GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / char / random.c
blobcfff2f20b6ecc531e0640014fab2dbe517a75481
1 /*
2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
52 * Theory of operation
53 * ===================
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_input_randomness(unsigned int type, unsigned int code,
129 * unsigned int value);
130 * void add_interrupt_randomness(int irq);
132 * add_input_randomness() uses the input layer interrupt timing, as well as
133 * the event type information from the hardware.
135 * add_interrupt_randomness() uses the inter-interrupt timing as random
136 * inputs to the entropy pool. Note that not all interrupts are good
137 * sources of randomness! For example, the timer interrupts is not a
138 * good choice, because the periodicity of the interrupts is too
139 * regular, and hence predictable to an attacker. Disk interrupts are
140 * a better measure, since the timing of the disk interrupts are more
141 * unpredictable.
143 * All of these routines try to estimate how many bits of randomness a
144 * particular randomness source. They do this by keeping track of the
145 * first and second order deltas of the event timings.
147 * Ensuring unpredictability at system startup
148 * ============================================
150 * When any operating system starts up, it will go through a sequence
151 * of actions that are fairly predictable by an adversary, especially
152 * if the start-up does not involve interaction with a human operator.
153 * This reduces the actual number of bits of unpredictability in the
154 * entropy pool below the value in entropy_count. In order to
155 * counteract this effect, it helps to carry information in the
156 * entropy pool across shut-downs and start-ups. To do this, put the
157 * following lines an appropriate script which is run during the boot
158 * sequence:
160 * echo "Initializing random number generator..."
161 * random_seed=/var/run/random-seed
162 * # Carry a random seed from start-up to start-up
163 * # Load and then save the whole entropy pool
164 * if [ -f $random_seed ]; then
165 * cat $random_seed >/dev/urandom
166 * else
167 * touch $random_seed
168 * fi
169 * chmod 600 $random_seed
170 * dd if=/dev/urandom of=$random_seed count=1 bs=512
172 * and the following lines in an appropriate script which is run as
173 * the system is shutdown:
175 * # Carry a random seed from shut-down to start-up
176 * # Save the whole entropy pool
177 * echo "Saving random seed..."
178 * random_seed=/var/run/random-seed
179 * touch $random_seed
180 * chmod 600 $random_seed
181 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 * For example, on most modern systems using the System V init
184 * scripts, such code fragments would be found in
185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
188 * Effectively, these commands cause the contents of the entropy pool
189 * to be saved at shut-down time and reloaded into the entropy pool at
190 * start-up. (The 'dd' in the addition to the bootup script is to
191 * make sure that /etc/random-seed is different for every start-up,
192 * even if the system crashes without executing rc.0.) Even with
193 * complete knowledge of the start-up activities, predicting the state
194 * of the entropy pool requires knowledge of the previous history of
195 * the system.
197 * Configuring the /dev/random driver under Linux
198 * ==============================================
200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201 * the /dev/mem major number (#1). So if your system does not have
202 * /dev/random and /dev/urandom created already, they can be created
203 * by using the commands:
205 * mknod /dev/random c 1 8
206 * mknod /dev/urandom c 1 9
208 * Acknowledgements:
209 * =================
211 * Ideas for constructing this random number generator were derived
212 * from Pretty Good Privacy's random number generator, and from private
213 * discussions with Phil Karn. Colin Plumb provided a faster random
214 * number generator, which speed up the mixing function of the entropy
215 * pool, taken from PGPfone. Dale Worley has also contributed many
216 * useful ideas and suggestions to improve this driver.
218 * Any flaws in the design are solely my responsibility, and should
219 * not be attributed to the Phil, Colin, or any of authors of PGP.
221 * Further background information on this topic may be obtained from
222 * RFC 1750, "Randomness Recommendations for Security", by Donald
223 * Eastlake, Steve Crocker, and Jeff Schiller.
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/mm.h>
240 #include <linux/spinlock.h>
241 #include <linux/percpu.h>
242 #include <linux/cryptohash.h>
243 #include <linux/fips.h>
245 #ifdef CONFIG_GENERIC_HARDIRQS
246 # include <linux/irq.h>
247 #endif
249 #include <asm/processor.h>
250 #include <asm/uaccess.h>
251 #include <asm/irq.h>
252 #include <asm/io.h>
255 * Configuration information
257 #define INPUT_POOL_WORDS 128
258 #define OUTPUT_POOL_WORDS 32
259 #define SEC_XFER_SIZE 512
260 #define EXTRACT_SIZE 10
263 * The minimum number of bits of entropy before we wake up a read on
264 * /dev/random. Should be enough to do a significant reseed.
266 static int random_read_wakeup_thresh = 64;
269 * If the entropy count falls under this number of bits, then we
270 * should wake up processes which are selecting or polling on write
271 * access to /dev/random.
273 static int random_write_wakeup_thresh = 128;
276 * When the input pool goes over trickle_thresh, start dropping most
277 * samples to avoid wasting CPU time and reduce lock contention.
280 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
282 static DEFINE_PER_CPU(int, trickle_count);
285 * A pool of size .poolwords is stirred with a primitive polynomial
286 * of degree .poolwords over GF(2). The taps for various sizes are
287 * defined below. They are chosen to be evenly spaced (minimum RMS
288 * distance from evenly spaced; the numbers in the comments are a
289 * scaled squared error sum) except for the last tap, which is 1 to
290 * get the twisting happening as fast as possible.
292 static struct poolinfo {
293 int poolwords;
294 int tap1, tap2, tap3, tap4, tap5;
295 } poolinfo_table[] = {
296 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
297 { 128, 103, 76, 51, 25, 1 },
298 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
299 { 32, 26, 20, 14, 7, 1 },
302 #define POOLBITS poolwords*32
303 #define POOLBYTES poolwords*4
306 * For the purposes of better mixing, we use the CRC-32 polynomial as
307 * well to make a twisted Generalized Feedback Shift Reigster
309 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
310 * Transactions on Modeling and Computer Simulation 2(3):179-194.
311 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
312 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
314 * Thanks to Colin Plumb for suggesting this.
316 * We have not analyzed the resultant polynomial to prove it primitive;
317 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
318 * of a random large-degree polynomial over GF(2) are more than large enough
319 * that periodicity is not a concern.
321 * The input hash is much less sensitive than the output hash. All
322 * that we want of it is that it be a good non-cryptographic hash;
323 * i.e. it not produce collisions when fed "random" data of the sort
324 * we expect to see. As long as the pool state differs for different
325 * inputs, we have preserved the input entropy and done a good job.
326 * The fact that an intelligent attacker can construct inputs that
327 * will produce controlled alterations to the pool's state is not
328 * important because we don't consider such inputs to contribute any
329 * randomness. The only property we need with respect to them is that
330 * the attacker can't increase his/her knowledge of the pool's state.
331 * Since all additions are reversible (knowing the final state and the
332 * input, you can reconstruct the initial state), if an attacker has
333 * any uncertainty about the initial state, he/she can only shuffle
334 * that uncertainty about, but never cause any collisions (which would
335 * decrease the uncertainty).
337 * The chosen system lets the state of the pool be (essentially) the input
338 * modulo the generator polymnomial. Now, for random primitive polynomials,
339 * this is a universal class of hash functions, meaning that the chance
340 * of a collision is limited by the attacker's knowledge of the generator
341 * polynomail, so if it is chosen at random, an attacker can never force
342 * a collision. Here, we use a fixed polynomial, but we *can* assume that
343 * ###--> it is unknown to the processes generating the input entropy. <-###
344 * Because of this important property, this is a good, collision-resistant
345 * hash; hash collisions will occur no more often than chance.
349 * Static global variables
351 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
352 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
353 static struct fasync_struct *fasync;
355 #define DEBUG_ENT(fmt, arg...) do {} while (0)
357 /**********************************************************************
359 * OS independent entropy store. Here are the functions which handle
360 * storing entropy in an entropy pool.
362 **********************************************************************/
364 struct entropy_store;
365 struct entropy_store {
366 /* read-only data: */
367 struct poolinfo *poolinfo;
368 __u32 *pool;
369 const char *name;
370 struct entropy_store *pull;
371 int limit;
373 /* read-write data: */
374 spinlock_t lock;
375 unsigned add_ptr;
376 int entropy_count;
377 int input_rotate;
378 __u8 last_data[EXTRACT_SIZE];
381 static __u32 input_pool_data[INPUT_POOL_WORDS];
382 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
383 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
385 static struct entropy_store input_pool = {
386 .poolinfo = &poolinfo_table[0],
387 .name = "input",
388 .limit = 1,
389 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
390 .pool = input_pool_data
393 static struct entropy_store blocking_pool = {
394 .poolinfo = &poolinfo_table[1],
395 .name = "blocking",
396 .limit = 1,
397 .pull = &input_pool,
398 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
399 .pool = blocking_pool_data
402 static struct entropy_store nonblocking_pool = {
403 .poolinfo = &poolinfo_table[1],
404 .name = "nonblocking",
405 .pull = &input_pool,
406 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
407 .pool = nonblocking_pool_data
411 * This function adds bytes into the entropy "pool". It does not
412 * update the entropy estimate. The caller should call
413 * credit_entropy_bits if this is appropriate.
415 * The pool is stirred with a primitive polynomial of the appropriate
416 * degree, and then twisted. We twist by three bits at a time because
417 * it's cheap to do so and helps slightly in the expected case where
418 * the entropy is concentrated in the low-order bits.
420 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
421 int nbytes, __u8 out[64])
423 static __u32 const twist_table[8] = {
424 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
425 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
426 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
427 int input_rotate;
428 int wordmask = r->poolinfo->poolwords - 1;
429 const char *bytes = in;
430 __u32 w;
431 unsigned long flags;
433 /* Taps are constant, so we can load them without holding r->lock. */
434 tap1 = r->poolinfo->tap1;
435 tap2 = r->poolinfo->tap2;
436 tap3 = r->poolinfo->tap3;
437 tap4 = r->poolinfo->tap4;
438 tap5 = r->poolinfo->tap5;
440 spin_lock_irqsave(&r->lock, flags);
441 input_rotate = r->input_rotate;
442 i = r->add_ptr;
444 /* mix one byte at a time to simplify size handling and churn faster */
445 while (nbytes--) {
446 w = rol32(*bytes++, input_rotate & 31);
447 i = (i - 1) & wordmask;
449 /* XOR in the various taps */
450 w ^= r->pool[i];
451 w ^= r->pool[(i + tap1) & wordmask];
452 w ^= r->pool[(i + tap2) & wordmask];
453 w ^= r->pool[(i + tap3) & wordmask];
454 w ^= r->pool[(i + tap4) & wordmask];
455 w ^= r->pool[(i + tap5) & wordmask];
457 /* Mix the result back in with a twist */
458 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
461 * Normally, we add 7 bits of rotation to the pool.
462 * At the beginning of the pool, add an extra 7 bits
463 * rotation, so that successive passes spread the
464 * input bits across the pool evenly.
466 input_rotate += i ? 7 : 14;
469 r->input_rotate = input_rotate;
470 r->add_ptr = i;
472 if (out)
473 for (j = 0; j < 16; j++)
474 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
476 spin_unlock_irqrestore(&r->lock, flags);
479 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
481 mix_pool_bytes_extract(r, in, bytes, NULL);
485 * Credit (or debit) the entropy store with n bits of entropy
487 static void credit_entropy_bits(struct entropy_store *r, int nbits)
489 unsigned long flags;
490 int entropy_count;
492 if (!nbits)
493 return;
495 spin_lock_irqsave(&r->lock, flags);
497 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
498 entropy_count = r->entropy_count;
499 entropy_count += nbits;
500 if (entropy_count < 0) {
501 DEBUG_ENT("negative entropy/overflow\n");
502 entropy_count = 0;
503 } else if (entropy_count > r->poolinfo->POOLBITS)
504 entropy_count = r->poolinfo->POOLBITS;
505 r->entropy_count = entropy_count;
507 /* should we wake readers? */
508 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
509 wake_up_interruptible(&random_read_wait);
510 kill_fasync(&fasync, SIGIO, POLL_IN);
512 spin_unlock_irqrestore(&r->lock, flags);
515 /*********************************************************************
517 * Entropy input management
519 *********************************************************************/
521 /* There is one of these per entropy source */
522 struct timer_rand_state {
523 cycles_t last_time;
524 long last_delta, last_delta2;
525 unsigned dont_count_entropy:1;
528 #ifndef CONFIG_GENERIC_HARDIRQS
530 static struct timer_rand_state *irq_timer_state[NR_IRQS];
532 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
534 return irq_timer_state[irq];
537 static void set_timer_rand_state(unsigned int irq,
538 struct timer_rand_state *state)
540 irq_timer_state[irq] = state;
543 #else
545 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
547 struct irq_desc *desc;
549 desc = irq_to_desc(irq);
551 return desc->timer_rand_state;
554 static void set_timer_rand_state(unsigned int irq,
555 struct timer_rand_state *state)
557 struct irq_desc *desc;
559 desc = irq_to_desc(irq);
561 desc->timer_rand_state = state;
563 #endif
565 static struct timer_rand_state input_timer_state;
568 * This function adds entropy to the entropy "pool" by using timing
569 * delays. It uses the timer_rand_state structure to make an estimate
570 * of how many bits of entropy this call has added to the pool.
572 * The number "num" is also added to the pool - it should somehow describe
573 * the type of event which just happened. This is currently 0-255 for
574 * keyboard scan codes, and 256 upwards for interrupts.
577 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
579 struct {
580 cycles_t cycles;
581 long jiffies;
582 unsigned num;
583 } sample;
584 long delta, delta2, delta3;
586 preempt_disable();
587 /* if over the trickle threshold, use only 1 in 4096 samples */
588 if (input_pool.entropy_count > trickle_thresh &&
589 (__get_cpu_var(trickle_count)++ & 0xfff))
590 goto out;
592 sample.jiffies = jiffies;
593 sample.cycles = get_cycles();
594 sample.num = num;
595 mix_pool_bytes(&input_pool, &sample, sizeof(sample));
598 * Calculate number of bits of randomness we probably added.
599 * We take into account the first, second and third-order deltas
600 * in order to make our estimate.
603 if (!state->dont_count_entropy) {
604 delta = sample.jiffies - state->last_time;
605 state->last_time = sample.jiffies;
607 delta2 = delta - state->last_delta;
608 state->last_delta = delta;
610 delta3 = delta2 - state->last_delta2;
611 state->last_delta2 = delta2;
613 if (delta < 0)
614 delta = -delta;
615 if (delta2 < 0)
616 delta2 = -delta2;
617 if (delta3 < 0)
618 delta3 = -delta3;
619 if (delta > delta2)
620 delta = delta2;
621 if (delta > delta3)
622 delta = delta3;
625 * delta is now minimum absolute delta.
626 * Round down by 1 bit on general principles,
627 * and limit entropy entimate to 12 bits.
629 credit_entropy_bits(&input_pool,
630 min_t(int, fls(delta>>1), 11));
632 out:
633 preempt_enable();
636 void add_input_randomness(unsigned int type, unsigned int code,
637 unsigned int value)
639 static unsigned char last_value;
641 /* ignore autorepeat and the like */
642 if (value == last_value)
643 return;
645 DEBUG_ENT("input event\n");
646 last_value = value;
647 add_timer_randomness(&input_timer_state,
648 (type << 4) ^ code ^ (code >> 4) ^ value);
650 EXPORT_SYMBOL_GPL(add_input_randomness);
652 void add_interrupt_randomness(int irq)
654 struct timer_rand_state *state;
656 state = get_timer_rand_state(irq);
658 if (state == NULL)
659 return;
661 DEBUG_ENT("irq event %d\n", irq);
662 add_timer_randomness(state, 0x100 + irq);
665 #ifdef CONFIG_BLOCK
666 void add_disk_randomness(struct gendisk *disk)
668 if (!disk || !disk->random)
669 return;
670 /* first major is 1, so we get >= 0x200 here */
671 DEBUG_ENT("disk event %d:%d\n",
672 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
674 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
676 #endif
678 /*********************************************************************
680 * Entropy extraction routines
682 *********************************************************************/
684 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
685 size_t nbytes, int min, int rsvd);
688 * This utility inline function is responsible for transfering entropy
689 * from the primary pool to the secondary extraction pool. We make
690 * sure we pull enough for a 'catastrophic reseed'.
692 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
694 __u32 tmp[OUTPUT_POOL_WORDS];
696 if (r->pull && r->entropy_count < nbytes * 8 &&
697 r->entropy_count < r->poolinfo->POOLBITS) {
698 /* If we're limited, always leave two wakeup worth's BITS */
699 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
700 int bytes = nbytes;
702 /* pull at least as many as BYTES as wakeup BITS */
703 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
704 /* but never more than the buffer size */
705 bytes = min_t(int, bytes, sizeof(tmp));
707 DEBUG_ENT("going to reseed %s with %d bits "
708 "(%d of %d requested)\n",
709 r->name, bytes * 8, nbytes * 8, r->entropy_count);
711 bytes = extract_entropy(r->pull, tmp, bytes,
712 random_read_wakeup_thresh / 8, rsvd);
713 mix_pool_bytes(r, tmp, bytes);
714 credit_entropy_bits(r, bytes*8);
719 * These functions extracts randomness from the "entropy pool", and
720 * returns it in a buffer.
722 * The min parameter specifies the minimum amount we can pull before
723 * failing to avoid races that defeat catastrophic reseeding while the
724 * reserved parameter indicates how much entropy we must leave in the
725 * pool after each pull to avoid starving other readers.
727 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
730 static size_t account(struct entropy_store *r, size_t nbytes, int min,
731 int reserved)
733 unsigned long flags;
735 /* Hold lock while accounting */
736 spin_lock_irqsave(&r->lock, flags);
738 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
739 DEBUG_ENT("trying to extract %d bits from %s\n",
740 nbytes * 8, r->name);
742 /* Can we pull enough? */
743 if (r->entropy_count / 8 < min + reserved) {
744 nbytes = 0;
745 } else {
746 /* If limited, never pull more than available */
747 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
748 nbytes = r->entropy_count/8 - reserved;
750 if (r->entropy_count / 8 >= nbytes + reserved)
751 r->entropy_count -= nbytes*8;
752 else
753 r->entropy_count = reserved;
755 if (r->entropy_count < random_write_wakeup_thresh) {
756 wake_up_interruptible(&random_write_wait);
757 kill_fasync(&fasync, SIGIO, POLL_OUT);
761 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
762 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
764 spin_unlock_irqrestore(&r->lock, flags);
766 return nbytes;
769 static void extract_buf(struct entropy_store *r, __u8 *out)
771 int i;
772 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
773 __u8 extract[64];
775 /* Generate a hash across the pool, 16 words (512 bits) at a time */
776 sha_init(hash);
777 for (i = 0; i < r->poolinfo->poolwords; i += 16)
778 sha_transform(hash, (__u8 *)(r->pool + i), workspace);
781 * We mix the hash back into the pool to prevent backtracking
782 * attacks (where the attacker knows the state of the pool
783 * plus the current outputs, and attempts to find previous
784 * ouputs), unless the hash function can be inverted. By
785 * mixing at least a SHA1 worth of hash data back, we make
786 * brute-forcing the feedback as hard as brute-forcing the
787 * hash.
789 mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
792 * To avoid duplicates, we atomically extract a portion of the
793 * pool while mixing, and hash one final time.
795 sha_transform(hash, extract, workspace);
796 memset(extract, 0, sizeof(extract));
797 memset(workspace, 0, sizeof(workspace));
800 * In case the hash function has some recognizable output
801 * pattern, we fold it in half. Thus, we always feed back
802 * twice as much data as we output.
804 hash[0] ^= hash[3];
805 hash[1] ^= hash[4];
806 hash[2] ^= rol32(hash[2], 16);
807 memcpy(out, hash, EXTRACT_SIZE);
808 memset(hash, 0, sizeof(hash));
811 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
812 size_t nbytes, int min, int reserved)
814 ssize_t ret = 0, i;
815 __u8 tmp[EXTRACT_SIZE];
816 unsigned long flags;
818 xfer_secondary_pool(r, nbytes);
819 nbytes = account(r, nbytes, min, reserved);
821 while (nbytes) {
822 extract_buf(r, tmp);
824 if (fips_enabled) {
825 spin_lock_irqsave(&r->lock, flags);
826 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
827 panic("Hardware RNG duplicated output!\n");
828 memcpy(r->last_data, tmp, EXTRACT_SIZE);
829 spin_unlock_irqrestore(&r->lock, flags);
831 i = min_t(int, nbytes, EXTRACT_SIZE);
832 memcpy(buf, tmp, i);
833 nbytes -= i;
834 buf += i;
835 ret += i;
838 /* Wipe data just returned from memory */
839 memset(tmp, 0, sizeof(tmp));
841 return ret;
844 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
845 size_t nbytes)
847 ssize_t ret = 0, i;
848 __u8 tmp[EXTRACT_SIZE];
850 xfer_secondary_pool(r, nbytes);
851 nbytes = account(r, nbytes, 0, 0);
853 while (nbytes) {
854 if (need_resched()) {
855 if (signal_pending(current)) {
856 if (ret == 0)
857 ret = -ERESTARTSYS;
858 break;
860 schedule();
863 extract_buf(r, tmp);
864 i = min_t(int, nbytes, EXTRACT_SIZE);
865 if (copy_to_user(buf, tmp, i)) {
866 ret = -EFAULT;
867 break;
870 nbytes -= i;
871 buf += i;
872 ret += i;
875 /* Wipe data just returned from memory */
876 memset(tmp, 0, sizeof(tmp));
878 return ret;
882 * This function is the exported kernel interface. It returns some
883 * number of good random numbers, suitable for seeding TCP sequence
884 * numbers, etc.
886 void get_random_bytes(void *buf, int nbytes)
888 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
890 EXPORT_SYMBOL(get_random_bytes);
893 * init_std_data - initialize pool with system data
895 * @r: pool to initialize
897 * This function clears the pool's entropy count and mixes some system
898 * data into the pool to prepare it for use. The pool is not cleared
899 * as that can only decrease the entropy in the pool.
901 static void init_std_data(struct entropy_store *r)
903 ktime_t now;
904 unsigned long flags;
906 spin_lock_irqsave(&r->lock, flags);
907 r->entropy_count = 0;
908 spin_unlock_irqrestore(&r->lock, flags);
910 now = ktime_get_real();
911 mix_pool_bytes(r, &now, sizeof(now));
912 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
915 static int rand_initialize(void)
917 init_std_data(&input_pool);
918 init_std_data(&blocking_pool);
919 init_std_data(&nonblocking_pool);
920 return 0;
922 module_init(rand_initialize);
924 void rand_initialize_irq(int irq)
926 struct timer_rand_state *state;
928 state = get_timer_rand_state(irq);
930 if (state)
931 return;
934 * If kzalloc returns null, we just won't use that entropy
935 * source.
937 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
938 if (state)
939 set_timer_rand_state(irq, state);
942 #ifdef CONFIG_BLOCK
943 void rand_initialize_disk(struct gendisk *disk)
945 struct timer_rand_state *state;
948 * If kzalloc returns null, we just won't use that entropy
949 * source.
951 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
952 if (state)
953 disk->random = state;
955 #endif
957 static ssize_t
958 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
960 ssize_t n, retval = 0, count = 0;
962 if (nbytes == 0)
963 return 0;
965 while (nbytes > 0) {
966 n = nbytes;
967 if (n > SEC_XFER_SIZE)
968 n = SEC_XFER_SIZE;
970 DEBUG_ENT("reading %d bits\n", n*8);
972 n = extract_entropy_user(&blocking_pool, buf, n);
974 DEBUG_ENT("read got %d bits (%d still needed)\n",
975 n*8, (nbytes-n)*8);
977 if (n == 0) {
978 if (file->f_flags & O_NONBLOCK) {
979 retval = -EAGAIN;
980 break;
983 DEBUG_ENT("sleeping?\n");
985 wait_event_interruptible(random_read_wait,
986 input_pool.entropy_count >=
987 random_read_wakeup_thresh);
989 DEBUG_ENT("awake\n");
991 if (signal_pending(current)) {
992 retval = -ERESTARTSYS;
993 break;
996 continue;
999 if (n < 0) {
1000 retval = n;
1001 break;
1003 count += n;
1004 buf += n;
1005 nbytes -= n;
1006 break; /* This break makes the device work */
1007 /* like a named pipe */
1010 return (count ? count : retval);
1013 static ssize_t
1014 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1016 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1019 static unsigned int
1020 random_poll(struct file *file, poll_table * wait)
1022 unsigned int mask;
1024 poll_wait(file, &random_read_wait, wait);
1025 poll_wait(file, &random_write_wait, wait);
1026 mask = 0;
1027 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1028 mask |= POLLIN | POLLRDNORM;
1029 if (input_pool.entropy_count < random_write_wakeup_thresh)
1030 mask |= POLLOUT | POLLWRNORM;
1031 return mask;
1034 static int
1035 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1037 size_t bytes;
1038 __u32 buf[16];
1039 const char __user *p = buffer;
1041 while (count > 0) {
1042 bytes = min(count, sizeof(buf));
1043 if (copy_from_user(&buf, p, bytes))
1044 return -EFAULT;
1046 count -= bytes;
1047 p += bytes;
1049 mix_pool_bytes(r, buf, bytes);
1050 cond_resched();
1053 return 0;
1056 static ssize_t random_write(struct file *file, const char __user *buffer,
1057 size_t count, loff_t *ppos)
1059 size_t ret;
1061 ret = write_pool(&blocking_pool, buffer, count);
1062 if (ret)
1063 return ret;
1064 ret = write_pool(&nonblocking_pool, buffer, count);
1065 if (ret)
1066 return ret;
1068 return (ssize_t)count;
1071 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1073 int size, ent_count;
1074 int __user *p = (int __user *)arg;
1075 int retval;
1077 switch (cmd) {
1078 case RNDGETENTCNT:
1079 /* inherently racy, no point locking */
1080 if (put_user(input_pool.entropy_count, p))
1081 return -EFAULT;
1082 return 0;
1083 case RNDADDTOENTCNT:
1084 if (!capable(CAP_SYS_ADMIN))
1085 return -EPERM;
1086 if (get_user(ent_count, p))
1087 return -EFAULT;
1088 credit_entropy_bits(&input_pool, ent_count);
1089 return 0;
1090 case RNDADDENTROPY:
1091 if (!capable(CAP_SYS_ADMIN))
1092 return -EPERM;
1093 if (get_user(ent_count, p++))
1094 return -EFAULT;
1095 if (ent_count < 0)
1096 return -EINVAL;
1097 if (get_user(size, p++))
1098 return -EFAULT;
1099 retval = write_pool(&input_pool, (const char __user *)p,
1100 size);
1101 if (retval < 0)
1102 return retval;
1103 credit_entropy_bits(&input_pool, ent_count);
1104 return 0;
1105 case RNDZAPENTCNT:
1106 case RNDCLEARPOOL:
1107 /* Clear the entropy pool counters. */
1108 if (!capable(CAP_SYS_ADMIN))
1109 return -EPERM;
1110 rand_initialize();
1111 return 0;
1112 default:
1113 return -EINVAL;
1117 static int random_fasync(int fd, struct file *filp, int on)
1119 return fasync_helper(fd, filp, on, &fasync);
1122 const struct file_operations random_fops = {
1123 .read = random_read,
1124 .write = random_write,
1125 .poll = random_poll,
1126 .unlocked_ioctl = random_ioctl,
1127 .fasync = random_fasync,
1130 const struct file_operations urandom_fops = {
1131 .read = urandom_read,
1132 .write = random_write,
1133 .unlocked_ioctl = random_ioctl,
1134 .fasync = random_fasync,
1137 /***************************************************************
1138 * Random UUID interface
1140 * Used here for a Boot ID, but can be useful for other kernel
1141 * drivers.
1142 ***************************************************************/
1145 * Generate random UUID
1147 void generate_random_uuid(unsigned char uuid_out[16])
1149 get_random_bytes(uuid_out, 16);
1150 /* Set UUID version to 4 --- truly random generation */
1151 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1152 /* Set the UUID variant to DCE */
1153 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1155 EXPORT_SYMBOL(generate_random_uuid);
1157 /********************************************************************
1159 * Sysctl interface
1161 ********************************************************************/
1163 #ifdef CONFIG_SYSCTL
1165 #include <linux/sysctl.h>
1167 static int min_read_thresh = 8, min_write_thresh;
1168 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1169 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1170 static char sysctl_bootid[16];
1173 * These functions is used to return both the bootid UUID, and random
1174 * UUID. The difference is in whether table->data is NULL; if it is,
1175 * then a new UUID is generated and returned to the user.
1177 * If the user accesses this via the proc interface, it will be returned
1178 * as an ASCII string in the standard UUID format. If accesses via the
1179 * sysctl system call, it is returned as 16 bytes of binary data.
1181 static int proc_do_uuid(ctl_table *table, int write,
1182 void __user *buffer, size_t *lenp, loff_t *ppos)
1184 ctl_table fake_table;
1185 unsigned char buf[64], tmp_uuid[16], *uuid;
1187 uuid = table->data;
1188 if (!uuid) {
1189 uuid = tmp_uuid;
1190 uuid[8] = 0;
1192 if (uuid[8] == 0)
1193 generate_random_uuid(uuid);
1195 sprintf(buf, "%pU", uuid);
1197 fake_table.data = buf;
1198 fake_table.maxlen = sizeof(buf);
1200 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1203 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1204 ctl_table random_table[] = {
1206 .procname = "poolsize",
1207 .data = &sysctl_poolsize,
1208 .maxlen = sizeof(int),
1209 .mode = 0444,
1210 .proc_handler = proc_dointvec,
1213 .procname = "entropy_avail",
1214 .maxlen = sizeof(int),
1215 .mode = 0444,
1216 .proc_handler = proc_dointvec,
1217 .data = &input_pool.entropy_count,
1220 .procname = "read_wakeup_threshold",
1221 .data = &random_read_wakeup_thresh,
1222 .maxlen = sizeof(int),
1223 .mode = 0644,
1224 .proc_handler = proc_dointvec_minmax,
1225 .extra1 = &min_read_thresh,
1226 .extra2 = &max_read_thresh,
1229 .procname = "write_wakeup_threshold",
1230 .data = &random_write_wakeup_thresh,
1231 .maxlen = sizeof(int),
1232 .mode = 0644,
1233 .proc_handler = proc_dointvec_minmax,
1234 .extra1 = &min_write_thresh,
1235 .extra2 = &max_write_thresh,
1238 .procname = "boot_id",
1239 .data = &sysctl_bootid,
1240 .maxlen = 16,
1241 .mode = 0444,
1242 .proc_handler = proc_do_uuid,
1245 .procname = "uuid",
1246 .maxlen = 16,
1247 .mode = 0444,
1248 .proc_handler = proc_do_uuid,
1252 #endif /* CONFIG_SYSCTL */
1254 /********************************************************************
1256 * Random functions for networking
1258 ********************************************************************/
1261 * TCP initial sequence number picking. This uses the random number
1262 * generator to pick an initial secret value. This value is hashed
1263 * along with the TCP endpoint information to provide a unique
1264 * starting point for each pair of TCP endpoints. This defeats
1265 * attacks which rely on guessing the initial TCP sequence number.
1266 * This algorithm was suggested by Steve Bellovin.
1268 * Using a very strong hash was taking an appreciable amount of the total
1269 * TCP connection establishment time, so this is a weaker hash,
1270 * compensated for by changing the secret periodically.
1273 /* F, G and H are basic MD4 functions: selection, majority, parity */
1274 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1275 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1276 #define H(x, y, z) ((x) ^ (y) ^ (z))
1279 * The generic round function. The application is so specific that
1280 * we don't bother protecting all the arguments with parens, as is generally
1281 * good macro practice, in favor of extra legibility.
1282 * Rotation is separate from addition to prevent recomputation
1284 #define ROUND(f, a, b, c, d, x, s) \
1285 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1286 #define K1 0
1287 #define K2 013240474631UL
1288 #define K3 015666365641UL
1290 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1292 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1294 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1296 /* Round 1 */
1297 ROUND(F, a, b, c, d, in[ 0] + K1, 3);
1298 ROUND(F, d, a, b, c, in[ 1] + K1, 7);
1299 ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1300 ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1301 ROUND(F, a, b, c, d, in[ 4] + K1, 3);
1302 ROUND(F, d, a, b, c, in[ 5] + K1, 7);
1303 ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1304 ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1305 ROUND(F, a, b, c, d, in[ 8] + K1, 3);
1306 ROUND(F, d, a, b, c, in[ 9] + K1, 7);
1307 ROUND(F, c, d, a, b, in[10] + K1, 11);
1308 ROUND(F, b, c, d, a, in[11] + K1, 19);
1310 /* Round 2 */
1311 ROUND(G, a, b, c, d, in[ 1] + K2, 3);
1312 ROUND(G, d, a, b, c, in[ 3] + K2, 5);
1313 ROUND(G, c, d, a, b, in[ 5] + K2, 9);
1314 ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1315 ROUND(G, a, b, c, d, in[ 9] + K2, 3);
1316 ROUND(G, d, a, b, c, in[11] + K2, 5);
1317 ROUND(G, c, d, a, b, in[ 0] + K2, 9);
1318 ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1319 ROUND(G, a, b, c, d, in[ 4] + K2, 3);
1320 ROUND(G, d, a, b, c, in[ 6] + K2, 5);
1321 ROUND(G, c, d, a, b, in[ 8] + K2, 9);
1322 ROUND(G, b, c, d, a, in[10] + K2, 13);
1324 /* Round 3 */
1325 ROUND(H, a, b, c, d, in[ 3] + K3, 3);
1326 ROUND(H, d, a, b, c, in[ 7] + K3, 9);
1327 ROUND(H, c, d, a, b, in[11] + K3, 11);
1328 ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1329 ROUND(H, a, b, c, d, in[ 6] + K3, 3);
1330 ROUND(H, d, a, b, c, in[10] + K3, 9);
1331 ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1332 ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1333 ROUND(H, a, b, c, d, in[ 9] + K3, 3);
1334 ROUND(H, d, a, b, c, in[ 0] + K3, 9);
1335 ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1336 ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1338 return buf[1] + b; /* "most hashed" word */
1339 /* Alternative: return sum of all words? */
1341 #endif
1343 #undef ROUND
1344 #undef F
1345 #undef G
1346 #undef H
1347 #undef K1
1348 #undef K2
1349 #undef K3
1351 /* This should not be decreased so low that ISNs wrap too fast. */
1352 #define REKEY_INTERVAL (300 * HZ)
1354 * Bit layout of the tcp sequence numbers (before adding current time):
1355 * bit 24-31: increased after every key exchange
1356 * bit 0-23: hash(source,dest)
1358 * The implementation is similar to the algorithm described
1359 * in the Appendix of RFC 1185, except that
1360 * - it uses a 1 MHz clock instead of a 250 kHz clock
1361 * - it performs a rekey every 5 minutes, which is equivalent
1362 * to a (source,dest) tulple dependent forward jump of the
1363 * clock by 0..2^(HASH_BITS+1)
1365 * Thus the average ISN wraparound time is 68 minutes instead of
1366 * 4.55 hours.
1368 * SMP cleanup and lock avoidance with poor man's RCU.
1369 * Manfred Spraul <manfred@colorfullife.com>
1372 #define COUNT_BITS 8
1373 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1374 #define HASH_BITS 24
1375 #define HASH_MASK ((1 << HASH_BITS) - 1)
1377 static struct keydata {
1378 __u32 count; /* already shifted to the final position */
1379 __u32 secret[12];
1380 } ____cacheline_aligned ip_keydata[2];
1382 static unsigned int ip_cnt;
1384 static void rekey_seq_generator(struct work_struct *work);
1386 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1389 * Lock avoidance:
1390 * The ISN generation runs lockless - it's just a hash over random data.
1391 * State changes happen every 5 minutes when the random key is replaced.
1392 * Synchronization is performed by having two copies of the hash function
1393 * state and rekey_seq_generator always updates the inactive copy.
1394 * The copy is then activated by updating ip_cnt.
1395 * The implementation breaks down if someone blocks the thread
1396 * that processes SYN requests for more than 5 minutes. Should never
1397 * happen, and even if that happens only a not perfectly compliant
1398 * ISN is generated, nothing fatal.
1400 static void rekey_seq_generator(struct work_struct *work)
1402 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1404 get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1405 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1406 smp_wmb();
1407 ip_cnt++;
1408 schedule_delayed_work(&rekey_work,
1409 round_jiffies_relative(REKEY_INTERVAL));
1412 static inline struct keydata *get_keyptr(void)
1414 struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1416 smp_rmb();
1418 return keyptr;
1421 static __init int seqgen_init(void)
1423 rekey_seq_generator(NULL);
1424 return 0;
1426 late_initcall(seqgen_init);
1428 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1429 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1430 __be16 sport, __be16 dport)
1432 __u32 seq;
1433 __u32 hash[12];
1434 struct keydata *keyptr = get_keyptr();
1436 /* The procedure is the same as for IPv4, but addresses are longer.
1437 * Thus we must use twothirdsMD4Transform.
1440 memcpy(hash, saddr, 16);
1441 hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1442 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1444 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1445 seq += keyptr->count;
1447 seq += ktime_to_ns(ktime_get_real());
1449 return seq;
1451 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1452 #endif
1454 /* The code below is shamelessly stolen from secure_tcp_sequence_number().
1455 * All blames to Andrey V. Savochkin <saw@msu.ru>.
1457 __u32 secure_ip_id(__be32 daddr)
1459 struct keydata *keyptr;
1460 __u32 hash[4];
1462 keyptr = get_keyptr();
1465 * Pick a unique starting offset for each IP destination.
1466 * The dest ip address is placed in the starting vector,
1467 * which is then hashed with random data.
1469 hash[0] = (__force __u32)daddr;
1470 hash[1] = keyptr->secret[9];
1471 hash[2] = keyptr->secret[10];
1472 hash[3] = keyptr->secret[11];
1474 return half_md4_transform(hash, keyptr->secret);
1477 #ifdef CONFIG_INET
1479 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1480 __be16 sport, __be16 dport)
1482 __u32 seq;
1483 __u32 hash[4];
1484 struct keydata *keyptr = get_keyptr();
1487 * Pick a unique starting offset for each TCP connection endpoints
1488 * (saddr, daddr, sport, dport).
1489 * Note that the words are placed into the starting vector, which is
1490 * then mixed with a partial MD4 over random data.
1492 hash[0] = (__force u32)saddr;
1493 hash[1] = (__force u32)daddr;
1494 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1495 hash[3] = keyptr->secret[11];
1497 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1498 seq += keyptr->count;
1500 * As close as possible to RFC 793, which
1501 * suggests using a 250 kHz clock.
1502 * Further reading shows this assumes 2 Mb/s networks.
1503 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1504 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1505 * we also need to limit the resolution so that the u32 seq
1506 * overlaps less than one time per MSL (2 minutes).
1507 * Choosing a clock of 64 ns period is OK. (period of 274 s)
1509 seq += ktime_to_ns(ktime_get_real()) >> 6;
1511 return seq;
1514 /* Generate secure starting point for ephemeral IPV4 transport port search */
1515 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1517 struct keydata *keyptr = get_keyptr();
1518 u32 hash[4];
1521 * Pick a unique starting offset for each ephemeral port search
1522 * (saddr, daddr, dport) and 48bits of random data.
1524 hash[0] = (__force u32)saddr;
1525 hash[1] = (__force u32)daddr;
1526 hash[2] = (__force u32)dport ^ keyptr->secret[10];
1527 hash[3] = keyptr->secret[11];
1529 return half_md4_transform(hash, keyptr->secret);
1531 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1533 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1534 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1535 __be16 dport)
1537 struct keydata *keyptr = get_keyptr();
1538 u32 hash[12];
1540 memcpy(hash, saddr, 16);
1541 hash[4] = (__force u32)dport;
1542 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1544 return twothirdsMD4Transform((const __u32 *)daddr, hash);
1546 #endif
1548 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1549 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1550 * bit's 32-47 increase every key exchange
1551 * 0-31 hash(source, dest)
1553 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1554 __be16 sport, __be16 dport)
1556 u64 seq;
1557 __u32 hash[4];
1558 struct keydata *keyptr = get_keyptr();
1560 hash[0] = (__force u32)saddr;
1561 hash[1] = (__force u32)daddr;
1562 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1563 hash[3] = keyptr->secret[11];
1565 seq = half_md4_transform(hash, keyptr->secret);
1566 seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1568 seq += ktime_to_ns(ktime_get_real());
1569 seq &= (1ull << 48) - 1;
1571 return seq;
1573 EXPORT_SYMBOL(secure_dccp_sequence_number);
1574 #endif
1576 #endif /* CONFIG_INET */
1580 * Get a random word for internal kernel use only. Similar to urandom but
1581 * with the goal of minimal entropy pool depletion. As a result, the random
1582 * value is not cryptographically secure but for several uses the cost of
1583 * depleting entropy is too high
1585 DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
1586 unsigned int get_random_int(void)
1588 struct keydata *keyptr;
1589 __u32 *hash = get_cpu_var(get_random_int_hash);
1590 int ret;
1592 keyptr = get_keyptr();
1593 hash[0] += current->pid + jiffies + get_cycles();
1595 ret = half_md4_transform(hash, keyptr->secret);
1596 put_cpu_var(get_random_int_hash);
1598 return ret;
1602 * randomize_range() returns a start address such that
1604 * [...... <range> .....]
1605 * start end
1607 * a <range> with size "len" starting at the return value is inside in the
1608 * area defined by [start, end], but is otherwise randomized.
1610 unsigned long
1611 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1613 unsigned long range = end - len - start;
1615 if (end <= start + len)
1616 return 0;
1617 return PAGE_ALIGN(get_random_int() % range + start);