GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
blobdee4acc080413769ead2c4f2f655b2385a4a37e4
1 /*
2 * (c) 2003-2010 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@ucw.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
36 #include <linux/io.h>
37 #include <linux/delay.h>
39 #include <asm/msr.h>
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
48 #include "mperf.h"
50 /* serialize freq changes */
51 static DEFINE_MUTEX(fidvid_mutex);
53 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
55 static int cpu_family = CPU_OPTERON;
57 /* core performance boost */
58 static bool cpb_capable, cpb_enabled;
59 static struct msr __percpu *msrs;
61 static struct cpufreq_driver cpufreq_amd64_driver;
63 #ifndef CONFIG_SMP
64 static inline const struct cpumask *cpu_core_mask(int cpu)
66 return cpumask_of(0);
68 #endif
70 /* Return a frequency in MHz, given an input fid */
71 static u32 find_freq_from_fid(u32 fid)
73 return 800 + (fid * 100);
76 /* Return a frequency in KHz, given an input fid */
77 static u32 find_khz_freq_from_fid(u32 fid)
79 return 1000 * find_freq_from_fid(fid);
82 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
83 u32 pstate)
85 return data[pstate].frequency;
88 /* Return the vco fid for an input fid
90 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
91 * only from corresponding high fids. This returns "high" fid corresponding to
92 * "low" one.
94 static u32 convert_fid_to_vco_fid(u32 fid)
96 if (fid < HI_FID_TABLE_BOTTOM)
97 return 8 + (2 * fid);
98 else
99 return fid;
103 * Return 1 if the pending bit is set. Unless we just instructed the processor
104 * to transition to a new state, seeing this bit set is really bad news.
106 static int pending_bit_stuck(void)
108 u32 lo, hi;
110 if (cpu_family == CPU_HW_PSTATE)
111 return 0;
113 rdmsr(MSR_FIDVID_STATUS, lo, hi);
114 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
118 * Update the global current fid / vid values from the status msr.
119 * Returns 1 on error.
121 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
123 u32 lo, hi;
124 u32 i = 0;
126 if (cpu_family == CPU_HW_PSTATE) {
127 rdmsr(MSR_PSTATE_STATUS, lo, hi);
128 i = lo & HW_PSTATE_MASK;
129 data->currpstate = i;
131 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
132 data->currpstate = HW_PSTATE_0;
134 return 0;
136 do {
137 if (i++ > 10000) {
138 dprintk("detected change pending stuck\n");
139 return 1;
141 rdmsr(MSR_FIDVID_STATUS, lo, hi);
142 } while (lo & MSR_S_LO_CHANGE_PENDING);
144 data->currvid = hi & MSR_S_HI_CURRENT_VID;
145 data->currfid = lo & MSR_S_LO_CURRENT_FID;
147 return 0;
150 /* the isochronous relief time */
151 static void count_off_irt(struct powernow_k8_data *data)
153 udelay((1 << data->irt) * 10);
154 return;
157 /* the voltage stabilization time */
158 static void count_off_vst(struct powernow_k8_data *data)
160 udelay(data->vstable * VST_UNITS_20US);
161 return;
164 /* need to init the control msr to a safe value (for each cpu) */
165 static void fidvid_msr_init(void)
167 u32 lo, hi;
168 u8 fid, vid;
170 rdmsr(MSR_FIDVID_STATUS, lo, hi);
171 vid = hi & MSR_S_HI_CURRENT_VID;
172 fid = lo & MSR_S_LO_CURRENT_FID;
173 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
174 hi = MSR_C_HI_STP_GNT_BENIGN;
175 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
176 wrmsr(MSR_FIDVID_CTL, lo, hi);
179 /* write the new fid value along with the other control fields to the msr */
180 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
182 u32 lo;
183 u32 savevid = data->currvid;
184 u32 i = 0;
186 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
187 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
188 return 1;
191 lo = fid;
192 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
193 lo |= MSR_C_LO_INIT_FID_VID;
195 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
196 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
198 do {
199 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
200 if (i++ > 100) {
201 printk(KERN_ERR PFX
202 "Hardware error - pending bit very stuck - "
203 "no further pstate changes possible\n");
204 return 1;
206 } while (query_current_values_with_pending_wait(data));
208 count_off_irt(data);
210 if (savevid != data->currvid) {
211 printk(KERN_ERR PFX
212 "vid change on fid trans, old 0x%x, new 0x%x\n",
213 savevid, data->currvid);
214 return 1;
217 if (fid != data->currfid) {
218 printk(KERN_ERR PFX
219 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
220 data->currfid);
221 return 1;
224 return 0;
227 /* Write a new vid to the hardware */
228 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
230 u32 lo;
231 u32 savefid = data->currfid;
232 int i = 0;
234 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
235 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
236 return 1;
239 lo = data->currfid;
240 lo |= (vid << MSR_C_LO_VID_SHIFT);
241 lo |= MSR_C_LO_INIT_FID_VID;
243 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
244 vid, lo, STOP_GRANT_5NS);
246 do {
247 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
248 if (i++ > 100) {
249 printk(KERN_ERR PFX "internal error - pending bit "
250 "very stuck - no further pstate "
251 "changes possible\n");
252 return 1;
254 } while (query_current_values_with_pending_wait(data));
256 if (savefid != data->currfid) {
257 printk(KERN_ERR PFX "fid changed on vid trans, old "
258 "0x%x new 0x%x\n",
259 savefid, data->currfid);
260 return 1;
263 if (vid != data->currvid) {
264 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
265 "curr 0x%x\n",
266 vid, data->currvid);
267 return 1;
270 return 0;
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
278 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
279 u32 reqvid, u32 step)
281 if ((data->currvid - reqvid) > step)
282 reqvid = data->currvid - step;
284 if (write_new_vid(data, reqvid))
285 return 1;
287 count_off_vst(data);
289 return 0;
292 /* Change hardware pstate by single MSR write */
293 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
295 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
296 data->currpstate = pstate;
297 return 0;
300 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
301 static int transition_fid_vid(struct powernow_k8_data *data,
302 u32 reqfid, u32 reqvid)
304 if (core_voltage_pre_transition(data, reqvid, reqfid))
305 return 1;
307 if (core_frequency_transition(data, reqfid))
308 return 1;
310 if (core_voltage_post_transition(data, reqvid))
311 return 1;
313 if (query_current_values_with_pending_wait(data))
314 return 1;
316 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
317 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
318 "curr 0x%x 0x%x\n",
319 smp_processor_id(),
320 reqfid, reqvid, data->currfid, data->currvid);
321 return 1;
324 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
325 smp_processor_id(), data->currfid, data->currvid);
327 return 0;
330 /* Phase 1 - core voltage transition ... setup voltage */
331 static int core_voltage_pre_transition(struct powernow_k8_data *data,
332 u32 reqvid, u32 reqfid)
334 u32 rvosteps = data->rvo;
335 u32 savefid = data->currfid;
336 u32 maxvid, lo, rvomult = 1;
338 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
339 "reqvid 0x%x, rvo 0x%x\n",
340 smp_processor_id(),
341 data->currfid, data->currvid, reqvid, data->rvo);
343 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
344 rvomult = 2;
345 rvosteps *= rvomult;
346 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
347 maxvid = 0x1f & (maxvid >> 16);
348 dprintk("ph1 maxvid=0x%x\n", maxvid);
349 if (reqvid < maxvid) /* lower numbers are higher voltages */
350 reqvid = maxvid;
352 while (data->currvid > reqvid) {
353 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
354 data->currvid, reqvid);
355 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
356 return 1;
359 while ((rvosteps > 0) &&
360 ((rvomult * data->rvo + data->currvid) > reqvid)) {
361 if (data->currvid == maxvid) {
362 rvosteps = 0;
363 } else {
364 dprintk("ph1: changing vid for rvo, req 0x%x\n",
365 data->currvid - 1);
366 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
367 return 1;
368 rvosteps--;
372 if (query_current_values_with_pending_wait(data))
373 return 1;
375 if (savefid != data->currfid) {
376 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
377 data->currfid);
378 return 1;
381 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
382 data->currfid, data->currvid);
384 return 0;
387 /* Phase 2 - core frequency transition */
388 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
390 u32 vcoreqfid, vcocurrfid, vcofiddiff;
391 u32 fid_interval, savevid = data->currvid;
393 if (data->currfid == reqfid) {
394 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
395 data->currfid);
396 return 0;
399 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
400 "reqfid 0x%x\n",
401 smp_processor_id(),
402 data->currfid, data->currvid, reqfid);
404 vcoreqfid = convert_fid_to_vco_fid(reqfid);
405 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
406 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
407 : vcoreqfid - vcocurrfid;
409 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
410 vcofiddiff = 0;
412 while (vcofiddiff > 2) {
413 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
415 if (reqfid > data->currfid) {
416 if (data->currfid > LO_FID_TABLE_TOP) {
417 if (write_new_fid(data,
418 data->currfid + fid_interval))
419 return 1;
420 } else {
421 if (write_new_fid
422 (data,
423 2 + convert_fid_to_vco_fid(data->currfid)))
424 return 1;
426 } else {
427 if (write_new_fid(data, data->currfid - fid_interval))
428 return 1;
431 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
432 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
433 : vcoreqfid - vcocurrfid;
436 if (write_new_fid(data, reqfid))
437 return 1;
439 if (query_current_values_with_pending_wait(data))
440 return 1;
442 if (data->currfid != reqfid) {
443 printk(KERN_ERR PFX
444 "ph2: mismatch, failed fid transition, "
445 "curr 0x%x, req 0x%x\n",
446 data->currfid, reqfid);
447 return 1;
450 if (savevid != data->currvid) {
451 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
452 savevid, data->currvid);
453 return 1;
456 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
457 data->currfid, data->currvid);
459 return 0;
462 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
463 static int core_voltage_post_transition(struct powernow_k8_data *data,
464 u32 reqvid)
466 u32 savefid = data->currfid;
467 u32 savereqvid = reqvid;
469 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
470 smp_processor_id(),
471 data->currfid, data->currvid);
473 if (reqvid != data->currvid) {
474 if (write_new_vid(data, reqvid))
475 return 1;
477 if (savefid != data->currfid) {
478 printk(KERN_ERR PFX
479 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
480 savefid, data->currfid);
481 return 1;
484 if (data->currvid != reqvid) {
485 printk(KERN_ERR PFX
486 "ph3: failed vid transition\n, "
487 "req 0x%x, curr 0x%x",
488 reqvid, data->currvid);
489 return 1;
493 if (query_current_values_with_pending_wait(data))
494 return 1;
496 if (savereqvid != data->currvid) {
497 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
498 return 1;
501 if (savefid != data->currfid) {
502 dprintk("ph3 failed, currfid changed 0x%x\n",
503 data->currfid);
504 return 1;
507 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
508 data->currfid, data->currvid);
510 return 0;
513 static void check_supported_cpu(void *_rc)
515 u32 eax, ebx, ecx, edx;
516 int *rc = _rc;
518 *rc = -ENODEV;
520 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
521 return;
523 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
524 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
525 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
526 return;
528 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
529 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
530 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
531 printk(KERN_INFO PFX
532 "Processor cpuid %x not supported\n", eax);
533 return;
536 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
537 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
538 printk(KERN_INFO PFX
539 "No frequency change capabilities detected\n");
540 return;
543 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
544 if ((edx & P_STATE_TRANSITION_CAPABLE)
545 != P_STATE_TRANSITION_CAPABLE) {
546 printk(KERN_INFO PFX
547 "Power state transitions not supported\n");
548 return;
550 } else { /* must be a HW Pstate capable processor */
551 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
552 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
553 cpu_family = CPU_HW_PSTATE;
554 else
555 return;
558 *rc = 0;
561 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
562 u8 maxvid)
564 unsigned int j;
565 u8 lastfid = 0xff;
567 for (j = 0; j < data->numps; j++) {
568 if (pst[j].vid > LEAST_VID) {
569 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
570 j, pst[j].vid);
571 return -EINVAL;
573 if (pst[j].vid < data->rvo) {
574 /* vid + rvo >= 0 */
575 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
576 " %d\n", j);
577 return -ENODEV;
579 if (pst[j].vid < maxvid + data->rvo) {
580 /* vid + rvo >= maxvid */
581 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
582 " %d\n", j);
583 return -ENODEV;
585 if (pst[j].fid > MAX_FID) {
586 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
587 " %d\n", j);
588 return -ENODEV;
590 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
591 /* Only first fid is allowed to be in "low" range */
592 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
593 "0x%x\n", j, pst[j].fid);
594 return -EINVAL;
596 if (pst[j].fid < lastfid)
597 lastfid = pst[j].fid;
599 if (lastfid & 1) {
600 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
601 return -EINVAL;
603 if (lastfid > LO_FID_TABLE_TOP)
604 printk(KERN_INFO FW_BUG PFX
605 "first fid not from lo freq table\n");
607 return 0;
610 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
611 unsigned int entry)
613 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
616 static void print_basics(struct powernow_k8_data *data)
618 int j;
619 for (j = 0; j < data->numps; j++) {
620 if (data->powernow_table[j].frequency !=
621 CPUFREQ_ENTRY_INVALID) {
622 if (cpu_family == CPU_HW_PSTATE) {
623 printk(KERN_INFO PFX
624 " %d : pstate %d (%d MHz)\n", j,
625 data->powernow_table[j].index,
626 data->powernow_table[j].frequency/1000);
627 } else {
628 printk(KERN_INFO PFX
629 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
631 data->powernow_table[j].index & 0xff,
632 data->powernow_table[j].frequency/1000,
633 data->powernow_table[j].index >> 8);
637 if (data->batps)
638 printk(KERN_INFO PFX "Only %d pstates on battery\n",
639 data->batps);
642 static u32 freq_from_fid_did(u32 fid, u32 did)
644 u32 mhz = 0;
646 if (boot_cpu_data.x86 == 0x10)
647 mhz = (100 * (fid + 0x10)) >> did;
648 else if (boot_cpu_data.x86 == 0x11)
649 mhz = (100 * (fid + 8)) >> did;
650 else
651 BUG();
653 return mhz * 1000;
656 static int fill_powernow_table(struct powernow_k8_data *data,
657 struct pst_s *pst, u8 maxvid)
659 struct cpufreq_frequency_table *powernow_table;
660 unsigned int j;
662 if (data->batps) {
663 /* use ACPI support to get full speed on mains power */
664 printk(KERN_WARNING PFX
665 "Only %d pstates usable (use ACPI driver for full "
666 "range\n", data->batps);
667 data->numps = data->batps;
670 for (j = 1; j < data->numps; j++) {
671 if (pst[j-1].fid >= pst[j].fid) {
672 printk(KERN_ERR PFX "PST out of sequence\n");
673 return -EINVAL;
677 if (data->numps < 2) {
678 printk(KERN_ERR PFX "no p states to transition\n");
679 return -ENODEV;
682 if (check_pst_table(data, pst, maxvid))
683 return -EINVAL;
685 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
686 * (data->numps + 1)), GFP_KERNEL);
687 if (!powernow_table) {
688 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
689 return -ENOMEM;
692 for (j = 0; j < data->numps; j++) {
693 int freq;
694 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
695 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
696 freq = find_khz_freq_from_fid(pst[j].fid);
697 powernow_table[j].frequency = freq;
699 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
700 powernow_table[data->numps].index = 0;
702 if (query_current_values_with_pending_wait(data)) {
703 kfree(powernow_table);
704 return -EIO;
707 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
708 data->powernow_table = powernow_table;
709 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
710 print_basics(data);
712 for (j = 0; j < data->numps; j++)
713 if ((pst[j].fid == data->currfid) &&
714 (pst[j].vid == data->currvid))
715 return 0;
717 dprintk("currfid/vid do not match PST, ignoring\n");
718 return 0;
721 /* Find and validate the PSB/PST table in BIOS. */
722 static int find_psb_table(struct powernow_k8_data *data)
724 struct psb_s *psb;
725 unsigned int i;
726 u32 mvs;
727 u8 maxvid;
728 u32 cpst = 0;
729 u32 thiscpuid;
731 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
732 /* Scan BIOS looking for the signature. */
733 /* It can not be at ffff0 - it is too big. */
735 psb = phys_to_virt(i);
736 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
737 continue;
739 dprintk("found PSB header at 0x%p\n", psb);
741 dprintk("table vers: 0x%x\n", psb->tableversion);
742 if (psb->tableversion != PSB_VERSION_1_4) {
743 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
744 return -ENODEV;
747 dprintk("flags: 0x%x\n", psb->flags1);
748 if (psb->flags1) {
749 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
750 return -ENODEV;
753 data->vstable = psb->vstable;
754 dprintk("voltage stabilization time: %d(*20us)\n",
755 data->vstable);
757 dprintk("flags2: 0x%x\n", psb->flags2);
758 data->rvo = psb->flags2 & 3;
759 data->irt = ((psb->flags2) >> 2) & 3;
760 mvs = ((psb->flags2) >> 4) & 3;
761 data->vidmvs = 1 << mvs;
762 data->batps = ((psb->flags2) >> 6) & 3;
764 dprintk("ramp voltage offset: %d\n", data->rvo);
765 dprintk("isochronous relief time: %d\n", data->irt);
766 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
768 dprintk("numpst: 0x%x\n", psb->num_tables);
769 cpst = psb->num_tables;
770 if ((psb->cpuid == 0x00000fc0) ||
771 (psb->cpuid == 0x00000fe0)) {
772 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
773 if ((thiscpuid == 0x00000fc0) ||
774 (thiscpuid == 0x00000fe0))
775 cpst = 1;
777 if (cpst != 1) {
778 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
779 return -ENODEV;
782 data->plllock = psb->plllocktime;
783 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
784 dprintk("maxfid: 0x%x\n", psb->maxfid);
785 dprintk("maxvid: 0x%x\n", psb->maxvid);
786 maxvid = psb->maxvid;
788 data->numps = psb->numps;
789 dprintk("numpstates: 0x%x\n", data->numps);
790 return fill_powernow_table(data,
791 (struct pst_s *)(psb+1), maxvid);
794 * If you see this message, complain to BIOS manufacturer. If
795 * he tells you "we do not support Linux" or some similar
796 * nonsense, remember that Windows 2000 uses the same legacy
797 * mechanism that the old Linux PSB driver uses. Tell them it
798 * is broken with Windows 2000.
800 * The reference to the AMD documentation is chapter 9 in the
801 * BIOS and Kernel Developer's Guide, which is available on
802 * www.amd.com
804 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
805 printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
806 " and Cool'N'Quiet support is enabled in BIOS setup\n");
807 return -ENODEV;
810 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
811 unsigned int index)
813 u64 control;
815 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
816 return;
818 control = data->acpi_data.states[index].control;
819 data->irt = (control >> IRT_SHIFT) & IRT_MASK;
820 data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
821 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
822 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
823 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
824 data->vstable = (control >> VST_SHIFT) & VST_MASK;
827 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
829 struct cpufreq_frequency_table *powernow_table;
830 int ret_val = -ENODEV;
831 u64 control, status;
833 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
834 dprintk("register performance failed: bad ACPI data\n");
835 return -EIO;
838 /* verify the data contained in the ACPI structures */
839 if (data->acpi_data.state_count <= 1) {
840 dprintk("No ACPI P-States\n");
841 goto err_out;
844 control = data->acpi_data.control_register.space_id;
845 status = data->acpi_data.status_register.space_id;
847 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
848 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
849 dprintk("Invalid control/status registers (%x - %x)\n",
850 control, status);
851 goto err_out;
854 /* fill in data->powernow_table */
855 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
856 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
857 if (!powernow_table) {
858 dprintk("powernow_table memory alloc failure\n");
859 goto err_out;
862 /* fill in data */
863 data->numps = data->acpi_data.state_count;
864 powernow_k8_acpi_pst_values(data, 0);
866 if (cpu_family == CPU_HW_PSTATE)
867 ret_val = fill_powernow_table_pstate(data, powernow_table);
868 else
869 ret_val = fill_powernow_table_fidvid(data, powernow_table);
870 if (ret_val)
871 goto err_out_mem;
873 powernow_table[data->acpi_data.state_count].frequency =
874 CPUFREQ_TABLE_END;
875 powernow_table[data->acpi_data.state_count].index = 0;
876 data->powernow_table = powernow_table;
878 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
879 print_basics(data);
881 /* notify BIOS that we exist */
882 acpi_processor_notify_smm(THIS_MODULE);
884 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
885 printk(KERN_ERR PFX
886 "unable to alloc powernow_k8_data cpumask\n");
887 ret_val = -ENOMEM;
888 goto err_out_mem;
891 return 0;
893 err_out_mem:
894 kfree(powernow_table);
896 err_out:
897 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
899 /* data->acpi_data.state_count informs us at ->exit()
900 * whether ACPI was used */
901 data->acpi_data.state_count = 0;
903 return ret_val;
906 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
907 struct cpufreq_frequency_table *powernow_table)
909 int i;
910 u32 hi = 0, lo = 0;
911 rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
912 data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
914 for (i = 0; i < data->acpi_data.state_count; i++) {
915 u32 index;
917 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
918 if (index > data->max_hw_pstate) {
919 printk(KERN_ERR PFX "invalid pstate %d - "
920 "bad value %d.\n", i, index);
921 printk(KERN_ERR PFX "Please report to BIOS "
922 "manufacturer\n");
923 invalidate_entry(powernow_table, i);
924 continue;
926 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
927 if (!(hi & HW_PSTATE_VALID_MASK)) {
928 dprintk("invalid pstate %d, ignoring\n", index);
929 invalidate_entry(powernow_table, i);
930 continue;
933 powernow_table[i].index = index;
935 /* Frequency may be rounded for these */
936 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
937 || boot_cpu_data.x86 == 0x11) {
938 powernow_table[i].frequency =
939 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
940 } else
941 powernow_table[i].frequency =
942 data->acpi_data.states[i].core_frequency * 1000;
944 return 0;
947 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
948 struct cpufreq_frequency_table *powernow_table)
950 int i;
952 for (i = 0; i < data->acpi_data.state_count; i++) {
953 u32 fid;
954 u32 vid;
955 u32 freq, index;
956 u64 status, control;
958 if (data->exttype) {
959 status = data->acpi_data.states[i].status;
960 fid = status & EXT_FID_MASK;
961 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
962 } else {
963 control = data->acpi_data.states[i].control;
964 fid = control & FID_MASK;
965 vid = (control >> VID_SHIFT) & VID_MASK;
968 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
970 index = fid | (vid<<8);
971 powernow_table[i].index = index;
973 freq = find_khz_freq_from_fid(fid);
974 powernow_table[i].frequency = freq;
976 /* verify frequency is OK */
977 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
978 dprintk("invalid freq %u kHz, ignoring\n", freq);
979 invalidate_entry(powernow_table, i);
980 continue;
983 /* verify voltage is OK -
984 * BIOSs are using "off" to indicate invalid */
985 if (vid == VID_OFF) {
986 dprintk("invalid vid %u, ignoring\n", vid);
987 invalidate_entry(powernow_table, i);
988 continue;
991 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
992 printk(KERN_INFO PFX "invalid freq entries "
993 "%u kHz vs. %u kHz\n", freq,
994 (unsigned int)
995 (data->acpi_data.states[i].core_frequency
996 * 1000));
997 invalidate_entry(powernow_table, i);
998 continue;
1001 return 0;
1004 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1006 if (data->acpi_data.state_count)
1007 acpi_processor_unregister_performance(&data->acpi_data,
1008 data->cpu);
1009 free_cpumask_var(data->acpi_data.shared_cpu_map);
1012 static int get_transition_latency(struct powernow_k8_data *data)
1014 int max_latency = 0;
1015 int i;
1016 for (i = 0; i < data->acpi_data.state_count; i++) {
1017 int cur_latency = data->acpi_data.states[i].transition_latency
1018 + data->acpi_data.states[i].bus_master_latency;
1019 if (cur_latency > max_latency)
1020 max_latency = cur_latency;
1022 if (max_latency == 0) {
1024 * Fam 11h and later may return 0 as transition latency. This
1025 * is intended and means "very fast". While cpufreq core and
1026 * governors currently can handle that gracefully, better set it
1027 * to 1 to avoid problems in the future.
1029 if (boot_cpu_data.x86 < 0x11)
1030 printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1031 "latency\n");
1032 max_latency = 1;
1034 /* value in usecs, needs to be in nanoseconds */
1035 return 1000 * max_latency;
1038 /* Take a frequency, and issue the fid/vid transition command */
1039 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1040 unsigned int index)
1042 u32 fid = 0;
1043 u32 vid = 0;
1044 int res, i;
1045 struct cpufreq_freqs freqs;
1047 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1049 /* fid/vid correctness check for k8 */
1050 /* fid are the lower 8 bits of the index we stored into
1051 * the cpufreq frequency table in find_psb_table, vid
1052 * are the upper 8 bits.
1054 fid = data->powernow_table[index].index & 0xFF;
1055 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1057 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1059 if (query_current_values_with_pending_wait(data))
1060 return 1;
1062 if ((data->currvid == vid) && (data->currfid == fid)) {
1063 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1064 fid, vid);
1065 return 0;
1068 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1069 smp_processor_id(), fid, vid);
1070 freqs.old = find_khz_freq_from_fid(data->currfid);
1071 freqs.new = find_khz_freq_from_fid(fid);
1073 for_each_cpu(i, data->available_cores) {
1074 freqs.cpu = i;
1075 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1078 res = transition_fid_vid(data, fid, vid);
1079 freqs.new = find_khz_freq_from_fid(data->currfid);
1081 for_each_cpu(i, data->available_cores) {
1082 freqs.cpu = i;
1083 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1085 return res;
1088 /* Take a frequency, and issue the hardware pstate transition command */
1089 static int transition_frequency_pstate(struct powernow_k8_data *data,
1090 unsigned int index)
1092 u32 pstate = 0;
1093 int res, i;
1094 struct cpufreq_freqs freqs;
1096 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1098 /* get MSR index for hardware pstate transition */
1099 pstate = index & HW_PSTATE_MASK;
1100 if (pstate > data->max_hw_pstate)
1101 return 0;
1102 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1103 data->currpstate);
1104 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1106 for_each_cpu(i, data->available_cores) {
1107 freqs.cpu = i;
1108 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1111 res = transition_pstate(data, pstate);
1112 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1114 for_each_cpu(i, data->available_cores) {
1115 freqs.cpu = i;
1116 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1118 return res;
1121 /* Driver entry point to switch to the target frequency */
1122 static int powernowk8_target(struct cpufreq_policy *pol,
1123 unsigned targfreq, unsigned relation)
1125 cpumask_var_t oldmask;
1126 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1127 u32 checkfid;
1128 u32 checkvid;
1129 unsigned int newstate;
1130 int ret = -EIO;
1132 if (!data)
1133 return -EINVAL;
1135 checkfid = data->currfid;
1136 checkvid = data->currvid;
1138 /* only run on specific CPU from here on. */
1139 /* This is poor form: use a workqueue or smp_call_function_single */
1140 if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1141 return -ENOMEM;
1143 cpumask_copy(oldmask, tsk_cpus_allowed(current));
1144 set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1146 if (smp_processor_id() != pol->cpu) {
1147 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1148 goto err_out;
1151 if (pending_bit_stuck()) {
1152 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1153 goto err_out;
1156 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1157 pol->cpu, targfreq, pol->min, pol->max, relation);
1159 if (query_current_values_with_pending_wait(data))
1160 goto err_out;
1162 if (cpu_family != CPU_HW_PSTATE) {
1163 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1164 data->currfid, data->currvid);
1166 if ((checkvid != data->currvid) ||
1167 (checkfid != data->currfid)) {
1168 printk(KERN_INFO PFX
1169 "error - out of sync, fix 0x%x 0x%x, "
1170 "vid 0x%x 0x%x\n",
1171 checkfid, data->currfid,
1172 checkvid, data->currvid);
1176 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1177 targfreq, relation, &newstate))
1178 goto err_out;
1180 mutex_lock(&fidvid_mutex);
1182 powernow_k8_acpi_pst_values(data, newstate);
1184 if (cpu_family == CPU_HW_PSTATE)
1185 ret = transition_frequency_pstate(data, newstate);
1186 else
1187 ret = transition_frequency_fidvid(data, newstate);
1188 if (ret) {
1189 printk(KERN_ERR PFX "transition frequency failed\n");
1190 ret = 1;
1191 mutex_unlock(&fidvid_mutex);
1192 goto err_out;
1194 mutex_unlock(&fidvid_mutex);
1196 if (cpu_family == CPU_HW_PSTATE)
1197 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1198 newstate);
1199 else
1200 pol->cur = find_khz_freq_from_fid(data->currfid);
1201 ret = 0;
1203 err_out:
1204 set_cpus_allowed_ptr(current, oldmask);
1205 free_cpumask_var(oldmask);
1206 return ret;
1209 /* Driver entry point to verify the policy and range of frequencies */
1210 static int powernowk8_verify(struct cpufreq_policy *pol)
1212 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1214 if (!data)
1215 return -EINVAL;
1217 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1220 struct init_on_cpu {
1221 struct powernow_k8_data *data;
1222 int rc;
1225 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1227 struct init_on_cpu *init_on_cpu = _init_on_cpu;
1229 if (pending_bit_stuck()) {
1230 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1231 init_on_cpu->rc = -ENODEV;
1232 return;
1235 if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1236 init_on_cpu->rc = -ENODEV;
1237 return;
1240 if (cpu_family == CPU_OPTERON)
1241 fidvid_msr_init();
1243 init_on_cpu->rc = 0;
1246 /* per CPU init entry point to the driver */
1247 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1249 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1250 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1251 FW_BUG PFX "Try again with latest BIOS.\n";
1252 struct powernow_k8_data *data;
1253 struct init_on_cpu init_on_cpu;
1254 int rc;
1255 struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1257 if (!cpu_online(pol->cpu))
1258 return -ENODEV;
1260 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1261 if (rc)
1262 return -ENODEV;
1264 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1265 if (!data) {
1266 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1267 return -ENOMEM;
1270 data->cpu = pol->cpu;
1271 data->currpstate = HW_PSTATE_INVALID;
1273 if (powernow_k8_cpu_init_acpi(data)) {
1275 * Use the PSB BIOS structure. This is only availabe on
1276 * an UP version, and is deprecated by AMD.
1278 if (num_online_cpus() != 1) {
1279 printk_once(ACPI_PSS_BIOS_BUG_MSG);
1280 goto err_out;
1282 if (pol->cpu != 0) {
1283 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1284 "CPU other than CPU0. Complain to your BIOS "
1285 "vendor.\n");
1286 goto err_out;
1288 rc = find_psb_table(data);
1289 if (rc)
1290 goto err_out;
1292 /* Take a crude guess here.
1293 * That guess was in microseconds, so multiply with 1000 */
1294 pol->cpuinfo.transition_latency = (
1295 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1296 ((1 << data->irt) * 30)) * 1000;
1297 } else /* ACPI _PSS objects available */
1298 pol->cpuinfo.transition_latency = get_transition_latency(data);
1300 /* only run on specific CPU from here on */
1301 init_on_cpu.data = data;
1302 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1303 &init_on_cpu, 1);
1304 rc = init_on_cpu.rc;
1305 if (rc != 0)
1306 goto err_out_exit_acpi;
1308 if (cpu_family == CPU_HW_PSTATE)
1309 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1310 else
1311 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1312 data->available_cores = pol->cpus;
1314 if (cpu_family == CPU_HW_PSTATE)
1315 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1316 data->currpstate);
1317 else
1318 pol->cur = find_khz_freq_from_fid(data->currfid);
1319 dprintk("policy current frequency %d kHz\n", pol->cur);
1321 /* min/max the cpu is capable of */
1322 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1323 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1324 powernow_k8_cpu_exit_acpi(data);
1325 kfree(data->powernow_table);
1326 kfree(data);
1327 return -EINVAL;
1330 /* Check for APERF/MPERF support in hardware */
1331 if (cpu_has(c, X86_FEATURE_APERFMPERF))
1332 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1334 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1336 if (cpu_family == CPU_HW_PSTATE)
1337 dprintk("cpu_init done, current pstate 0x%x\n",
1338 data->currpstate);
1339 else
1340 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1341 data->currfid, data->currvid);
1343 per_cpu(powernow_data, pol->cpu) = data;
1345 return 0;
1347 err_out_exit_acpi:
1348 powernow_k8_cpu_exit_acpi(data);
1350 err_out:
1351 kfree(data);
1352 return -ENODEV;
1355 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1357 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1359 if (!data)
1360 return -EINVAL;
1362 powernow_k8_cpu_exit_acpi(data);
1364 cpufreq_frequency_table_put_attr(pol->cpu);
1366 kfree(data->powernow_table);
1367 kfree(data);
1368 per_cpu(powernow_data, pol->cpu) = NULL;
1370 return 0;
1373 static void query_values_on_cpu(void *_err)
1375 int *err = _err;
1376 struct powernow_k8_data *data = __get_cpu_var(powernow_data);
1378 *err = query_current_values_with_pending_wait(data);
1381 static unsigned int powernowk8_get(unsigned int cpu)
1383 struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1384 unsigned int khz = 0;
1385 int err;
1387 if (!data)
1388 return 0;
1390 smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1391 if (err)
1392 goto out;
1394 if (cpu_family == CPU_HW_PSTATE)
1395 khz = find_khz_freq_from_pstate(data->powernow_table,
1396 data->currpstate);
1397 else
1398 khz = find_khz_freq_from_fid(data->currfid);
1401 out:
1402 return khz;
1405 static void _cpb_toggle_msrs(bool t)
1407 int cpu;
1409 get_online_cpus();
1411 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1413 for_each_cpu(cpu, cpu_online_mask) {
1414 struct msr *reg = per_cpu_ptr(msrs, cpu);
1415 if (t)
1416 reg->l &= ~BIT(25);
1417 else
1418 reg->l |= BIT(25);
1420 wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1422 put_online_cpus();
1426 * Switch on/off core performance boosting.
1428 * 0=disable
1429 * 1=enable.
1431 static void cpb_toggle(bool t)
1433 if (!cpb_capable)
1434 return;
1436 if (t && !cpb_enabled) {
1437 cpb_enabled = true;
1438 _cpb_toggle_msrs(t);
1439 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1440 } else if (!t && cpb_enabled) {
1441 cpb_enabled = false;
1442 _cpb_toggle_msrs(t);
1443 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1447 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1448 size_t count)
1450 int ret = -EINVAL;
1451 unsigned long val = 0;
1453 ret = strict_strtoul(buf, 10, &val);
1454 if (!ret && (val == 0 || val == 1) && cpb_capable)
1455 cpb_toggle(val);
1456 else
1457 return -EINVAL;
1459 return count;
1462 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1464 return sprintf(buf, "%u\n", cpb_enabled);
1467 #define define_one_rw(_name) \
1468 static struct freq_attr _name = \
1469 __ATTR(_name, 0644, show_##_name, store_##_name)
1471 define_one_rw(cpb);
1473 static struct freq_attr *powernow_k8_attr[] = {
1474 &cpufreq_freq_attr_scaling_available_freqs,
1475 &cpb,
1476 NULL,
1479 static struct cpufreq_driver cpufreq_amd64_driver = {
1480 .verify = powernowk8_verify,
1481 .target = powernowk8_target,
1482 .bios_limit = acpi_processor_get_bios_limit,
1483 .init = powernowk8_cpu_init,
1484 .exit = __devexit_p(powernowk8_cpu_exit),
1485 .get = powernowk8_get,
1486 .name = "powernow-k8",
1487 .owner = THIS_MODULE,
1488 .attr = powernow_k8_attr,
1492 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1493 * cannot block the remaining ones from boosting. On the CPU_UP path we
1494 * simply keep the boost-disable flag in sync with the current global
1495 * state.
1497 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1498 void *hcpu)
1500 unsigned cpu = (long)hcpu;
1501 u32 lo, hi;
1503 switch (action) {
1504 case CPU_UP_PREPARE:
1505 case CPU_UP_PREPARE_FROZEN:
1507 if (!cpb_enabled) {
1508 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1509 lo |= BIT(25);
1510 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1512 break;
1514 case CPU_DOWN_PREPARE:
1515 case CPU_DOWN_PREPARE_FROZEN:
1516 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1517 lo &= ~BIT(25);
1518 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1519 break;
1521 default:
1522 break;
1525 return NOTIFY_OK;
1528 static struct notifier_block cpb_nb = {
1529 .notifier_call = cpb_notify,
1532 /* driver entry point for init */
1533 static int __cpuinit powernowk8_init(void)
1535 unsigned int i, supported_cpus = 0, cpu;
1537 for_each_online_cpu(i) {
1538 int rc;
1539 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1540 if (rc == 0)
1541 supported_cpus++;
1544 if (supported_cpus != num_online_cpus())
1545 return -ENODEV;
1547 printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1548 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1550 if (boot_cpu_has(X86_FEATURE_CPB)) {
1552 cpb_capable = true;
1554 register_cpu_notifier(&cpb_nb);
1556 msrs = msrs_alloc();
1557 if (!msrs) {
1558 printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1559 return -ENOMEM;
1562 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1564 for_each_cpu(cpu, cpu_online_mask) {
1565 struct msr *reg = per_cpu_ptr(msrs, cpu);
1566 cpb_enabled |= !(!!(reg->l & BIT(25)));
1569 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1570 (cpb_enabled ? "on" : "off"));
1573 return cpufreq_register_driver(&cpufreq_amd64_driver);
1576 /* driver entry point for term */
1577 static void __exit powernowk8_exit(void)
1579 dprintk("exit\n");
1581 if (boot_cpu_has(X86_FEATURE_CPB)) {
1582 msrs_free(msrs);
1583 msrs = NULL;
1585 unregister_cpu_notifier(&cpb_nb);
1588 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1591 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1592 "Mark Langsdorf <mark.langsdorf@amd.com>");
1593 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1594 MODULE_LICENSE("GPL");
1596 late_initcall(powernowk8_init);
1597 module_exit(powernowk8_exit);