4 bytes */
718 sg_init_one(&ctx->dummysg, ctx->buffer, 4);
719 /* I think I'm allowed to do that... */
720 ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
721 mv_update_hash_req_ctx(ctx, 1, 0);
722 return mv_handle_req(&req->base);
725 static int mv_hash_finup(struct ahash_request *req)
727 if (!req->nbytes)
728 return mv_hash_final(req);
730 mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
731 return mv_handle_req(&req->base);
734 static int mv_hash_digest(struct ahash_request *req)
736 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
737 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
738 req->nbytes, tfm_ctx->count_add);
739 return mv_handle_req(&req->base);
742 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
743 const void *ostate)
745 const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
746 int i;
747 for (i = 0; i < 5; i++) {
748 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
749 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
753 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
754 unsigned int keylen)
756 int rc;
757 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
758 int bs, ds, ss;
760 if (!ctx->base_hash)
761 return 0;
763 rc = crypto_shash_setkey(ctx->fallback, key, keylen);
764 if (rc)
765 return rc;
767 /* Can't see a way to extract the ipad/opad from the fallback tfm
768 so I'm basically copying code from the hmac module */
769 bs = crypto_shash_blocksize(ctx->base_hash);
770 ds = crypto_shash_digestsize(ctx->base_hash);
771 ss = crypto_shash_statesize(ctx->base_hash);
774 struct {
775 struct shash_desc shash;
776 char ctx[crypto_shash_descsize(ctx->base_hash)];
777 } desc;
778 unsigned int i;
779 char ipad[ss];
780 char opad[ss];
782 desc.shash.tfm = ctx->base_hash;
783 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
784 CRYPTO_TFM_REQ_MAY_SLEEP;
786 if (keylen > bs) {
787 int err;
789 err =
790 crypto_shash_digest(&desc.shash, key, keylen, ipad);
791 if (err)
792 return err;
794 keylen = ds;
795 } else
796 memcpy(ipad, key, keylen);
798 memset(ipad + keylen, 0, bs - keylen);
799 memcpy(opad, ipad, bs);
801 for (i = 0; i < bs; i++) {
802 ipad[i] ^= 0x36;
803 opad[i] ^= 0x5c;
806 rc = crypto_shash_init(&desc.shash) ? :
807 crypto_shash_update(&desc.shash, ipad, bs) ? :
808 crypto_shash_export(&desc.shash, ipad) ? :
809 crypto_shash_init(&desc.shash) ? :
810 crypto_shash_update(&desc.shash, opad, bs) ? :
811 crypto_shash_export(&desc.shash, opad);
813 if (rc == 0)
814 mv_hash_init_ivs(ctx, ipad, opad);
816 return rc;
820 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
821 enum hash_op op, int count_add)
823 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
824 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
825 struct crypto_shash *fallback_tfm = NULL;
826 struct crypto_shash *base_hash = NULL;
827 int err = -ENOMEM;
829 ctx->op = op;
830 ctx->count_add = count_add;
832 /* Allocate a fallback and abort if it failed. */
833 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
834 CRYPTO_ALG_NEED_FALLBACK);
835 if (IS_ERR(fallback_tfm)) {
836 printk(KERN_WARNING MV_CESA
837 "Fallback driver '%s' could not be loaded!\n",
838 fallback_driver_name);
839 err = PTR_ERR(fallback_tfm);
840 goto out;
842 ctx->fallback = fallback_tfm;
844 if (base_hash_name) {
845 /* Allocate a hash to compute the ipad/opad of hmac. */
846 base_hash = crypto_alloc_shash(base_hash_name, 0,
847 CRYPTO_ALG_NEED_FALLBACK);
848 if (IS_ERR(base_hash)) {
849 printk(KERN_WARNING MV_CESA
850 "Base driver '%s' could not be loaded!\n",
851 base_hash_name);
852 err = PTR_ERR(fallback_tfm);
853 goto err_bad_base;
856 ctx->base_hash = base_hash;
858 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
859 sizeof(struct mv_req_hash_ctx) +
860 crypto_shash_descsize(ctx->fallback));
861 return 0;
862 err_bad_base:
863 crypto_free_shash(fallback_tfm);
864 out:
865 return err;
868 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
870 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
872 crypto_free_shash(ctx->fallback);
873 if (ctx->base_hash)
874 crypto_free_shash(ctx->base_hash);
877 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
879 return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
882 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
884 return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
887 irqreturn_t crypto_int(int irq, void *priv)
889 u32 val;
891 val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
892 if (!(val & SEC_INT_ACCEL0_DONE))
893 return IRQ_NONE;
895 val &= ~SEC_INT_ACCEL0_DONE;
896 writel(val, cpg->reg + FPGA_INT_STATUS);
897 writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
898 BUG_ON(cpg->eng_st != ENGINE_BUSY);
899 cpg->eng_st = ENGINE_W_DEQUEUE;
900 wake_up_process(cpg->queue_th);
901 return IRQ_HANDLED;
904 struct crypto_alg mv_aes_alg_ecb = {
905 .cra_name = "ecb(aes)",
906 .cra_driver_name = "mv-ecb-aes",
907 .cra_priority = 300,
908 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
909 .cra_blocksize = 16,
910 .cra_ctxsize = sizeof(struct mv_ctx),
911 .cra_alignmask = 0,
912 .cra_type = &crypto_ablkcipher_type,
913 .cra_module = THIS_MODULE,
914 .cra_init = mv_cra_init,
915 .cra_u = {
916 .ablkcipher = {
917 .min_keysize = AES_MIN_KEY_SIZE,
918 .max_keysize = AES_MAX_KEY_SIZE,
919 .setkey = mv_setkey_aes,
920 .encrypt = mv_enc_aes_ecb,
921 .decrypt = mv_dec_aes_ecb,
926 struct crypto_alg mv_aes_alg_cbc = {
927 .cra_name = "cbc(aes)",
928 .cra_driver_name = "mv-cbc-aes",
929 .cra_priority = 300,
930 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
931 .cra_blocksize = AES_BLOCK_SIZE,
932 .cra_ctxsize = sizeof(struct mv_ctx),
933 .cra_alignmask = 0,
934 .cra_type = &crypto_ablkcipher_type,
935 .cra_module = THIS_MODULE,
936 .cra_init = mv_cra_init,
937 .cra_u = {
938 .ablkcipher = {
939 .ivsize = AES_BLOCK_SIZE,
940 .min_keysize = AES_MIN_KEY_SIZE,
941 .max_keysize = AES_MAX_KEY_SIZE,
942 .setkey = mv_setkey_aes,
943 .encrypt = mv_enc_aes_cbc,
944 .decrypt = mv_dec_aes_cbc,
949 struct ahash_alg mv_sha1_alg = {
950 .init = mv_hash_init,
951 .update = mv_hash_update,
952 .final = mv_hash_final,
953 .finup = mv_hash_finup,
954 .digest = mv_hash_digest,
955 .halg = {
956 .digestsize = SHA1_DIGEST_SIZE,
957 .base = {
958 .cra_name = "sha1",
959 .cra_driver_name = "mv-sha1",
960 .cra_priority = 300,
961 .cra_flags =
962 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
963 .cra_blocksize = SHA1_BLOCK_SIZE,
964 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
965 .cra_init = mv_cra_hash_sha1_init,
966 .cra_exit = mv_cra_hash_exit,
967 .cra_module = THIS_MODULE,
972 struct ahash_alg mv_hmac_sha1_alg = {
973 .init = mv_hash_init,
974 .update = mv_hash_update,
975 .final = mv_hash_final,
976 .finup = mv_hash_finup,
977 .digest = mv_hash_digest,
978 .setkey = mv_hash_setkey,
979 .halg = {
980 .digestsize = SHA1_DIGEST_SIZE,
981 .base = {
982 .cra_name = "hmac(sha1)",
983 .cra_driver_name = "mv-hmac-sha1",
984 .cra_priority = 300,
985 .cra_flags =
986 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
987 .cra_blocksize = SHA1_BLOCK_SIZE,
988 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
989 .cra_init = mv_cra_hash_hmac_sha1_init,
990 .cra_exit = mv_cra_hash_exit,
991 .cra_module = THIS_MODULE,
996 static int mv_probe(struct platform_device *pdev)
998 struct crypto_priv *cp;
999 struct resource *res;
1000 int irq;
1001 int ret;
1003 if (cpg) {
1004 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1005 return -EEXIST;
1008 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1009 if (!res)
1010 return -ENXIO;
1012 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1013 if (!cp)
1014 return -ENOMEM;
1016 spin_lock_init(&cp->lock);
1017 crypto_init_queue(&cp->queue, 50);
1018 cp->reg = ioremap(res->start, resource_size(res));
1019 if (!cp->reg) {
1020 ret = -ENOMEM;
1021 goto err;
1024 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1025 if (!res) {
1026 ret = -ENXIO;
1027 goto err_unmap_reg;
1029 cp->sram_size = resource_size(res);
1030 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1031 cp->sram = ioremap(res->start, cp->sram_size);
1032 if (!cp->sram) {
1033 ret = -ENOMEM;
1034 goto err_unmap_reg;
1037 irq = platform_get_irq(pdev, 0);
1038 if (irq < 0 || irq == NO_IRQ) {
1039 ret = irq;
1040 goto err_unmap_sram;
1042 cp->irq = irq;
1044 platform_set_drvdata(pdev, cp);
1045 cpg = cp;
1047 cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1048 if (IS_ERR(cp->queue_th)) {
1049 ret = PTR_ERR(cp->queue_th);
1050 goto err_unmap_sram;
1053 ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1054 cp);
1055 if (ret)
1056 goto err_thread;
1058 writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1059 writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1061 ret = crypto_register_alg(&mv_aes_alg_ecb);
1062 if (ret)
1063 goto err_irq;
1065 ret = crypto_register_alg(&mv_aes_alg_cbc);
1066 if (ret)
1067 goto err_unreg_ecb;
1069 ret = crypto_register_ahash(&mv_sha1_alg);
1070 if (ret == 0)
1071 cpg->has_sha1 = 1;
1072 else
1073 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1075 ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1076 if (ret == 0) {
1077 cpg->has_hmac_sha1 = 1;
1078 } else {
1079 printk(KERN_WARNING MV_CESA
1080 "Could not register hmac-sha1 driver\n");
1083 return 0;
1084 err_unreg_ecb:
1085 crypto_unregister_alg(&mv_aes_alg_ecb);
1086 err_irq:
1087 free_irq(irq, cp);
1088 err_thread:
1089 kthread_stop(cp->queue_th);
1090 err_unmap_sram:
1091 iounmap(cp->sram);
1092 err_unmap_reg:
1093 iounmap(cp->reg);
1094 err:
1095 kfree(cp);
1096 cpg = NULL;
1097 platform_set_drvdata(pdev, NULL);
1098 return ret;
1101 static int mv_remove(struct platform_device *pdev)
1103 struct crypto_priv *cp = platform_get_drvdata(pdev);
1105 crypto_unregister_alg(&mv_aes_alg_ecb);
1106 crypto_unregister_alg(&mv_aes_alg_cbc);
1107 if (cp->has_sha1)
1108 crypto_unregister_ahash(&mv_sha1_alg);
1109 if (cp->has_hmac_sha1)
1110 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1111 kthread_stop(cp->queue_th);
1112 free_irq(cp->irq, cp);
1113 memset(cp->sram, 0, cp->sram_size);
1114 iounmap(cp->sram);
1115 iounmap(cp->reg);
1116 kfree(cp);
1117 cpg = NULL;
1118 return 0;
1121 static struct platform_driver marvell_crypto = {
1122 .probe = mv_probe,
1123 .remove = mv_remove,
1124 .driver = {
1125 .owner = THIS_MODULE,
1126 .name = "mv_crypto",
1129 MODULE_ALIAS("platform:mv_crypto");
1131 static int __init mv_crypto_init(void)
1133 return platform_driver_register(&marvell_crypto);
1135 module_init(mv_crypto_init);
1137 static void __exit mv_crypto_exit(void)
1139 platform_driver_unregister(&marvell_crypto);
1141 module_exit(mv_crypto_exit);
1143 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1144 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1145 MODULE_LICENSE("GPL");