GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / tile / kernel / pci-dma.c
blob5ad5e13b0fa6accb1901985e11cfb65757ddaf16
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/vmalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/homecache.h>
21 /* Generic DMA mapping functions: */
24 * Allocate what Linux calls "coherent" memory, which for us just
25 * means uncached.
27 void *dma_alloc_coherent(struct device *dev,
28 size_t size,
29 dma_addr_t *dma_handle,
30 gfp_t gfp)
32 u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
33 int node = dev_to_node(dev);
34 int order = get_order(size);
35 struct page *pg;
36 dma_addr_t addr;
38 gfp |= __GFP_ZERO;
41 * By forcing NUMA node 0 for 32-bit masks we ensure that the
42 * high 32 bits of the resulting PA will be zero. If the mask
43 * size is, e.g., 24, we may still not be able to guarantee a
44 * suitable memory address, in which case we will return NULL.
45 * But such devices are uncommon.
47 if (dma_mask <= DMA_BIT_MASK(32))
48 node = 0;
50 pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
51 if (pg == NULL)
52 return NULL;
54 addr = page_to_phys(pg);
55 if (addr + size > dma_mask) {
56 homecache_free_pages(addr, order);
57 return NULL;
60 *dma_handle = addr;
61 return page_address(pg);
63 EXPORT_SYMBOL(dma_alloc_coherent);
66 * Free memory that was allocated with dma_alloc_coherent.
68 void dma_free_coherent(struct device *dev, size_t size,
69 void *vaddr, dma_addr_t dma_handle)
71 homecache_free_pages((unsigned long)vaddr, get_order(size));
73 EXPORT_SYMBOL(dma_free_coherent);
76 * The map routines "map" the specified address range for DMA
77 * accesses. The memory belongs to the device after this call is
78 * issued, until it is unmapped with dma_unmap_single.
80 * We don't need to do any mapping, we just flush the address range
81 * out of the cache and return a DMA address.
83 * The unmap routines do whatever is necessary before the processor
84 * accesses the memory again, and must be called before the driver
85 * touches the memory. We can get away with a cache invalidate if we
86 * can count on nothing having been touched.
91 * dma_map_single can be passed any memory address, and there appear
92 * to be no alignment constraints.
94 * There is a chance that the start of the buffer will share a cache
95 * line with some other data that has been touched in the meantime.
97 dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
98 enum dma_data_direction direction)
100 struct page *page;
101 dma_addr_t dma_addr;
102 int thispage;
104 BUG_ON(!valid_dma_direction(direction));
105 WARN_ON(size == 0);
107 dma_addr = __pa(ptr);
109 /* We might have been handed a buffer that wraps a page boundary */
110 while ((int)size > 0) {
111 /* The amount to flush that's on this page */
112 thispage = PAGE_SIZE - ((unsigned long)ptr & (PAGE_SIZE - 1));
113 thispage = min((int)thispage, (int)size);
114 /* Is this valid for any page we could be handed? */
115 page = pfn_to_page(kaddr_to_pfn(ptr));
116 homecache_flush_cache(page, 0);
117 ptr += thispage;
118 size -= thispage;
121 return dma_addr;
123 EXPORT_SYMBOL(dma_map_single);
125 void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
126 enum dma_data_direction direction)
128 BUG_ON(!valid_dma_direction(direction));
130 EXPORT_SYMBOL(dma_unmap_single);
132 int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
133 enum dma_data_direction direction)
135 struct scatterlist *sg;
136 int i;
138 BUG_ON(!valid_dma_direction(direction));
140 WARN_ON(nents == 0 || sglist->length == 0);
142 for_each_sg(sglist, sg, nents, i) {
143 struct page *page;
144 sg->dma_address = sg_phys(sg);
145 page = pfn_to_page(sg->dma_address >> PAGE_SHIFT);
146 homecache_flush_cache(page, 0);
149 return nents;
151 EXPORT_SYMBOL(dma_map_sg);
153 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
154 enum dma_data_direction direction)
156 BUG_ON(!valid_dma_direction(direction));
158 EXPORT_SYMBOL(dma_unmap_sg);
160 dma_addr_t dma_map_page(struct device *dev, struct page *page,
161 unsigned long offset, size_t size,
162 enum dma_data_direction direction)
164 BUG_ON(!valid_dma_direction(direction));
166 homecache_flush_cache(page, 0);
168 return page_to_pa(page) + offset;
170 EXPORT_SYMBOL(dma_map_page);
172 void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
173 enum dma_data_direction direction)
175 BUG_ON(!valid_dma_direction(direction));
177 EXPORT_SYMBOL(dma_unmap_page);
179 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
180 size_t size, enum dma_data_direction direction)
182 BUG_ON(!valid_dma_direction(direction));
184 EXPORT_SYMBOL(dma_sync_single_for_cpu);
186 void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
187 size_t size, enum dma_data_direction direction)
189 unsigned long start = PFN_DOWN(dma_handle);
190 unsigned long end = PFN_DOWN(dma_handle + size - 1);
191 unsigned long i;
193 BUG_ON(!valid_dma_direction(direction));
194 for (i = start; i <= end; ++i)
195 homecache_flush_cache(pfn_to_page(i), 0);
197 EXPORT_SYMBOL(dma_sync_single_for_device);
199 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
200 enum dma_data_direction direction)
202 BUG_ON(!valid_dma_direction(direction));
203 WARN_ON(nelems == 0 || sg[0].length == 0);
205 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
208 * Flush and invalidate cache for scatterlist.
210 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
211 int nelems, enum dma_data_direction direction)
213 struct scatterlist *sg;
214 int i;
216 BUG_ON(!valid_dma_direction(direction));
217 WARN_ON(nelems == 0 || sglist->length == 0);
219 for_each_sg(sglist, sg, nelems, i) {
220 dma_sync_single_for_device(dev, sg->dma_address,
221 sg_dma_len(sg), direction);
224 EXPORT_SYMBOL(dma_sync_sg_for_device);
226 void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
227 unsigned long offset, size_t size,
228 enum dma_data_direction direction)
230 dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
232 EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
234 void dma_sync_single_range_for_device(struct device *dev,
235 dma_addr_t dma_handle,
236 unsigned long offset, size_t size,
237 enum dma_data_direction direction)
239 dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
241 EXPORT_SYMBOL(dma_sync_single_range_for_device);
244 * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
245 * need to do any flushing here.
247 void dma_cache_sync(void *vaddr, size_t size,
248 enum dma_data_direction direction)
251 EXPORT_SYMBOL(dma_cache_sync);