GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / x86 / mm / pageattr.c
blob9f690a2c67671cce8afac10080c9a0856ddf63d6
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
28 * The current flushing context - we pass it instead of 5 arguments:
30 struct cpa_data {
31 unsigned long *vaddr;
32 pgprot_t mask_set;
33 pgprot_t mask_clr;
34 int numpages;
35 int flags;
36 unsigned long pfn;
37 unsigned force_split : 1;
38 int curpage;
39 struct page **pages;
43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45 * entries change the page attribute in parallel to some other cpu
46 * splitting a large page entry along with changing the attribute.
48 static DEFINE_SPINLOCK(cpa_lock);
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57 void update_page_count(int level, unsigned long pages)
59 unsigned long flags;
61 /* Protect against CPA */
62 spin_lock_irqsave(&pgd_lock, flags);
63 direct_pages_count[level] += pages;
64 spin_unlock_irqrestore(&pgd_lock, flags);
67 static void split_page_count(int level)
69 direct_pages_count[level]--;
70 direct_pages_count[level - 1] += PTRS_PER_PTE;
73 void arch_report_meminfo(struct seq_file *m)
75 seq_printf(m, "DirectMap4k: %8lu kB\n",
76 direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m, "DirectMap2M: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 seq_printf(m, "DirectMap4M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85 if (direct_gbpages)
86 seq_printf(m, "DirectMap1G: %8lu kB\n",
87 direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
94 #ifdef CONFIG_X86_64
96 static inline unsigned long highmap_start_pfn(void)
98 return __pa(_text) >> PAGE_SHIFT;
101 static inline unsigned long highmap_end_pfn(void)
103 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
106 #endif
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
117 return addr >= start && addr < end;
121 * Flushing functions
125 * clflush_cache_range - flush a cache range with clflush
126 * @addr: virtual start address
127 * @size: number of bytes to flush
129 * clflush is an unordered instruction which needs fencing with mfence
130 * to avoid ordering issues.
132 void clflush_cache_range(void *vaddr, unsigned int size)
134 void *vend = vaddr + size - 1;
136 mb();
138 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139 clflush(vaddr);
141 * Flush any possible final partial cacheline:
143 clflush(vend);
145 mb();
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
149 static void __cpa_flush_all(void *arg)
151 unsigned long cache = (unsigned long)arg;
153 __flush_tlb_all();
155 if (cache && boot_cpu_data.x86 >= 4)
156 wbinvd();
159 static void cpa_flush_all(unsigned long cache)
161 BUG_ON(irqs_disabled());
163 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
166 static void __cpa_flush_range(void *arg)
169 * We could optimize that further and do individual per page
170 * tlb invalidates for a low number of pages. Caveat: we must
171 * flush the high aliases on 64bit as well.
173 __flush_tlb_all();
176 static void cpa_flush_range(unsigned long start, int numpages, int cache)
178 unsigned int i, level;
179 unsigned long addr;
181 BUG_ON(irqs_disabled());
182 WARN_ON(PAGE_ALIGN(start) != start);
184 on_each_cpu(__cpa_flush_range, NULL, 1);
186 if (!cache)
187 return;
190 * We only need to flush on one CPU,
191 * clflush is a MESI-coherent instruction that
192 * will cause all other CPUs to flush the same
193 * cachelines:
195 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
196 pte_t *pte = lookup_address(addr, &level);
199 * Only flush present addresses:
201 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
202 clflush_cache_range((void *) addr, PAGE_SIZE);
206 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
207 int in_flags, struct page **pages)
209 unsigned int i, level;
210 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
212 BUG_ON(irqs_disabled());
214 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
216 if (!cache || do_wbinvd)
217 return;
220 * We only need to flush on one CPU,
221 * clflush is a MESI-coherent instruction that
222 * will cause all other CPUs to flush the same
223 * cachelines:
225 for (i = 0; i < numpages; i++) {
226 unsigned long addr;
227 pte_t *pte;
229 if (in_flags & CPA_PAGES_ARRAY)
230 addr = (unsigned long)page_address(pages[i]);
231 else
232 addr = start[i];
234 pte = lookup_address(addr, &level);
237 * Only flush present addresses:
239 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
240 clflush_cache_range((void *)addr, PAGE_SIZE);
245 * Certain areas of memory on x86 require very specific protection flags,
246 * for example the BIOS area or kernel text. Callers don't always get this
247 * right (again, ioremap() on BIOS memory is not uncommon) so this function
248 * checks and fixes these known static required protection bits.
250 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
251 unsigned long pfn)
253 pgprot_t forbidden = __pgprot(0);
256 * The BIOS area between 640k and 1Mb needs to be executable for
257 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
259 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
260 pgprot_val(forbidden) |= _PAGE_NX;
263 * The kernel text needs to be executable for obvious reasons
264 * Does not cover __inittext since that is gone later on. On
265 * 64bit we do not enforce !NX on the low mapping
267 if (within(address, (unsigned long)_text, (unsigned long)_etext))
268 pgprot_val(forbidden) |= _PAGE_NX;
271 * The .rodata section needs to be read-only. Using the pfn
272 * catches all aliases.
274 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
275 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
276 pgprot_val(forbidden) |= _PAGE_RW;
278 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
280 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
281 * kernel text mappings for the large page aligned text, rodata sections
282 * will be always read-only. For the kernel identity mappings covering
283 * the holes caused by this alignment can be anything that user asks.
285 * This will preserve the large page mappings for kernel text/data
286 * at no extra cost.
288 if (kernel_set_to_readonly &&
289 within(address, (unsigned long)_text,
290 (unsigned long)__end_rodata_hpage_align)) {
291 unsigned int level;
294 * Don't enforce the !RW mapping for the kernel text mapping,
295 * if the current mapping is already using small page mapping.
296 * No need to work hard to preserve large page mappings in this
297 * case.
299 * This also fixes the Linux Xen paravirt guest boot failure
300 * (because of unexpected read-only mappings for kernel identity
301 * mappings). In this paravirt guest case, the kernel text
302 * mapping and the kernel identity mapping share the same
303 * page-table pages. Thus we can't really use different
304 * protections for the kernel text and identity mappings. Also,
305 * these shared mappings are made of small page mappings.
306 * Thus this don't enforce !RW mapping for small page kernel
307 * text mapping logic will help Linux Xen parvirt guest boot
308 * aswell.
310 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
311 pgprot_val(forbidden) |= _PAGE_RW;
313 #endif
315 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
317 return prot;
321 * Lookup the page table entry for a virtual address. Return a pointer
322 * to the entry and the level of the mapping.
324 * Note: We return pud and pmd either when the entry is marked large
325 * or when the present bit is not set. Otherwise we would return a
326 * pointer to a nonexisting mapping.
328 pte_t *lookup_address(unsigned long address, unsigned int *level)
330 pgd_t *pgd = pgd_offset_k(address);
331 pud_t *pud;
332 pmd_t *pmd;
334 *level = PG_LEVEL_NONE;
336 if (pgd_none(*pgd))
337 return NULL;
339 pud = pud_offset(pgd, address);
340 if (pud_none(*pud))
341 return NULL;
343 *level = PG_LEVEL_1G;
344 if (pud_large(*pud) || !pud_present(*pud))
345 return (pte_t *)pud;
347 pmd = pmd_offset(pud, address);
348 if (pmd_none(*pmd))
349 return NULL;
351 *level = PG_LEVEL_2M;
352 if (pmd_large(*pmd) || !pmd_present(*pmd))
353 return (pte_t *)pmd;
355 *level = PG_LEVEL_4K;
357 return pte_offset_kernel(pmd, address);
359 EXPORT_SYMBOL_GPL(lookup_address);
362 * Set the new pmd in all the pgds we know about:
364 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
366 /* change init_mm */
367 set_pte_atomic(kpte, pte);
368 #ifdef CONFIG_X86_32
369 if (!SHARED_KERNEL_PMD) {
370 struct page *page;
372 list_for_each_entry(page, &pgd_list, lru) {
373 pgd_t *pgd;
374 pud_t *pud;
375 pmd_t *pmd;
377 pgd = (pgd_t *)page_address(page) + pgd_index(address);
378 pud = pud_offset(pgd, address);
379 pmd = pmd_offset(pud, address);
380 set_pte_atomic((pte_t *)pmd, pte);
383 #endif
386 static int
387 try_preserve_large_page(pte_t *kpte, unsigned long address,
388 struct cpa_data *cpa)
390 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
391 pte_t new_pte, old_pte, *tmp;
392 pgprot_t old_prot, new_prot;
393 int i, do_split = 1;
394 unsigned int level;
396 if (cpa->force_split)
397 return 1;
399 spin_lock_irqsave(&pgd_lock, flags);
401 * Check for races, another CPU might have split this page
402 * up already:
404 tmp = lookup_address(address, &level);
405 if (tmp != kpte)
406 goto out_unlock;
408 switch (level) {
409 case PG_LEVEL_2M:
410 psize = PMD_PAGE_SIZE;
411 pmask = PMD_PAGE_MASK;
412 break;
413 #ifdef CONFIG_X86_64
414 case PG_LEVEL_1G:
415 psize = PUD_PAGE_SIZE;
416 pmask = PUD_PAGE_MASK;
417 break;
418 #endif
419 default:
420 do_split = -EINVAL;
421 goto out_unlock;
425 * Calculate the number of pages, which fit into this large
426 * page starting at address:
428 nextpage_addr = (address + psize) & pmask;
429 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
430 if (numpages < cpa->numpages)
431 cpa->numpages = numpages;
434 * We are safe now. Check whether the new pgprot is the same:
436 old_pte = *kpte;
437 old_prot = new_prot = pte_pgprot(old_pte);
439 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
440 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
443 * old_pte points to the large page base address. So we need
444 * to add the offset of the virtual address:
446 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
447 cpa->pfn = pfn;
449 new_prot = static_protections(new_prot, address, pfn);
452 * We need to check the full range, whether
453 * static_protection() requires a different pgprot for one of
454 * the pages in the range we try to preserve:
456 addr = address + PAGE_SIZE;
457 pfn++;
458 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
459 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
461 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
462 goto out_unlock;
466 * If there are no changes, return. maxpages has been updated
467 * above:
469 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
470 do_split = 0;
471 goto out_unlock;
475 * We need to change the attributes. Check, whether we can
476 * change the large page in one go. We request a split, when
477 * the address is not aligned and the number of pages is
478 * smaller than the number of pages in the large page. Note
479 * that we limited the number of possible pages already to
480 * the number of pages in the large page.
482 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
484 * The address is aligned and the number of pages
485 * covers the full page.
487 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
488 __set_pmd_pte(kpte, address, new_pte);
489 cpa->flags |= CPA_FLUSHTLB;
490 do_split = 0;
493 out_unlock:
494 spin_unlock_irqrestore(&pgd_lock, flags);
496 return do_split;
499 static int split_large_page(pte_t *kpte, unsigned long address)
501 unsigned long flags, pfn, pfninc = 1;
502 unsigned int i, level;
503 pte_t *pbase, *tmp;
504 pgprot_t ref_prot;
505 struct page *base;
507 if (!debug_pagealloc)
508 spin_unlock(&cpa_lock);
509 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
510 if (!debug_pagealloc)
511 spin_lock(&cpa_lock);
512 if (!base)
513 return -ENOMEM;
515 spin_lock_irqsave(&pgd_lock, flags);
517 * Check for races, another CPU might have split this page
518 * up for us already:
520 tmp = lookup_address(address, &level);
521 if (tmp != kpte)
522 goto out_unlock;
524 pbase = (pte_t *)page_address(base);
525 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
526 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
528 * If we ever want to utilize the PAT bit, we need to
529 * update this function to make sure it's converted from
530 * bit 12 to bit 7 when we cross from the 2MB level to
531 * the 4K level:
533 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
535 #ifdef CONFIG_X86_64
536 if (level == PG_LEVEL_1G) {
537 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
538 pgprot_val(ref_prot) |= _PAGE_PSE;
540 #endif
543 * Get the target pfn from the original entry:
545 pfn = pte_pfn(*kpte);
546 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
547 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
549 if (address >= (unsigned long)__va(0) &&
550 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
551 split_page_count(level);
553 #ifdef CONFIG_X86_64
554 if (address >= (unsigned long)__va(1UL<<32) &&
555 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
556 split_page_count(level);
557 #endif
560 * Install the new, split up pagetable.
562 * We use the standard kernel pagetable protections for the new
563 * pagetable protections, the actual ptes set above control the
564 * primary protection behavior:
566 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
568 __flush_tlb_all();
570 base = NULL;
572 out_unlock:
574 * If we dropped out via the lookup_address check under
575 * pgd_lock then stick the page back into the pool:
577 if (base)
578 __free_page(base);
579 spin_unlock_irqrestore(&pgd_lock, flags);
581 return 0;
584 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
585 int primary)
588 * Ignore all non primary paths.
590 if (!primary)
591 return 0;
594 * Ignore the NULL PTE for kernel identity mapping, as it is expected
595 * to have holes.
596 * Also set numpages to '1' indicating that we processed cpa req for
597 * one virtual address page and its pfn. TBD: numpages can be set based
598 * on the initial value and the level returned by lookup_address().
600 if (within(vaddr, PAGE_OFFSET,
601 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
602 cpa->numpages = 1;
603 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
604 return 0;
605 } else {
606 WARN(1, KERN_WARNING "CPA: called for zero pte. "
607 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
608 *cpa->vaddr);
610 return -EFAULT;
614 static int __change_page_attr(struct cpa_data *cpa, int primary)
616 unsigned long address;
617 int do_split, err;
618 unsigned int level;
619 pte_t *kpte, old_pte;
621 if (cpa->flags & CPA_PAGES_ARRAY) {
622 struct page *page = cpa->pages[cpa->curpage];
623 if (unlikely(PageHighMem(page)))
624 return 0;
625 address = (unsigned long)page_address(page);
626 } else if (cpa->flags & CPA_ARRAY)
627 address = cpa->vaddr[cpa->curpage];
628 else
629 address = *cpa->vaddr;
630 repeat:
631 kpte = lookup_address(address, &level);
632 if (!kpte)
633 return __cpa_process_fault(cpa, address, primary);
635 old_pte = *kpte;
636 if (!pte_val(old_pte))
637 return __cpa_process_fault(cpa, address, primary);
639 if (level == PG_LEVEL_4K) {
640 pte_t new_pte;
641 pgprot_t new_prot = pte_pgprot(old_pte);
642 unsigned long pfn = pte_pfn(old_pte);
644 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
645 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
647 new_prot = static_protections(new_prot, address, pfn);
650 * We need to keep the pfn from the existing PTE,
651 * after all we're only going to change it's attributes
652 * not the memory it points to
654 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
655 cpa->pfn = pfn;
657 * Do we really change anything ?
659 if (pte_val(old_pte) != pte_val(new_pte)) {
660 set_pte_atomic(kpte, new_pte);
661 cpa->flags |= CPA_FLUSHTLB;
663 cpa->numpages = 1;
664 return 0;
668 * Check, whether we can keep the large page intact
669 * and just change the pte:
671 do_split = try_preserve_large_page(kpte, address, cpa);
673 * When the range fits into the existing large page,
674 * return. cp->numpages and cpa->tlbflush have been updated in
675 * try_large_page:
677 if (do_split <= 0)
678 return do_split;
681 * We have to split the large page:
683 err = split_large_page(kpte, address);
684 if (!err) {
686 * Do a global flush tlb after splitting the large page
687 * and before we do the actual change page attribute in the PTE.
689 * With out this, we violate the TLB application note, that says
690 * "The TLBs may contain both ordinary and large-page
691 * translations for a 4-KByte range of linear addresses. This
692 * may occur if software modifies the paging structures so that
693 * the page size used for the address range changes. If the two
694 * translations differ with respect to page frame or attributes
695 * (e.g., permissions), processor behavior is undefined and may
696 * be implementation-specific."
698 * We do this global tlb flush inside the cpa_lock, so that we
699 * don't allow any other cpu, with stale tlb entries change the
700 * page attribute in parallel, that also falls into the
701 * just split large page entry.
703 flush_tlb_all();
704 goto repeat;
707 return err;
710 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
712 static int cpa_process_alias(struct cpa_data *cpa)
714 struct cpa_data alias_cpa;
715 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
716 unsigned long vaddr;
717 int ret;
719 if (cpa->pfn >= max_pfn_mapped)
720 return 0;
722 #ifdef CONFIG_X86_64
723 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
724 return 0;
725 #endif
727 * No need to redo, when the primary call touched the direct
728 * mapping already:
730 if (cpa->flags & CPA_PAGES_ARRAY) {
731 struct page *page = cpa->pages[cpa->curpage];
732 if (unlikely(PageHighMem(page)))
733 return 0;
734 vaddr = (unsigned long)page_address(page);
735 } else if (cpa->flags & CPA_ARRAY)
736 vaddr = cpa->vaddr[cpa->curpage];
737 else
738 vaddr = *cpa->vaddr;
740 if (!(within(vaddr, PAGE_OFFSET,
741 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
743 alias_cpa = *cpa;
744 alias_cpa.vaddr = &laddr;
745 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
747 ret = __change_page_attr_set_clr(&alias_cpa, 0);
748 if (ret)
749 return ret;
752 #ifdef CONFIG_X86_64
754 * If the primary call didn't touch the high mapping already
755 * and the physical address is inside the kernel map, we need
756 * to touch the high mapped kernel as well:
758 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
759 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
760 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
761 __START_KERNEL_map - phys_base;
762 alias_cpa = *cpa;
763 alias_cpa.vaddr = &temp_cpa_vaddr;
764 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
767 * The high mapping range is imprecise, so ignore the
768 * return value.
770 __change_page_attr_set_clr(&alias_cpa, 0);
772 #endif
774 return 0;
777 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
779 int ret, numpages = cpa->numpages;
781 while (numpages) {
783 * Store the remaining nr of pages for the large page
784 * preservation check.
786 cpa->numpages = numpages;
787 /* for array changes, we can't use large page */
788 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
789 cpa->numpages = 1;
791 if (!debug_pagealloc)
792 spin_lock(&cpa_lock);
793 ret = __change_page_attr(cpa, checkalias);
794 if (!debug_pagealloc)
795 spin_unlock(&cpa_lock);
796 if (ret)
797 return ret;
799 if (checkalias) {
800 ret = cpa_process_alias(cpa);
801 if (ret)
802 return ret;
806 * Adjust the number of pages with the result of the
807 * CPA operation. Either a large page has been
808 * preserved or a single page update happened.
810 BUG_ON(cpa->numpages > numpages);
811 numpages -= cpa->numpages;
812 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
813 cpa->curpage++;
814 else
815 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
818 return 0;
821 static inline int cache_attr(pgprot_t attr)
823 return pgprot_val(attr) &
824 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
827 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
828 pgprot_t mask_set, pgprot_t mask_clr,
829 int force_split, int in_flag,
830 struct page **pages)
832 struct cpa_data cpa;
833 int ret, cache, checkalias;
834 unsigned long baddr = 0;
837 * Check, if we are requested to change a not supported
838 * feature:
840 mask_set = canon_pgprot(mask_set);
841 mask_clr = canon_pgprot(mask_clr);
842 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
843 return 0;
845 /* Ensure we are PAGE_SIZE aligned */
846 if (in_flag & CPA_ARRAY) {
847 int i;
848 for (i = 0; i < numpages; i++) {
849 if (addr[i] & ~PAGE_MASK) {
850 addr[i] &= PAGE_MASK;
851 WARN_ON_ONCE(1);
854 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
856 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
857 * No need to cehck in that case
859 if (*addr & ~PAGE_MASK) {
860 *addr &= PAGE_MASK;
862 * People should not be passing in unaligned addresses:
864 WARN_ON_ONCE(1);
867 * Save address for cache flush. *addr is modified in the call
868 * to __change_page_attr_set_clr() below.
870 baddr = *addr;
873 /* Must avoid aliasing mappings in the highmem code */
874 kmap_flush_unused();
876 vm_unmap_aliases();
878 cpa.vaddr = addr;
879 cpa.pages = pages;
880 cpa.numpages = numpages;
881 cpa.mask_set = mask_set;
882 cpa.mask_clr = mask_clr;
883 cpa.flags = 0;
884 cpa.curpage = 0;
885 cpa.force_split = force_split;
887 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
888 cpa.flags |= in_flag;
890 /* No alias checking for _NX bit modifications */
891 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
893 ret = __change_page_attr_set_clr(&cpa, checkalias);
896 * Check whether we really changed something:
898 if (!(cpa.flags & CPA_FLUSHTLB))
899 goto out;
902 * No need to flush, when we did not set any of the caching
903 * attributes:
905 cache = cache_attr(mask_set);
908 * On success we use clflush, when the CPU supports it to
909 * avoid the wbindv. If the CPU does not support it and in the
910 * error case we fall back to cpa_flush_all (which uses
911 * wbindv):
913 if (!ret && cpu_has_clflush) {
914 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
915 cpa_flush_array(addr, numpages, cache,
916 cpa.flags, pages);
917 } else
918 cpa_flush_range(baddr, numpages, cache);
919 } else
920 cpa_flush_all(cache);
922 out:
923 return ret;
926 static inline int change_page_attr_set(unsigned long *addr, int numpages,
927 pgprot_t mask, int array)
929 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
930 (array ? CPA_ARRAY : 0), NULL);
933 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
934 pgprot_t mask, int array)
936 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
937 (array ? CPA_ARRAY : 0), NULL);
940 static inline int cpa_set_pages_array(struct page **pages, int numpages,
941 pgprot_t mask)
943 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
944 CPA_PAGES_ARRAY, pages);
947 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
948 pgprot_t mask)
950 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
951 CPA_PAGES_ARRAY, pages);
954 int _set_memory_uc(unsigned long addr, int numpages)
957 * for now UC MINUS. see comments in ioremap_nocache()
959 return change_page_attr_set(&addr, numpages,
960 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
963 int set_memory_uc(unsigned long addr, int numpages)
965 int ret;
968 * for now UC MINUS. see comments in ioremap_nocache()
970 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
971 _PAGE_CACHE_UC_MINUS, NULL);
972 if (ret)
973 goto out_err;
975 ret = _set_memory_uc(addr, numpages);
976 if (ret)
977 goto out_free;
979 return 0;
981 out_free:
982 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
983 out_err:
984 return ret;
986 EXPORT_SYMBOL(set_memory_uc);
988 int _set_memory_array(unsigned long *addr, int addrinarray,
989 unsigned long new_type)
991 int i, j;
992 int ret;
995 * for now UC MINUS. see comments in ioremap_nocache()
997 for (i = 0; i < addrinarray; i++) {
998 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
999 new_type, NULL);
1000 if (ret)
1001 goto out_free;
1004 ret = change_page_attr_set(addr, addrinarray,
1005 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1007 if (!ret && new_type == _PAGE_CACHE_WC)
1008 ret = change_page_attr_set_clr(addr, addrinarray,
1009 __pgprot(_PAGE_CACHE_WC),
1010 __pgprot(_PAGE_CACHE_MASK),
1011 0, CPA_ARRAY, NULL);
1012 if (ret)
1013 goto out_free;
1015 return 0;
1017 out_free:
1018 for (j = 0; j < i; j++)
1019 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1021 return ret;
1024 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1026 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1028 EXPORT_SYMBOL(set_memory_array_uc);
1030 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1032 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1034 EXPORT_SYMBOL(set_memory_array_wc);
1036 int _set_memory_wc(unsigned long addr, int numpages)
1038 int ret;
1039 unsigned long addr_copy = addr;
1041 ret = change_page_attr_set(&addr, numpages,
1042 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1043 if (!ret) {
1044 ret = change_page_attr_set_clr(&addr_copy, numpages,
1045 __pgprot(_PAGE_CACHE_WC),
1046 __pgprot(_PAGE_CACHE_MASK),
1047 0, 0, NULL);
1049 return ret;
1052 int set_memory_wc(unsigned long addr, int numpages)
1054 int ret;
1056 if (!pat_enabled)
1057 return set_memory_uc(addr, numpages);
1059 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1060 _PAGE_CACHE_WC, NULL);
1061 if (ret)
1062 goto out_err;
1064 ret = _set_memory_wc(addr, numpages);
1065 if (ret)
1066 goto out_free;
1068 return 0;
1070 out_free:
1071 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1072 out_err:
1073 return ret;
1075 EXPORT_SYMBOL(set_memory_wc);
1077 int _set_memory_wb(unsigned long addr, int numpages)
1079 return change_page_attr_clear(&addr, numpages,
1080 __pgprot(_PAGE_CACHE_MASK), 0);
1083 int set_memory_wb(unsigned long addr, int numpages)
1085 int ret;
1087 ret = _set_memory_wb(addr, numpages);
1088 if (ret)
1089 return ret;
1091 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1092 return 0;
1094 EXPORT_SYMBOL(set_memory_wb);
1096 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1098 int i;
1099 int ret;
1101 ret = change_page_attr_clear(addr, addrinarray,
1102 __pgprot(_PAGE_CACHE_MASK), 1);
1103 if (ret)
1104 return ret;
1106 for (i = 0; i < addrinarray; i++)
1107 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1109 return 0;
1111 EXPORT_SYMBOL(set_memory_array_wb);
1113 int set_memory_x(unsigned long addr, int numpages)
1115 if (!(__supported_pte_mask & _PAGE_NX))
1116 return 0;
1118 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1120 EXPORT_SYMBOL(set_memory_x);
1122 int set_memory_nx(unsigned long addr, int numpages)
1124 if (!(__supported_pte_mask & _PAGE_NX))
1125 return 0;
1127 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1129 EXPORT_SYMBOL(set_memory_nx);
1131 int set_memory_ro(unsigned long addr, int numpages)
1133 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1135 EXPORT_SYMBOL_GPL(set_memory_ro);
1137 int set_memory_rw(unsigned long addr, int numpages)
1139 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1141 EXPORT_SYMBOL_GPL(set_memory_rw);
1143 int set_memory_np(unsigned long addr, int numpages)
1145 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1148 int set_memory_4k(unsigned long addr, int numpages)
1150 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1151 __pgprot(0), 1, 0, NULL);
1154 int set_pages_uc(struct page *page, int numpages)
1156 unsigned long addr = (unsigned long)page_address(page);
1158 return set_memory_uc(addr, numpages);
1160 EXPORT_SYMBOL(set_pages_uc);
1162 static int _set_pages_array(struct page **pages, int addrinarray,
1163 unsigned long new_type)
1165 unsigned long start;
1166 unsigned long end;
1167 int i;
1168 int free_idx;
1169 int ret;
1171 for (i = 0; i < addrinarray; i++) {
1172 if (PageHighMem(pages[i]))
1173 continue;
1174 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1175 end = start + PAGE_SIZE;
1176 if (reserve_memtype(start, end, new_type, NULL))
1177 goto err_out;
1180 ret = cpa_set_pages_array(pages, addrinarray,
1181 __pgprot(_PAGE_CACHE_UC_MINUS));
1182 if (!ret && new_type == _PAGE_CACHE_WC)
1183 ret = change_page_attr_set_clr(NULL, addrinarray,
1184 __pgprot(_PAGE_CACHE_WC),
1185 __pgprot(_PAGE_CACHE_MASK),
1186 0, CPA_PAGES_ARRAY, pages);
1187 if (ret)
1188 goto err_out;
1189 return 0; /* Success */
1190 err_out:
1191 free_idx = i;
1192 for (i = 0; i < free_idx; i++) {
1193 if (PageHighMem(pages[i]))
1194 continue;
1195 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1196 end = start + PAGE_SIZE;
1197 free_memtype(start, end);
1199 return -EINVAL;
1202 int set_pages_array_uc(struct page **pages, int addrinarray)
1204 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1206 EXPORT_SYMBOL(set_pages_array_uc);
1208 int set_pages_array_wc(struct page **pages, int addrinarray)
1210 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1212 EXPORT_SYMBOL(set_pages_array_wc);
1214 int set_pages_wb(struct page *page, int numpages)
1216 unsigned long addr = (unsigned long)page_address(page);
1218 return set_memory_wb(addr, numpages);
1220 EXPORT_SYMBOL(set_pages_wb);
1222 int set_pages_array_wb(struct page **pages, int addrinarray)
1224 int retval;
1225 unsigned long start;
1226 unsigned long end;
1227 int i;
1229 retval = cpa_clear_pages_array(pages, addrinarray,
1230 __pgprot(_PAGE_CACHE_MASK));
1231 if (retval)
1232 return retval;
1234 for (i = 0; i < addrinarray; i++) {
1235 if (PageHighMem(pages[i]))
1236 continue;
1237 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1238 end = start + PAGE_SIZE;
1239 free_memtype(start, end);
1242 return 0;
1244 EXPORT_SYMBOL(set_pages_array_wb);
1246 int set_pages_x(struct page *page, int numpages)
1248 unsigned long addr = (unsigned long)page_address(page);
1250 return set_memory_x(addr, numpages);
1252 EXPORT_SYMBOL(set_pages_x);
1254 int set_pages_nx(struct page *page, int numpages)
1256 unsigned long addr = (unsigned long)page_address(page);
1258 return set_memory_nx(addr, numpages);
1260 EXPORT_SYMBOL(set_pages_nx);
1262 int set_pages_ro(struct page *page, int numpages)
1264 unsigned long addr = (unsigned long)page_address(page);
1266 return set_memory_ro(addr, numpages);
1269 int set_pages_rw(struct page *page, int numpages)
1271 unsigned long addr = (unsigned long)page_address(page);
1273 return set_memory_rw(addr, numpages);
1276 #ifdef CONFIG_DEBUG_PAGEALLOC
1278 static int __set_pages_p(struct page *page, int numpages)
1280 unsigned long tempaddr = (unsigned long) page_address(page);
1281 struct cpa_data cpa = { .vaddr = &tempaddr,
1282 .numpages = numpages,
1283 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1284 .mask_clr = __pgprot(0),
1285 .flags = 0};
1288 * No alias checking needed for setting present flag. otherwise,
1289 * we may need to break large pages for 64-bit kernel text
1290 * mappings (this adds to complexity if we want to do this from
1291 * atomic context especially). Let's keep it simple!
1293 return __change_page_attr_set_clr(&cpa, 0);
1296 static int __set_pages_np(struct page *page, int numpages)
1298 unsigned long tempaddr = (unsigned long) page_address(page);
1299 struct cpa_data cpa = { .vaddr = &tempaddr,
1300 .numpages = numpages,
1301 .mask_set = __pgprot(0),
1302 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1303 .flags = 0};
1306 * No alias checking needed for setting not present flag. otherwise,
1307 * we may need to break large pages for 64-bit kernel text
1308 * mappings (this adds to complexity if we want to do this from
1309 * atomic context especially). Let's keep it simple!
1311 return __change_page_attr_set_clr(&cpa, 0);
1314 void kernel_map_pages(struct page *page, int numpages, int enable)
1316 if (PageHighMem(page))
1317 return;
1318 if (!enable) {
1319 debug_check_no_locks_freed(page_address(page),
1320 numpages * PAGE_SIZE);
1324 * If page allocator is not up yet then do not call c_p_a():
1326 if (!debug_pagealloc_enabled)
1327 return;
1330 * The return value is ignored as the calls cannot fail.
1331 * Large pages for identity mappings are not used at boot time
1332 * and hence no memory allocations during large page split.
1334 if (enable)
1335 __set_pages_p(page, numpages);
1336 else
1337 __set_pages_np(page, numpages);
1340 * We should perform an IPI and flush all tlbs,
1341 * but that can deadlock->flush only current cpu:
1343 __flush_tlb_all();
1346 #ifdef CONFIG_HIBERNATION
1348 bool kernel_page_present(struct page *page)
1350 unsigned int level;
1351 pte_t *pte;
1353 if (PageHighMem(page))
1354 return false;
1356 pte = lookup_address((unsigned long)page_address(page), &level);
1357 return (pte_val(*pte) & _PAGE_PRESENT);
1360 #endif /* CONFIG_HIBERNATION */
1362 #endif /* CONFIG_DEBUG_PAGEALLOC */
1365 * The testcases use internal knowledge of the implementation that shouldn't
1366 * be exposed to the rest of the kernel. Include these directly here.
1368 #ifdef CONFIG_CPA_DEBUG
1369 #include "pageattr-test.c"
1370 #endif