GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / char / rtc.c
blob97e042d34f6d4a4b90c4698412625d71e8df202b
1 /*
2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
51 * 1.12b David John: Remove calls to the BKL.
54 #define RTC_VERSION "1.12b"
57 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 * design of the RTC, we don't want two different things trying to
60 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 * this driver.)
64 #include <linux/interrupt.h>
65 #include <linux/module.h>
66 #include <linux/kernel.h>
67 #include <linux/types.h>
68 #include <linux/miscdevice.h>
69 #include <linux/ioport.h>
70 #include <linux/fcntl.h>
71 #include <linux/mc146818rtc.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/proc_fs.h>
75 #include <linux/seq_file.h>
76 #include <linux/spinlock.h>
77 #include <linux/sched.h>
78 #include <linux/sysctl.h>
79 #include <linux/wait.h>
80 #include <linux/bcd.h>
81 #include <linux/delay.h>
82 #include <linux/uaccess.h>
84 #include <asm/current.h>
85 #include <asm/system.h>
87 #ifdef CONFIG_X86
88 #include <asm/hpet.h>
89 #endif
91 #ifdef CONFIG_SPARC32
92 #include <linux/of.h>
93 #include <linux/of_device.h>
94 #include <asm/io.h>
96 static unsigned long rtc_port;
97 static int rtc_irq;
98 #endif
100 #ifdef CONFIG_HPET_EMULATE_RTC
101 #undef RTC_IRQ
102 #endif
104 #ifdef RTC_IRQ
105 static int rtc_has_irq = 1;
106 #endif
108 #ifndef CONFIG_HPET_EMULATE_RTC
109 #define is_hpet_enabled() 0
110 #define hpet_set_alarm_time(hrs, min, sec) 0
111 #define hpet_set_periodic_freq(arg) 0
112 #define hpet_mask_rtc_irq_bit(arg) 0
113 #define hpet_set_rtc_irq_bit(arg) 0
114 #define hpet_rtc_timer_init() do { } while (0)
115 #define hpet_rtc_dropped_irq() 0
116 #define hpet_register_irq_handler(h) ({ 0; })
117 #define hpet_unregister_irq_handler(h) ({ 0; })
118 #ifdef RTC_IRQ
119 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
121 return 0;
123 #endif
124 #endif
127 * We sponge a minor off of the misc major. No need slurping
128 * up another valuable major dev number for this. If you add
129 * an ioctl, make sure you don't conflict with SPARC's RTC
130 * ioctls.
133 static struct fasync_struct *rtc_async_queue;
135 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
137 #ifdef RTC_IRQ
138 static void rtc_dropped_irq(unsigned long data);
140 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
141 #endif
143 static ssize_t rtc_read(struct file *file, char __user *buf,
144 size_t count, loff_t *ppos);
146 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
149 #ifdef RTC_IRQ
150 static unsigned int rtc_poll(struct file *file, poll_table *wait);
151 #endif
153 static void get_rtc_alm_time(struct rtc_time *alm_tm);
154 #ifdef RTC_IRQ
155 static void set_rtc_irq_bit_locked(unsigned char bit);
156 static void mask_rtc_irq_bit_locked(unsigned char bit);
158 static inline void set_rtc_irq_bit(unsigned char bit)
160 spin_lock_irq(&rtc_lock);
161 set_rtc_irq_bit_locked(bit);
162 spin_unlock_irq(&rtc_lock);
165 static void mask_rtc_irq_bit(unsigned char bit)
167 spin_lock_irq(&rtc_lock);
168 mask_rtc_irq_bit_locked(bit);
169 spin_unlock_irq(&rtc_lock);
171 #endif
173 #ifdef CONFIG_PROC_FS
174 static int rtc_proc_open(struct inode *inode, struct file *file);
175 #endif
178 * Bits in rtc_status. (6 bits of room for future expansion)
181 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
182 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186 * protected by the spin lock rtc_lock. However, ioctl can still disable the
187 * timer in rtc_status and then with del_timer after the interrupt has read
188 * rtc_status but before mod_timer is called, which would then reenable the
189 * timer (but you would need to have an awful timing before you'd trip on it)
191 static unsigned long rtc_status; /* bitmapped status byte. */
192 static unsigned long rtc_freq; /* Current periodic IRQ rate */
193 static unsigned long rtc_irq_data; /* our output to the world */
194 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
196 #ifdef RTC_IRQ
198 * rtc_task_lock nests inside rtc_lock.
200 static DEFINE_SPINLOCK(rtc_task_lock);
201 static rtc_task_t *rtc_callback;
202 #endif
205 * If this driver ever becomes modularised, it will be really nice
206 * to make the epoch retain its value across module reload...
209 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
211 static const unsigned char days_in_mo[] =
212 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
215 * Returns true if a clock update is in progress
217 static inline unsigned char rtc_is_updating(void)
219 unsigned long flags;
220 unsigned char uip;
222 spin_lock_irqsave(&rtc_lock, flags);
223 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
224 spin_unlock_irqrestore(&rtc_lock, flags);
225 return uip;
228 #ifdef RTC_IRQ
230 static irqreturn_t rtc_interrupt(int irq, void *dev_id)
233 * Can be an alarm interrupt, update complete interrupt,
234 * or a periodic interrupt. We store the status in the
235 * low byte and the number of interrupts received since
236 * the last read in the remainder of rtc_irq_data.
239 spin_lock(&rtc_lock);
240 rtc_irq_data += 0x100;
241 rtc_irq_data &= ~0xff;
242 if (is_hpet_enabled()) {
244 * In this case it is HPET RTC interrupt handler
245 * calling us, with the interrupt information
246 * passed as arg1, instead of irq.
248 rtc_irq_data |= (unsigned long)irq & 0xF0;
249 } else {
250 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
253 if (rtc_status & RTC_TIMER_ON)
254 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
256 spin_unlock(&rtc_lock);
258 /* Now do the rest of the actions */
259 spin_lock(&rtc_task_lock);
260 if (rtc_callback)
261 rtc_callback->func(rtc_callback->private_data);
262 spin_unlock(&rtc_task_lock);
263 wake_up_interruptible(&rtc_wait);
265 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
267 return IRQ_HANDLED;
269 #endif
272 * sysctl-tuning infrastructure.
274 static ctl_table rtc_table[] = {
276 .procname = "max-user-freq",
277 .data = &rtc_max_user_freq,
278 .maxlen = sizeof(int),
279 .mode = 0644,
280 .proc_handler = proc_dointvec,
285 static ctl_table rtc_root[] = {
287 .procname = "rtc",
288 .mode = 0555,
289 .child = rtc_table,
294 static ctl_table dev_root[] = {
296 .procname = "dev",
297 .mode = 0555,
298 .child = rtc_root,
303 static struct ctl_table_header *sysctl_header;
305 static int __init init_sysctl(void)
307 sysctl_header = register_sysctl_table(dev_root);
308 return 0;
311 static void __exit cleanup_sysctl(void)
313 unregister_sysctl_table(sysctl_header);
317 * Now all the various file operations that we export.
320 static ssize_t rtc_read(struct file *file, char __user *buf,
321 size_t count, loff_t *ppos)
323 #ifndef RTC_IRQ
324 return -EIO;
325 #else
326 DECLARE_WAITQUEUE(wait, current);
327 unsigned long data;
328 ssize_t retval;
330 if (rtc_has_irq == 0)
331 return -EIO;
334 * Historically this function used to assume that sizeof(unsigned long)
335 * is the same in userspace and kernelspace. This lead to problems
336 * for configurations with multiple ABIs such a the MIPS o32 and 64
337 * ABIs supported on the same kernel. So now we support read of both
338 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
339 * userspace ABI.
341 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
342 return -EINVAL;
344 add_wait_queue(&rtc_wait, &wait);
346 do {
347 /* First make it right. Then make it fast. Putting this whole
348 * block within the parentheses of a while would be too
349 * confusing. And no, xchg() is not the answer. */
351 __set_current_state(TASK_INTERRUPTIBLE);
353 spin_lock_irq(&rtc_lock);
354 data = rtc_irq_data;
355 rtc_irq_data = 0;
356 spin_unlock_irq(&rtc_lock);
358 if (data != 0)
359 break;
361 if (file->f_flags & O_NONBLOCK) {
362 retval = -EAGAIN;
363 goto out;
365 if (signal_pending(current)) {
366 retval = -ERESTARTSYS;
367 goto out;
369 schedule();
370 } while (1);
372 if (count == sizeof(unsigned int)) {
373 retval = put_user(data,
374 (unsigned int __user *)buf) ?: sizeof(int);
375 } else {
376 retval = put_user(data,
377 (unsigned long __user *)buf) ?: sizeof(long);
379 if (!retval)
380 retval = count;
381 out:
382 __set_current_state(TASK_RUNNING);
383 remove_wait_queue(&rtc_wait, &wait);
385 return retval;
386 #endif
389 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
391 struct rtc_time wtime;
393 #ifdef RTC_IRQ
394 if (rtc_has_irq == 0) {
395 switch (cmd) {
396 case RTC_AIE_OFF:
397 case RTC_AIE_ON:
398 case RTC_PIE_OFF:
399 case RTC_PIE_ON:
400 case RTC_UIE_OFF:
401 case RTC_UIE_ON:
402 case RTC_IRQP_READ:
403 case RTC_IRQP_SET:
404 return -EINVAL;
407 #endif
409 switch (cmd) {
410 #ifdef RTC_IRQ
411 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
413 mask_rtc_irq_bit(RTC_AIE);
414 return 0;
416 case RTC_AIE_ON: /* Allow alarm interrupts. */
418 set_rtc_irq_bit(RTC_AIE);
419 return 0;
421 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
423 /* can be called from isr via rtc_control() */
424 unsigned long flags;
426 spin_lock_irqsave(&rtc_lock, flags);
427 mask_rtc_irq_bit_locked(RTC_PIE);
428 if (rtc_status & RTC_TIMER_ON) {
429 rtc_status &= ~RTC_TIMER_ON;
430 del_timer(&rtc_irq_timer);
432 spin_unlock_irqrestore(&rtc_lock, flags);
434 return 0;
436 case RTC_PIE_ON: /* Allow periodic ints */
438 /* can be called from isr via rtc_control() */
439 unsigned long flags;
442 * We don't really want Joe User enabling more
443 * than 64Hz of interrupts on a multi-user machine.
445 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
446 (!capable(CAP_SYS_RESOURCE)))
447 return -EACCES;
449 spin_lock_irqsave(&rtc_lock, flags);
450 if (!(rtc_status & RTC_TIMER_ON)) {
451 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
452 2*HZ/100);
453 rtc_status |= RTC_TIMER_ON;
455 set_rtc_irq_bit_locked(RTC_PIE);
456 spin_unlock_irqrestore(&rtc_lock, flags);
458 return 0;
460 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
462 mask_rtc_irq_bit(RTC_UIE);
463 return 0;
465 case RTC_UIE_ON: /* Allow ints for RTC updates. */
467 set_rtc_irq_bit(RTC_UIE);
468 return 0;
470 #endif
471 case RTC_ALM_READ: /* Read the present alarm time */
474 * This returns a struct rtc_time. Reading >= 0xc0
475 * means "don't care" or "match all". Only the tm_hour,
476 * tm_min, and tm_sec values are filled in.
478 memset(&wtime, 0, sizeof(struct rtc_time));
479 get_rtc_alm_time(&wtime);
480 break;
482 case RTC_ALM_SET: /* Store a time into the alarm */
485 * This expects a struct rtc_time. Writing 0xff means
486 * "don't care" or "match all". Only the tm_hour,
487 * tm_min and tm_sec are used.
489 unsigned char hrs, min, sec;
490 struct rtc_time alm_tm;
492 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
493 sizeof(struct rtc_time)))
494 return -EFAULT;
496 hrs = alm_tm.tm_hour;
497 min = alm_tm.tm_min;
498 sec = alm_tm.tm_sec;
500 spin_lock_irq(&rtc_lock);
501 if (hpet_set_alarm_time(hrs, min, sec)) {
503 * Fallthru and set alarm time in CMOS too,
504 * so that we will get proper value in RTC_ALM_READ
507 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
508 RTC_ALWAYS_BCD) {
509 if (sec < 60)
510 sec = bin2bcd(sec);
511 else
512 sec = 0xff;
514 if (min < 60)
515 min = bin2bcd(min);
516 else
517 min = 0xff;
519 if (hrs < 24)
520 hrs = bin2bcd(hrs);
521 else
522 hrs = 0xff;
524 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
525 CMOS_WRITE(min, RTC_MINUTES_ALARM);
526 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
527 spin_unlock_irq(&rtc_lock);
529 return 0;
531 case RTC_RD_TIME: /* Read the time/date from RTC */
533 memset(&wtime, 0, sizeof(struct rtc_time));
534 rtc_get_rtc_time(&wtime);
535 break;
537 case RTC_SET_TIME: /* Set the RTC */
539 struct rtc_time rtc_tm;
540 unsigned char mon, day, hrs, min, sec, leap_yr;
541 unsigned char save_control, save_freq_select;
542 unsigned int yrs;
543 #ifdef CONFIG_MACH_DECSTATION
544 unsigned int real_yrs;
545 #endif
547 if (!capable(CAP_SYS_TIME))
548 return -EACCES;
550 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
551 sizeof(struct rtc_time)))
552 return -EFAULT;
554 yrs = rtc_tm.tm_year + 1900;
555 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
556 day = rtc_tm.tm_mday;
557 hrs = rtc_tm.tm_hour;
558 min = rtc_tm.tm_min;
559 sec = rtc_tm.tm_sec;
561 if (yrs < 1970)
562 return -EINVAL;
564 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
566 if ((mon > 12) || (day == 0))
567 return -EINVAL;
569 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
570 return -EINVAL;
572 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
573 return -EINVAL;
575 yrs -= epoch;
576 if (yrs > 255) /* They are unsigned */
577 return -EINVAL;
579 spin_lock_irq(&rtc_lock);
580 #ifdef CONFIG_MACH_DECSTATION
581 real_yrs = yrs;
582 yrs = 72;
585 * We want to keep the year set to 73 until March
586 * for non-leap years, so that Feb, 29th is handled
587 * correctly.
589 if (!leap_yr && mon < 3) {
590 real_yrs--;
591 yrs = 73;
593 #endif
594 /* These limits and adjustments are independent of
595 * whether the chip is in binary mode or not.
597 if (yrs > 169) {
598 spin_unlock_irq(&rtc_lock);
599 return -EINVAL;
601 if (yrs >= 100)
602 yrs -= 100;
604 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
605 || RTC_ALWAYS_BCD) {
606 sec = bin2bcd(sec);
607 min = bin2bcd(min);
608 hrs = bin2bcd(hrs);
609 day = bin2bcd(day);
610 mon = bin2bcd(mon);
611 yrs = bin2bcd(yrs);
614 save_control = CMOS_READ(RTC_CONTROL);
615 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
616 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
617 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
619 #ifdef CONFIG_MACH_DECSTATION
620 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
621 #endif
622 CMOS_WRITE(yrs, RTC_YEAR);
623 CMOS_WRITE(mon, RTC_MONTH);
624 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
625 CMOS_WRITE(hrs, RTC_HOURS);
626 CMOS_WRITE(min, RTC_MINUTES);
627 CMOS_WRITE(sec, RTC_SECONDS);
629 CMOS_WRITE(save_control, RTC_CONTROL);
630 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
632 spin_unlock_irq(&rtc_lock);
633 return 0;
635 #ifdef RTC_IRQ
636 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
638 return put_user(rtc_freq, (unsigned long __user *)arg);
640 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
642 int tmp = 0;
643 unsigned char val;
644 /* can be called from isr via rtc_control() */
645 unsigned long flags;
648 * The max we can do is 8192Hz.
650 if ((arg < 2) || (arg > 8192))
651 return -EINVAL;
653 * We don't really want Joe User generating more
654 * than 64Hz of interrupts on a multi-user machine.
656 if (!kernel && (arg > rtc_max_user_freq) &&
657 !capable(CAP_SYS_RESOURCE))
658 return -EACCES;
660 while (arg > (1<<tmp))
661 tmp++;
664 * Check that the input was really a power of 2.
666 if (arg != (1<<tmp))
667 return -EINVAL;
669 rtc_freq = arg;
671 spin_lock_irqsave(&rtc_lock, flags);
672 if (hpet_set_periodic_freq(arg)) {
673 spin_unlock_irqrestore(&rtc_lock, flags);
674 return 0;
677 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
678 val |= (16 - tmp);
679 CMOS_WRITE(val, RTC_FREQ_SELECT);
680 spin_unlock_irqrestore(&rtc_lock, flags);
681 return 0;
683 #endif
684 case RTC_EPOCH_READ: /* Read the epoch. */
686 return put_user(epoch, (unsigned long __user *)arg);
688 case RTC_EPOCH_SET: /* Set the epoch. */
691 * There were no RTC clocks before 1900.
693 if (arg < 1900)
694 return -EINVAL;
696 if (!capable(CAP_SYS_TIME))
697 return -EACCES;
699 epoch = arg;
700 return 0;
702 default:
703 return -ENOTTY;
705 return copy_to_user((void __user *)arg,
706 &wtime, sizeof wtime) ? -EFAULT : 0;
709 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
711 long ret;
712 ret = rtc_do_ioctl(cmd, arg, 0);
713 return ret;
717 * We enforce only one user at a time here with the open/close.
718 * Also clear the previous interrupt data on an open, and clean
719 * up things on a close.
721 static int rtc_open(struct inode *inode, struct file *file)
723 spin_lock_irq(&rtc_lock);
725 if (rtc_status & RTC_IS_OPEN)
726 goto out_busy;
728 rtc_status |= RTC_IS_OPEN;
730 rtc_irq_data = 0;
731 spin_unlock_irq(&rtc_lock);
732 return 0;
734 out_busy:
735 spin_unlock_irq(&rtc_lock);
736 return -EBUSY;
739 static int rtc_fasync(int fd, struct file *filp, int on)
741 return fasync_helper(fd, filp, on, &rtc_async_queue);
744 static int rtc_release(struct inode *inode, struct file *file)
746 #ifdef RTC_IRQ
747 unsigned char tmp;
749 if (rtc_has_irq == 0)
750 goto no_irq;
753 * Turn off all interrupts once the device is no longer
754 * in use, and clear the data.
757 spin_lock_irq(&rtc_lock);
758 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
759 tmp = CMOS_READ(RTC_CONTROL);
760 tmp &= ~RTC_PIE;
761 tmp &= ~RTC_AIE;
762 tmp &= ~RTC_UIE;
763 CMOS_WRITE(tmp, RTC_CONTROL);
764 CMOS_READ(RTC_INTR_FLAGS);
766 if (rtc_status & RTC_TIMER_ON) {
767 rtc_status &= ~RTC_TIMER_ON;
768 del_timer(&rtc_irq_timer);
770 spin_unlock_irq(&rtc_lock);
772 no_irq:
773 #endif
775 spin_lock_irq(&rtc_lock);
776 rtc_irq_data = 0;
777 rtc_status &= ~RTC_IS_OPEN;
778 spin_unlock_irq(&rtc_lock);
780 return 0;
783 #ifdef RTC_IRQ
784 static unsigned int rtc_poll(struct file *file, poll_table *wait)
786 unsigned long l;
788 if (rtc_has_irq == 0)
789 return 0;
791 poll_wait(file, &rtc_wait, wait);
793 spin_lock_irq(&rtc_lock);
794 l = rtc_irq_data;
795 spin_unlock_irq(&rtc_lock);
797 if (l != 0)
798 return POLLIN | POLLRDNORM;
799 return 0;
801 #endif
803 int rtc_register(rtc_task_t *task)
805 #ifndef RTC_IRQ
806 return -EIO;
807 #else
808 if (task == NULL || task->func == NULL)
809 return -EINVAL;
810 spin_lock_irq(&rtc_lock);
811 if (rtc_status & RTC_IS_OPEN) {
812 spin_unlock_irq(&rtc_lock);
813 return -EBUSY;
815 spin_lock(&rtc_task_lock);
816 if (rtc_callback) {
817 spin_unlock(&rtc_task_lock);
818 spin_unlock_irq(&rtc_lock);
819 return -EBUSY;
821 rtc_status |= RTC_IS_OPEN;
822 rtc_callback = task;
823 spin_unlock(&rtc_task_lock);
824 spin_unlock_irq(&rtc_lock);
825 return 0;
826 #endif
828 EXPORT_SYMBOL(rtc_register);
830 int rtc_unregister(rtc_task_t *task)
832 #ifndef RTC_IRQ
833 return -EIO;
834 #else
835 unsigned char tmp;
837 spin_lock_irq(&rtc_lock);
838 spin_lock(&rtc_task_lock);
839 if (rtc_callback != task) {
840 spin_unlock(&rtc_task_lock);
841 spin_unlock_irq(&rtc_lock);
842 return -ENXIO;
844 rtc_callback = NULL;
846 /* disable controls */
847 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
848 tmp = CMOS_READ(RTC_CONTROL);
849 tmp &= ~RTC_PIE;
850 tmp &= ~RTC_AIE;
851 tmp &= ~RTC_UIE;
852 CMOS_WRITE(tmp, RTC_CONTROL);
853 CMOS_READ(RTC_INTR_FLAGS);
855 if (rtc_status & RTC_TIMER_ON) {
856 rtc_status &= ~RTC_TIMER_ON;
857 del_timer(&rtc_irq_timer);
859 rtc_status &= ~RTC_IS_OPEN;
860 spin_unlock(&rtc_task_lock);
861 spin_unlock_irq(&rtc_lock);
862 return 0;
863 #endif
865 EXPORT_SYMBOL(rtc_unregister);
867 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
869 #ifndef RTC_IRQ
870 return -EIO;
871 #else
872 unsigned long flags;
873 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
874 return -EINVAL;
875 spin_lock_irqsave(&rtc_task_lock, flags);
876 if (rtc_callback != task) {
877 spin_unlock_irqrestore(&rtc_task_lock, flags);
878 return -ENXIO;
880 spin_unlock_irqrestore(&rtc_task_lock, flags);
881 return rtc_do_ioctl(cmd, arg, 1);
882 #endif
884 EXPORT_SYMBOL(rtc_control);
887 * The various file operations we support.
890 static const struct file_operations rtc_fops = {
891 .owner = THIS_MODULE,
892 .llseek = no_llseek,
893 .read = rtc_read,
894 #ifdef RTC_IRQ
895 .poll = rtc_poll,
896 #endif
897 .unlocked_ioctl = rtc_ioctl,
898 .open = rtc_open,
899 .release = rtc_release,
900 .fasync = rtc_fasync,
903 static struct miscdevice rtc_dev = {
904 .minor = RTC_MINOR,
905 .name = "rtc",
906 .fops = &rtc_fops,
909 #ifdef CONFIG_PROC_FS
910 static const struct file_operations rtc_proc_fops = {
911 .owner = THIS_MODULE,
912 .open = rtc_proc_open,
913 .read = seq_read,
914 .llseek = seq_lseek,
915 .release = single_release,
917 #endif
919 static resource_size_t rtc_size;
921 static struct resource * __init rtc_request_region(resource_size_t size)
923 struct resource *r;
925 if (RTC_IOMAPPED)
926 r = request_region(RTC_PORT(0), size, "rtc");
927 else
928 r = request_mem_region(RTC_PORT(0), size, "rtc");
930 if (r)
931 rtc_size = size;
933 return r;
936 static void rtc_release_region(void)
938 if (RTC_IOMAPPED)
939 release_region(RTC_PORT(0), rtc_size);
940 else
941 release_mem_region(RTC_PORT(0), rtc_size);
944 static int __init rtc_init(void)
946 #ifdef CONFIG_PROC_FS
947 struct proc_dir_entry *ent;
948 #endif
949 #if defined(__alpha__) || defined(__mips__)
950 unsigned int year, ctrl;
951 char *guess = NULL;
952 #endif
953 #ifdef CONFIG_SPARC32
954 struct device_node *ebus_dp;
955 struct platform_device *op;
956 #else
957 void *r;
958 #ifdef RTC_IRQ
959 irq_handler_t rtc_int_handler_ptr;
960 #endif
961 #endif
963 #ifdef CONFIG_SPARC32
964 for_each_node_by_name(ebus_dp, "ebus") {
965 struct device_node *dp;
966 for (dp = ebus_dp; dp; dp = dp->sibling) {
967 if (!strcmp(dp->name, "rtc")) {
968 op = of_find_device_by_node(dp);
969 if (op) {
970 rtc_port = op->resource[0].start;
971 rtc_irq = op->irqs[0];
972 goto found;
977 rtc_has_irq = 0;
978 printk(KERN_ERR "rtc_init: no PC rtc found\n");
979 return -EIO;
981 found:
982 if (!rtc_irq) {
983 rtc_has_irq = 0;
984 goto no_irq;
987 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
988 (void *)&rtc_port)) {
989 rtc_has_irq = 0;
990 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
991 return -EIO;
993 no_irq:
994 #else
995 r = rtc_request_region(RTC_IO_EXTENT);
998 * If we've already requested a smaller range (for example, because
999 * PNPBIOS or ACPI told us how the device is configured), the request
1000 * above might fail because it's too big.
1002 * If so, request just the range we actually use.
1004 if (!r)
1005 r = rtc_request_region(RTC_IO_EXTENT_USED);
1006 if (!r) {
1007 #ifdef RTC_IRQ
1008 rtc_has_irq = 0;
1009 #endif
1010 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1011 (long)(RTC_PORT(0)));
1012 return -EIO;
1015 #ifdef RTC_IRQ
1016 if (is_hpet_enabled()) {
1017 int err;
1019 rtc_int_handler_ptr = hpet_rtc_interrupt;
1020 err = hpet_register_irq_handler(rtc_interrupt);
1021 if (err != 0) {
1022 printk(KERN_WARNING "hpet_register_irq_handler failed "
1023 "in rtc_init().");
1024 return err;
1026 } else {
1027 rtc_int_handler_ptr = rtc_interrupt;
1030 if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1031 "rtc", NULL)) {
1032 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1033 rtc_has_irq = 0;
1034 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1035 rtc_release_region();
1037 return -EIO;
1039 hpet_rtc_timer_init();
1041 #endif
1043 #endif /* CONFIG_SPARC32 vs. others */
1045 if (misc_register(&rtc_dev)) {
1046 #ifdef RTC_IRQ
1047 free_irq(RTC_IRQ, NULL);
1048 hpet_unregister_irq_handler(rtc_interrupt);
1049 rtc_has_irq = 0;
1050 #endif
1051 rtc_release_region();
1052 return -ENODEV;
1055 #ifdef CONFIG_PROC_FS
1056 ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1057 if (!ent)
1058 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1059 #endif
1061 #if defined(__alpha__) || defined(__mips__)
1062 rtc_freq = HZ;
1064 /* Each operating system on an Alpha uses its own epoch.
1065 Let's try to guess which one we are using now. */
1067 if (rtc_is_updating() != 0)
1068 msleep(20);
1070 spin_lock_irq(&rtc_lock);
1071 year = CMOS_READ(RTC_YEAR);
1072 ctrl = CMOS_READ(RTC_CONTROL);
1073 spin_unlock_irq(&rtc_lock);
1075 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1076 year = bcd2bin(year); /* This should never happen... */
1078 if (year < 20) {
1079 epoch = 2000;
1080 guess = "SRM (post-2000)";
1081 } else if (year >= 20 && year < 48) {
1082 epoch = 1980;
1083 guess = "ARC console";
1084 } else if (year >= 48 && year < 72) {
1085 epoch = 1952;
1086 guess = "Digital UNIX";
1087 #if defined(__mips__)
1088 } else if (year >= 72 && year < 74) {
1089 epoch = 2000;
1090 guess = "Digital DECstation";
1091 #else
1092 } else if (year >= 70) {
1093 epoch = 1900;
1094 guess = "Standard PC (1900)";
1095 #endif
1097 if (guess)
1098 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1099 guess, epoch);
1100 #endif
1101 #ifdef RTC_IRQ
1102 if (rtc_has_irq == 0)
1103 goto no_irq2;
1105 spin_lock_irq(&rtc_lock);
1106 rtc_freq = 1024;
1107 if (!hpet_set_periodic_freq(rtc_freq)) {
1109 * Initialize periodic frequency to CMOS reset default,
1110 * which is 1024Hz
1112 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1113 RTC_FREQ_SELECT);
1115 spin_unlock_irq(&rtc_lock);
1116 no_irq2:
1117 #endif
1119 (void) init_sysctl();
1121 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1123 return 0;
1126 static void __exit rtc_exit(void)
1128 cleanup_sysctl();
1129 remove_proc_entry("driver/rtc", NULL);
1130 misc_deregister(&rtc_dev);
1132 #ifdef CONFIG_SPARC32
1133 if (rtc_has_irq)
1134 free_irq(rtc_irq, &rtc_port);
1135 #else
1136 rtc_release_region();
1137 #ifdef RTC_IRQ
1138 if (rtc_has_irq) {
1139 free_irq(RTC_IRQ, NULL);
1140 hpet_unregister_irq_handler(hpet_rtc_interrupt);
1142 #endif
1143 #endif /* CONFIG_SPARC32 */
1146 module_init(rtc_init);
1147 module_exit(rtc_exit);
1149 #ifdef RTC_IRQ
1151 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1152 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1153 * Since the interrupt handler doesn't get called, the IRQ status
1154 * byte doesn't get read, and the RTC stops generating interrupts.
1155 * A timer is set, and will call this function if/when that happens.
1156 * To get it out of this stalled state, we just read the status.
1157 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1158 * (You *really* shouldn't be trying to use a non-realtime system
1159 * for something that requires a steady > 1KHz signal anyways.)
1162 static void rtc_dropped_irq(unsigned long data)
1164 unsigned long freq;
1166 spin_lock_irq(&rtc_lock);
1168 if (hpet_rtc_dropped_irq()) {
1169 spin_unlock_irq(&rtc_lock);
1170 return;
1173 /* Just in case someone disabled the timer from behind our back... */
1174 if (rtc_status & RTC_TIMER_ON)
1175 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1177 rtc_irq_data += ((rtc_freq/HZ)<<8);
1178 rtc_irq_data &= ~0xff;
1179 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1181 freq = rtc_freq;
1183 spin_unlock_irq(&rtc_lock);
1185 if (printk_ratelimit()) {
1186 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1187 freq);
1190 /* Now we have new data */
1191 wake_up_interruptible(&rtc_wait);
1193 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1195 #endif
1197 #ifdef CONFIG_PROC_FS
1199 * Info exported via "/proc/driver/rtc".
1202 static int rtc_proc_show(struct seq_file *seq, void *v)
1204 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1205 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1206 struct rtc_time tm;
1207 unsigned char batt, ctrl;
1208 unsigned long freq;
1210 spin_lock_irq(&rtc_lock);
1211 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1212 ctrl = CMOS_READ(RTC_CONTROL);
1213 freq = rtc_freq;
1214 spin_unlock_irq(&rtc_lock);
1217 rtc_get_rtc_time(&tm);
1220 * There is no way to tell if the luser has the RTC set for local
1221 * time or for Universal Standard Time (GMT). Probably local though.
1223 seq_printf(seq,
1224 "rtc_time\t: %02d:%02d:%02d\n"
1225 "rtc_date\t: %04d-%02d-%02d\n"
1226 "rtc_epoch\t: %04lu\n",
1227 tm.tm_hour, tm.tm_min, tm.tm_sec,
1228 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1230 get_rtc_alm_time(&tm);
1233 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1234 * match any value for that particular field. Values that are
1235 * greater than a valid time, but less than 0xc0 shouldn't appear.
1237 seq_puts(seq, "alarm\t\t: ");
1238 if (tm.tm_hour <= 24)
1239 seq_printf(seq, "%02d:", tm.tm_hour);
1240 else
1241 seq_puts(seq, "**:");
1243 if (tm.tm_min <= 59)
1244 seq_printf(seq, "%02d:", tm.tm_min);
1245 else
1246 seq_puts(seq, "**:");
1248 if (tm.tm_sec <= 59)
1249 seq_printf(seq, "%02d\n", tm.tm_sec);
1250 else
1251 seq_puts(seq, "**\n");
1253 seq_printf(seq,
1254 "DST_enable\t: %s\n"
1255 "BCD\t\t: %s\n"
1256 "24hr\t\t: %s\n"
1257 "square_wave\t: %s\n"
1258 "alarm_IRQ\t: %s\n"
1259 "update_IRQ\t: %s\n"
1260 "periodic_IRQ\t: %s\n"
1261 "periodic_freq\t: %ld\n"
1262 "batt_status\t: %s\n",
1263 YN(RTC_DST_EN),
1264 NY(RTC_DM_BINARY),
1265 YN(RTC_24H),
1266 YN(RTC_SQWE),
1267 YN(RTC_AIE),
1268 YN(RTC_UIE),
1269 YN(RTC_PIE),
1270 freq,
1271 batt ? "okay" : "dead");
1273 return 0;
1274 #undef YN
1275 #undef NY
1278 static int rtc_proc_open(struct inode *inode, struct file *file)
1280 return single_open(file, rtc_proc_show, NULL);
1282 #endif
1284 static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1286 unsigned long uip_watchdog = jiffies, flags;
1287 unsigned char ctrl;
1288 #ifdef CONFIG_MACH_DECSTATION
1289 unsigned int real_year;
1290 #endif
1293 * read RTC once any update in progress is done. The update
1294 * can take just over 2ms. We wait 20ms. There is no need to
1295 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1296 * If you need to know *exactly* when a second has started, enable
1297 * periodic update complete interrupts, (via ioctl) and then
1298 * immediately read /dev/rtc which will block until you get the IRQ.
1299 * Once the read clears, read the RTC time (again via ioctl). Easy.
1302 while (rtc_is_updating() != 0 &&
1303 time_before(jiffies, uip_watchdog + 2*HZ/100))
1304 cpu_relax();
1307 * Only the values that we read from the RTC are set. We leave
1308 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1309 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1310 * only updated by the RTC when initially set to a non-zero value.
1312 spin_lock_irqsave(&rtc_lock, flags);
1313 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1314 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1315 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1316 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1317 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1318 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1319 /* Only set from 2.6.16 onwards */
1320 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1322 #ifdef CONFIG_MACH_DECSTATION
1323 real_year = CMOS_READ(RTC_DEC_YEAR);
1324 #endif
1325 ctrl = CMOS_READ(RTC_CONTROL);
1326 spin_unlock_irqrestore(&rtc_lock, flags);
1328 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1329 rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1330 rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1331 rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1332 rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1333 rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1334 rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1335 rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1338 #ifdef CONFIG_MACH_DECSTATION
1339 rtc_tm->tm_year += real_year - 72;
1340 #endif
1343 * Account for differences between how the RTC uses the values
1344 * and how they are defined in a struct rtc_time;
1346 rtc_tm->tm_year += epoch - 1900;
1347 if (rtc_tm->tm_year <= 69)
1348 rtc_tm->tm_year += 100;
1350 rtc_tm->tm_mon--;
1353 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1355 unsigned char ctrl;
1358 * Only the values that we read from the RTC are set. That
1359 * means only tm_hour, tm_min, and tm_sec.
1361 spin_lock_irq(&rtc_lock);
1362 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1363 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1364 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1365 ctrl = CMOS_READ(RTC_CONTROL);
1366 spin_unlock_irq(&rtc_lock);
1368 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1369 alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1370 alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1371 alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1375 #ifdef RTC_IRQ
1377 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1378 * Rumour has it that if you frob the interrupt enable/disable
1379 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1380 * ensure you actually start getting interrupts. Probably for
1381 * compatibility with older/broken chipset RTC implementations.
1382 * We also clear out any old irq data after an ioctl() that
1383 * meddles with the interrupt enable/disable bits.
1386 static void mask_rtc_irq_bit_locked(unsigned char bit)
1388 unsigned char val;
1390 if (hpet_mask_rtc_irq_bit(bit))
1391 return;
1392 val = CMOS_READ(RTC_CONTROL);
1393 val &= ~bit;
1394 CMOS_WRITE(val, RTC_CONTROL);
1395 CMOS_READ(RTC_INTR_FLAGS);
1397 rtc_irq_data = 0;
1400 static void set_rtc_irq_bit_locked(unsigned char bit)
1402 unsigned char val;
1404 if (hpet_set_rtc_irq_bit(bit))
1405 return;
1406 val = CMOS_READ(RTC_CONTROL);
1407 val |= bit;
1408 CMOS_WRITE(val, RTC_CONTROL);
1409 CMOS_READ(RTC_INTR_FLAGS);
1411 rtc_irq_data = 0;
1413 #endif
1415 MODULE_AUTHOR("Paul Gortmaker");
1416 MODULE_LICENSE("GPL");
1417 MODULE_ALIAS_MISCDEV(RTC_MINOR);