GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / sparc / mm / srmmu.c
blobdc04da1aefc753fc4a75ffdf6a524b7d14053e8e
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pagemap.h>
15 #include <linux/init.h>
16 #include <linux/spinlock.h>
17 #include <linux/bootmem.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kdebug.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
24 #include <asm/bitext.h>
25 #include <asm/page.h>
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 #include <asm/leon.h>
51 #include <asm/btfixup.h>
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
58 extern struct resource sparc_iomap;
60 extern unsigned long last_valid_pfn;
62 extern unsigned long page_kernel;
64 static pgd_t *srmmu_swapper_pg_dir;
66 #ifdef CONFIG_SMP
67 #define FLUSH_BEGIN(mm)
68 #define FLUSH_END
69 #else
70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71 #define FLUSH_END }
72 #endif
74 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
77 int flush_page_for_dma_global = 1;
79 #ifdef CONFIG_SMP
80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82 #endif
84 char *srmmu_name;
86 ctxd_t *srmmu_ctx_table_phys;
87 static ctxd_t *srmmu_context_table;
89 int viking_mxcc_present;
90 static DEFINE_SPINLOCK(srmmu_context_spinlock);
92 static int is_hypersparc;
95 * In general all page table modifications should use the V8 atomic
96 * swap instruction. This insures the mmu and the cpu are in sync
97 * with respect to ref/mod bits in the page tables.
99 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
101 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102 return value;
105 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
107 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
110 /* The very generic SRMMU page table operations. */
111 static inline int srmmu_device_memory(unsigned long x)
113 return ((x & 0xF0000000) != 0);
116 static int srmmu_cache_pagetables;
118 /* these will be initialized in srmmu_nocache_calcsize() */
119 static unsigned long srmmu_nocache_size;
120 static unsigned long srmmu_nocache_end;
122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
125 /* The context table is a nocache user with the biggest alignment needs. */
126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
128 void *srmmu_nocache_pool;
129 void *srmmu_nocache_bitmap;
130 static struct bit_map srmmu_nocache_map;
132 static unsigned long srmmu_pte_pfn(pte_t pte)
134 if (srmmu_device_memory(pte_val(pte))) {
135 /* Just return something that will cause
136 * pfn_valid() to return false. This makes
137 * copy_one_pte() to just directly copy to
138 * PTE over.
140 return ~0UL;
142 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
145 static struct page *srmmu_pmd_page(pmd_t pmd)
148 if (srmmu_device_memory(pmd_val(pmd)))
149 BUG();
150 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
157 static inline int srmmu_pte_none(pte_t pte)
158 { return !(pte_val(pte) & 0xFFFFFFF); }
160 static inline int srmmu_pte_present(pte_t pte)
161 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
163 static inline void srmmu_pte_clear(pte_t *ptep)
164 { srmmu_set_pte(ptep, __pte(0)); }
166 static inline int srmmu_pmd_none(pmd_t pmd)
167 { return !(pmd_val(pmd) & 0xFFFFFFF); }
169 static inline int srmmu_pmd_bad(pmd_t pmd)
170 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
172 static inline int srmmu_pmd_present(pmd_t pmd)
173 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
175 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
176 int i;
177 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
178 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
181 static inline int srmmu_pgd_none(pgd_t pgd)
182 { return !(pgd_val(pgd) & 0xFFFFFFF); }
184 static inline int srmmu_pgd_bad(pgd_t pgd)
185 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
187 static inline int srmmu_pgd_present(pgd_t pgd)
188 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
190 static inline void srmmu_pgd_clear(pgd_t * pgdp)
191 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
193 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
194 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
196 static inline pte_t srmmu_pte_mkclean(pte_t pte)
197 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
199 static inline pte_t srmmu_pte_mkold(pte_t pte)
200 { return __pte(pte_val(pte) & ~SRMMU_REF);}
202 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
203 { return __pte(pte_val(pte) | SRMMU_WRITE);}
205 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
206 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
208 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
209 { return __pte(pte_val(pte) | SRMMU_REF);}
212 * Conversion functions: convert a page and protection to a page entry,
213 * and a page entry and page directory to the page they refer to.
215 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
216 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
218 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
219 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
221 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
222 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
224 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
225 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
227 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
228 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
230 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
232 unsigned long ptp; /* Physical address, shifted right by 4 */
233 int i;
235 ptp = __nocache_pa((unsigned long) ptep) >> 4;
236 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
237 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
238 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
242 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
244 unsigned long ptp; /* Physical address, shifted right by 4 */
245 int i;
247 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
248 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
249 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
250 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
254 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
255 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
257 /* to find an entry in a top-level page table... */
258 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
259 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
261 /* Find an entry in the second-level page table.. */
262 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
264 return (pmd_t *) srmmu_pgd_page(*dir) +
265 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
268 /* Find an entry in the third-level page table.. */
269 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
271 void *pte;
273 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
274 return (pte_t *) pte +
275 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
278 static unsigned long srmmu_swp_type(swp_entry_t entry)
280 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
283 static unsigned long srmmu_swp_offset(swp_entry_t entry)
285 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
288 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
290 return (swp_entry_t) {
291 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
292 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
296 * size: bytes to allocate in the nocache area.
297 * align: bytes, number to align at.
298 * Returns the virtual address of the allocated area.
300 static unsigned long __srmmu_get_nocache(int size, int align)
302 int offset;
304 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
305 printk("Size 0x%x too small for nocache request\n", size);
306 size = SRMMU_NOCACHE_BITMAP_SHIFT;
308 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
309 printk("Size 0x%x unaligned int nocache request\n", size);
310 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
312 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
314 offset = bit_map_string_get(&srmmu_nocache_map,
315 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
316 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
317 if (offset == -1) {
318 printk("srmmu: out of nocache %d: %d/%d\n",
319 size, (int) srmmu_nocache_size,
320 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
321 return 0;
324 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
327 static unsigned long srmmu_get_nocache(int size, int align)
329 unsigned long tmp;
331 tmp = __srmmu_get_nocache(size, align);
333 if (tmp)
334 memset((void *)tmp, 0, size);
336 return tmp;
339 static void srmmu_free_nocache(unsigned long vaddr, int size)
341 int offset;
343 if (vaddr < SRMMU_NOCACHE_VADDR) {
344 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
345 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
346 BUG();
348 if (vaddr+size > srmmu_nocache_end) {
349 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
350 vaddr, srmmu_nocache_end);
351 BUG();
353 if (!is_power_of_2(size)) {
354 printk("Size 0x%x is not a power of 2\n", size);
355 BUG();
357 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
358 printk("Size 0x%x is too small\n", size);
359 BUG();
361 if (vaddr & (size-1)) {
362 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
363 BUG();
366 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
367 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
369 bit_map_clear(&srmmu_nocache_map, offset, size);
372 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
373 unsigned long end);
375 extern unsigned long probe_memory(void); /* in fault.c */
378 * Reserve nocache dynamically proportionally to the amount of
379 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
381 static void srmmu_nocache_calcsize(void)
383 unsigned long sysmemavail = probe_memory() / 1024;
384 int srmmu_nocache_npages;
386 srmmu_nocache_npages =
387 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
389 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
390 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
391 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
393 /* anything above 1280 blows up */
394 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
395 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
397 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
398 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
401 static void __init srmmu_nocache_init(void)
403 unsigned int bitmap_bits;
404 pgd_t *pgd;
405 pmd_t *pmd;
406 pte_t *pte;
407 unsigned long paddr, vaddr;
408 unsigned long pteval;
410 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
412 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
413 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
414 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
416 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
417 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
419 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
420 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
421 init_mm.pgd = srmmu_swapper_pg_dir;
423 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
425 paddr = __pa((unsigned long)srmmu_nocache_pool);
426 vaddr = SRMMU_NOCACHE_VADDR;
428 while (vaddr < srmmu_nocache_end) {
429 pgd = pgd_offset_k(vaddr);
430 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
431 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
433 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
435 if (srmmu_cache_pagetables)
436 pteval |= SRMMU_CACHE;
438 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
440 vaddr += PAGE_SIZE;
441 paddr += PAGE_SIZE;
444 flush_cache_all();
445 flush_tlb_all();
448 static inline pgd_t *srmmu_get_pgd_fast(void)
450 pgd_t *pgd = NULL;
452 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
453 if (pgd) {
454 pgd_t *init = pgd_offset_k(0);
455 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
456 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
457 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
460 return pgd;
463 static void srmmu_free_pgd_fast(pgd_t *pgd)
465 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
468 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
470 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
473 static void srmmu_pmd_free(pmd_t * pmd)
475 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
478 static pte_t *
479 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
481 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
484 static pgtable_t
485 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
487 unsigned long pte;
488 struct page *page;
490 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
491 return NULL;
492 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
493 pgtable_page_ctor(page);
494 return page;
497 static void srmmu_free_pte_fast(pte_t *pte)
499 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
502 static void srmmu_pte_free(pgtable_t pte)
504 unsigned long p;
506 pgtable_page_dtor(pte);
507 p = (unsigned long)page_address(pte); /* Cached address (for test) */
508 if (p == 0)
509 BUG();
510 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
511 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
512 srmmu_free_nocache(p, PTE_SIZE);
517 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
519 struct ctx_list *ctxp;
521 ctxp = ctx_free.next;
522 if(ctxp != &ctx_free) {
523 remove_from_ctx_list(ctxp);
524 add_to_used_ctxlist(ctxp);
525 mm->context = ctxp->ctx_number;
526 ctxp->ctx_mm = mm;
527 return;
529 ctxp = ctx_used.next;
530 if(ctxp->ctx_mm == old_mm)
531 ctxp = ctxp->next;
532 if(ctxp == &ctx_used)
533 panic("out of mmu contexts");
534 flush_cache_mm(ctxp->ctx_mm);
535 flush_tlb_mm(ctxp->ctx_mm);
536 remove_from_ctx_list(ctxp);
537 add_to_used_ctxlist(ctxp);
538 ctxp->ctx_mm->context = NO_CONTEXT;
539 ctxp->ctx_mm = mm;
540 mm->context = ctxp->ctx_number;
543 static inline void free_context(int context)
545 struct ctx_list *ctx_old;
547 ctx_old = ctx_list_pool + context;
548 remove_from_ctx_list(ctx_old);
549 add_to_free_ctxlist(ctx_old);
553 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
554 struct task_struct *tsk, int cpu)
556 if(mm->context == NO_CONTEXT) {
557 spin_lock(&srmmu_context_spinlock);
558 alloc_context(old_mm, mm);
559 spin_unlock(&srmmu_context_spinlock);
560 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
563 if (sparc_cpu_model == sparc_leon)
564 leon_switch_mm();
566 if (is_hypersparc)
567 hyper_flush_whole_icache();
569 srmmu_set_context(mm->context);
572 /* Low level IO area allocation on the SRMMU. */
573 static inline void srmmu_mapioaddr(unsigned long physaddr,
574 unsigned long virt_addr, int bus_type)
576 pgd_t *pgdp;
577 pmd_t *pmdp;
578 pte_t *ptep;
579 unsigned long tmp;
581 physaddr &= PAGE_MASK;
582 pgdp = pgd_offset_k(virt_addr);
583 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
584 ptep = srmmu_pte_offset(pmdp, virt_addr);
585 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
588 * I need to test whether this is consistent over all
589 * sun4m's. The bus_type represents the upper 4 bits of
590 * 36-bit physical address on the I/O space lines...
592 tmp |= (bus_type << 28);
593 tmp |= SRMMU_PRIV;
594 __flush_page_to_ram(virt_addr);
595 srmmu_set_pte(ptep, __pte(tmp));
598 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
599 unsigned long xva, unsigned int len)
601 while (len != 0) {
602 len -= PAGE_SIZE;
603 srmmu_mapioaddr(xpa, xva, bus);
604 xva += PAGE_SIZE;
605 xpa += PAGE_SIZE;
607 flush_tlb_all();
610 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
612 pgd_t *pgdp;
613 pmd_t *pmdp;
614 pte_t *ptep;
616 pgdp = pgd_offset_k(virt_addr);
617 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
618 ptep = srmmu_pte_offset(pmdp, virt_addr);
620 /* No need to flush uncacheable page. */
621 srmmu_pte_clear(ptep);
624 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
626 while (len != 0) {
627 len -= PAGE_SIZE;
628 srmmu_unmapioaddr(virt_addr);
629 virt_addr += PAGE_SIZE;
631 flush_tlb_all();
635 * On the SRMMU we do not have the problems with limited tlb entries
636 * for mapping kernel pages, so we just take things from the free page
637 * pool. As a side effect we are putting a little too much pressure
638 * on the gfp() subsystem. This setup also makes the logic of the
639 * iommu mapping code a lot easier as we can transparently handle
640 * mappings on the kernel stack without any special code as we did
641 * need on the sun4c.
643 static struct thread_info *srmmu_alloc_thread_info(void)
645 struct thread_info *ret;
647 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
648 THREAD_INFO_ORDER);
649 #ifdef CONFIG_DEBUG_STACK_USAGE
650 if (ret)
651 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
652 #endif /* DEBUG_STACK_USAGE */
654 return ret;
657 static void srmmu_free_thread_info(struct thread_info *ti)
659 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
662 /* tsunami.S */
663 extern void tsunami_flush_cache_all(void);
664 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
665 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
666 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
667 extern void tsunami_flush_page_to_ram(unsigned long page);
668 extern void tsunami_flush_page_for_dma(unsigned long page);
669 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
670 extern void tsunami_flush_tlb_all(void);
671 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
672 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
673 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
674 extern void tsunami_setup_blockops(void);
676 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep)
680 /* swift.S */
681 extern void swift_flush_cache_all(void);
682 extern void swift_flush_cache_mm(struct mm_struct *mm);
683 extern void swift_flush_cache_range(struct vm_area_struct *vma,
684 unsigned long start, unsigned long end);
685 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
686 extern void swift_flush_page_to_ram(unsigned long page);
687 extern void swift_flush_page_for_dma(unsigned long page);
688 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
689 extern void swift_flush_tlb_all(void);
690 extern void swift_flush_tlb_mm(struct mm_struct *mm);
691 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
692 unsigned long start, unsigned long end);
693 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
697 * The following are all MBUS based SRMMU modules, and therefore could
698 * be found in a multiprocessor configuration. On the whole, these
699 * chips seems to be much more touchy about DVMA and page tables
700 * with respect to cache coherency.
703 /* Cypress flushes. */
704 static void cypress_flush_cache_all(void)
706 volatile unsigned long cypress_sucks;
707 unsigned long faddr, tagval;
709 flush_user_windows();
710 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
711 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
712 "=r" (tagval) :
713 "r" (faddr), "r" (0x40000),
714 "i" (ASI_M_DATAC_TAG));
716 /* If modified and valid, kick it. */
717 if((tagval & 0x60) == 0x60)
718 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
722 static void cypress_flush_cache_mm(struct mm_struct *mm)
724 register unsigned long a, b, c, d, e, f, g;
725 unsigned long flags, faddr;
726 int octx;
728 FLUSH_BEGIN(mm)
729 flush_user_windows();
730 local_irq_save(flags);
731 octx = srmmu_get_context();
732 srmmu_set_context(mm->context);
733 a = 0x20; b = 0x40; c = 0x60;
734 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
736 faddr = (0x10000 - 0x100);
737 goto inside;
738 do {
739 faddr -= 0x100;
740 inside:
741 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
742 "sta %%g0, [%0 + %2] %1\n\t"
743 "sta %%g0, [%0 + %3] %1\n\t"
744 "sta %%g0, [%0 + %4] %1\n\t"
745 "sta %%g0, [%0 + %5] %1\n\t"
746 "sta %%g0, [%0 + %6] %1\n\t"
747 "sta %%g0, [%0 + %7] %1\n\t"
748 "sta %%g0, [%0 + %8] %1\n\t" : :
749 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
750 "r" (a), "r" (b), "r" (c), "r" (d),
751 "r" (e), "r" (f), "r" (g));
752 } while(faddr);
753 srmmu_set_context(octx);
754 local_irq_restore(flags);
755 FLUSH_END
758 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
760 struct mm_struct *mm = vma->vm_mm;
761 register unsigned long a, b, c, d, e, f, g;
762 unsigned long flags, faddr;
763 int octx;
765 FLUSH_BEGIN(mm)
766 flush_user_windows();
767 local_irq_save(flags);
768 octx = srmmu_get_context();
769 srmmu_set_context(mm->context);
770 a = 0x20; b = 0x40; c = 0x60;
771 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
773 start &= SRMMU_REAL_PMD_MASK;
774 while(start < end) {
775 faddr = (start + (0x10000 - 0x100));
776 goto inside;
777 do {
778 faddr -= 0x100;
779 inside:
780 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
781 "sta %%g0, [%0 + %2] %1\n\t"
782 "sta %%g0, [%0 + %3] %1\n\t"
783 "sta %%g0, [%0 + %4] %1\n\t"
784 "sta %%g0, [%0 + %5] %1\n\t"
785 "sta %%g0, [%0 + %6] %1\n\t"
786 "sta %%g0, [%0 + %7] %1\n\t"
787 "sta %%g0, [%0 + %8] %1\n\t" : :
788 "r" (faddr),
789 "i" (ASI_M_FLUSH_SEG),
790 "r" (a), "r" (b), "r" (c), "r" (d),
791 "r" (e), "r" (f), "r" (g));
792 } while (faddr != start);
793 start += SRMMU_REAL_PMD_SIZE;
795 srmmu_set_context(octx);
796 local_irq_restore(flags);
797 FLUSH_END
800 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
802 register unsigned long a, b, c, d, e, f, g;
803 struct mm_struct *mm = vma->vm_mm;
804 unsigned long flags, line;
805 int octx;
807 FLUSH_BEGIN(mm)
808 flush_user_windows();
809 local_irq_save(flags);
810 octx = srmmu_get_context();
811 srmmu_set_context(mm->context);
812 a = 0x20; b = 0x40; c = 0x60;
813 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
815 page &= PAGE_MASK;
816 line = (page + PAGE_SIZE) - 0x100;
817 goto inside;
818 do {
819 line -= 0x100;
820 inside:
821 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
822 "sta %%g0, [%0 + %2] %1\n\t"
823 "sta %%g0, [%0 + %3] %1\n\t"
824 "sta %%g0, [%0 + %4] %1\n\t"
825 "sta %%g0, [%0 + %5] %1\n\t"
826 "sta %%g0, [%0 + %6] %1\n\t"
827 "sta %%g0, [%0 + %7] %1\n\t"
828 "sta %%g0, [%0 + %8] %1\n\t" : :
829 "r" (line),
830 "i" (ASI_M_FLUSH_PAGE),
831 "r" (a), "r" (b), "r" (c), "r" (d),
832 "r" (e), "r" (f), "r" (g));
833 } while(line != page);
834 srmmu_set_context(octx);
835 local_irq_restore(flags);
836 FLUSH_END
839 /* Cypress is copy-back, at least that is how we configure it. */
840 static void cypress_flush_page_to_ram(unsigned long page)
842 register unsigned long a, b, c, d, e, f, g;
843 unsigned long line;
845 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
846 page &= PAGE_MASK;
847 line = (page + PAGE_SIZE) - 0x100;
848 goto inside;
849 do {
850 line -= 0x100;
851 inside:
852 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
853 "sta %%g0, [%0 + %2] %1\n\t"
854 "sta %%g0, [%0 + %3] %1\n\t"
855 "sta %%g0, [%0 + %4] %1\n\t"
856 "sta %%g0, [%0 + %5] %1\n\t"
857 "sta %%g0, [%0 + %6] %1\n\t"
858 "sta %%g0, [%0 + %7] %1\n\t"
859 "sta %%g0, [%0 + %8] %1\n\t" : :
860 "r" (line),
861 "i" (ASI_M_FLUSH_PAGE),
862 "r" (a), "r" (b), "r" (c), "r" (d),
863 "r" (e), "r" (f), "r" (g));
864 } while(line != page);
867 /* Cypress is also IO cache coherent. */
868 static void cypress_flush_page_for_dma(unsigned long page)
872 /* Cypress has unified L2 VIPT, from which both instructions and data
873 * are stored. It does not have an onboard icache of any sort, therefore
874 * no flush is necessary.
876 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
880 static void cypress_flush_tlb_all(void)
882 srmmu_flush_whole_tlb();
885 static void cypress_flush_tlb_mm(struct mm_struct *mm)
887 FLUSH_BEGIN(mm)
888 __asm__ __volatile__(
889 "lda [%0] %3, %%g5\n\t"
890 "sta %2, [%0] %3\n\t"
891 "sta %%g0, [%1] %4\n\t"
892 "sta %%g5, [%0] %3\n"
893 : /* no outputs */
894 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
895 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
896 : "g5");
897 FLUSH_END
900 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
902 struct mm_struct *mm = vma->vm_mm;
903 unsigned long size;
905 FLUSH_BEGIN(mm)
906 start &= SRMMU_PGDIR_MASK;
907 size = SRMMU_PGDIR_ALIGN(end) - start;
908 __asm__ __volatile__(
909 "lda [%0] %5, %%g5\n\t"
910 "sta %1, [%0] %5\n"
911 "1:\n\t"
912 "subcc %3, %4, %3\n\t"
913 "bne 1b\n\t"
914 " sta %%g0, [%2 + %3] %6\n\t"
915 "sta %%g5, [%0] %5\n"
916 : /* no outputs */
917 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
918 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
919 "i" (ASI_M_FLUSH_PROBE)
920 : "g5", "cc");
921 FLUSH_END
924 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
926 struct mm_struct *mm = vma->vm_mm;
928 FLUSH_BEGIN(mm)
929 __asm__ __volatile__(
930 "lda [%0] %3, %%g5\n\t"
931 "sta %1, [%0] %3\n\t"
932 "sta %%g0, [%2] %4\n\t"
933 "sta %%g5, [%0] %3\n"
934 : /* no outputs */
935 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
936 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
937 : "g5");
938 FLUSH_END
941 /* viking.S */
942 extern void viking_flush_cache_all(void);
943 extern void viking_flush_cache_mm(struct mm_struct *mm);
944 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
945 unsigned long end);
946 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
947 extern void viking_flush_page_to_ram(unsigned long page);
948 extern void viking_flush_page_for_dma(unsigned long page);
949 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
950 extern void viking_flush_page(unsigned long page);
951 extern void viking_mxcc_flush_page(unsigned long page);
952 extern void viking_flush_tlb_all(void);
953 extern void viking_flush_tlb_mm(struct mm_struct *mm);
954 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
955 unsigned long end);
956 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
957 unsigned long page);
958 extern void sun4dsmp_flush_tlb_all(void);
959 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
960 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
961 unsigned long end);
962 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
963 unsigned long page);
965 /* hypersparc.S */
966 extern void hypersparc_flush_cache_all(void);
967 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
968 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
969 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
970 extern void hypersparc_flush_page_to_ram(unsigned long page);
971 extern void hypersparc_flush_page_for_dma(unsigned long page);
972 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
973 extern void hypersparc_flush_tlb_all(void);
974 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
975 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
976 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
977 extern void hypersparc_setup_blockops(void);
980 * NOTE: All of this startup code assumes the low 16mb (approx.) of
981 * kernel mappings are done with one single contiguous chunk of
982 * ram. On small ram machines (classics mainly) we only get
983 * around 8mb mapped for us.
986 static void __init early_pgtable_allocfail(char *type)
988 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
989 prom_halt();
992 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
993 unsigned long end)
995 pgd_t *pgdp;
996 pmd_t *pmdp;
997 pte_t *ptep;
999 while(start < end) {
1000 pgdp = pgd_offset_k(start);
1001 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1002 pmdp = (pmd_t *) __srmmu_get_nocache(
1003 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1004 if (pmdp == NULL)
1005 early_pgtable_allocfail("pmd");
1006 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1007 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1009 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1010 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1011 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1012 if (ptep == NULL)
1013 early_pgtable_allocfail("pte");
1014 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1015 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1017 if (start > (0xffffffffUL - PMD_SIZE))
1018 break;
1019 start = (start + PMD_SIZE) & PMD_MASK;
1023 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1024 unsigned long end)
1026 pgd_t *pgdp;
1027 pmd_t *pmdp;
1028 pte_t *ptep;
1030 while(start < end) {
1031 pgdp = pgd_offset_k(start);
1032 if(srmmu_pgd_none(*pgdp)) {
1033 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1034 if (pmdp == NULL)
1035 early_pgtable_allocfail("pmd");
1036 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1037 srmmu_pgd_set(pgdp, pmdp);
1039 pmdp = srmmu_pmd_offset(pgdp, start);
1040 if(srmmu_pmd_none(*pmdp)) {
1041 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1042 PTE_SIZE);
1043 if (ptep == NULL)
1044 early_pgtable_allocfail("pte");
1045 memset(ptep, 0, PTE_SIZE);
1046 srmmu_pmd_set(pmdp, ptep);
1048 if (start > (0xffffffffUL - PMD_SIZE))
1049 break;
1050 start = (start + PMD_SIZE) & PMD_MASK;
1055 * This is much cleaner than poking around physical address space
1056 * looking at the prom's page table directly which is what most
1057 * other OS's do. Yuck... this is much better.
1059 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1060 unsigned long end)
1062 pgd_t *pgdp;
1063 pmd_t *pmdp;
1064 pte_t *ptep;
1065 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1066 unsigned long prompte;
1068 while(start <= end) {
1069 if (start == 0)
1070 break; /* probably wrap around */
1071 if(start == 0xfef00000)
1072 start = KADB_DEBUGGER_BEGVM;
1073 if(!(prompte = srmmu_hwprobe(start))) {
1074 start += PAGE_SIZE;
1075 continue;
1078 /* A red snapper, see what it really is. */
1079 what = 0;
1081 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1082 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1083 what = 1;
1086 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1087 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1088 prompte)
1089 what = 2;
1092 pgdp = pgd_offset_k(start);
1093 if(what == 2) {
1094 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1095 start += SRMMU_PGDIR_SIZE;
1096 continue;
1098 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1099 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1100 if (pmdp == NULL)
1101 early_pgtable_allocfail("pmd");
1102 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1103 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1105 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1106 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1107 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1108 PTE_SIZE);
1109 if (ptep == NULL)
1110 early_pgtable_allocfail("pte");
1111 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1112 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1114 if(what == 1) {
1116 * We bend the rule where all 16 PTPs in a pmd_t point
1117 * inside the same PTE page, and we leak a perfectly
1118 * good hardware PTE piece. Alternatives seem worse.
1120 unsigned int x; /* Index of HW PMD in soft cluster */
1121 x = (start >> PMD_SHIFT) & 15;
1122 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1123 start += SRMMU_REAL_PMD_SIZE;
1124 continue;
1126 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1127 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1128 start += PAGE_SIZE;
1132 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1134 /* Create a third-level SRMMU 16MB page mapping. */
1135 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1137 pgd_t *pgdp = pgd_offset_k(vaddr);
1138 unsigned long big_pte;
1140 big_pte = KERNEL_PTE(phys_base >> 4);
1141 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1144 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1145 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1147 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1148 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1149 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1150 /* Map "low" memory only */
1151 const unsigned long min_vaddr = PAGE_OFFSET;
1152 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1154 if (vstart < min_vaddr || vstart >= max_vaddr)
1155 return vstart;
1157 if (vend > max_vaddr || vend < min_vaddr)
1158 vend = max_vaddr;
1160 while(vstart < vend) {
1161 do_large_mapping(vstart, pstart);
1162 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1164 return vstart;
1167 static inline void memprobe_error(char *msg)
1169 prom_printf(msg);
1170 prom_printf("Halting now...\n");
1171 prom_halt();
1174 static inline void map_kernel(void)
1176 int i;
1178 if (phys_base > 0) {
1179 do_large_mapping(PAGE_OFFSET, phys_base);
1182 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1183 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1186 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1189 /* Paging initialization on the Sparc Reference MMU. */
1190 extern void sparc_context_init(int);
1192 void (*poke_srmmu)(void) __cpuinitdata = NULL;
1194 extern unsigned long bootmem_init(unsigned long *pages_avail);
1196 void __init srmmu_paging_init(void)
1198 int i, cpunode;
1199 char node_str[128];
1200 pgd_t *pgd;
1201 pmd_t *pmd;
1202 pte_t *pte;
1203 unsigned long pages_avail;
1205 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1207 if (sparc_cpu_model == sun4d)
1208 num_contexts = 65536; /* We know it is Viking */
1209 else {
1210 /* Find the number of contexts on the srmmu. */
1211 cpunode = prom_getchild(prom_root_node);
1212 num_contexts = 0;
1213 while(cpunode != 0) {
1214 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1215 if(!strcmp(node_str, "cpu")) {
1216 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1217 break;
1219 cpunode = prom_getsibling(cpunode);
1223 if(!num_contexts) {
1224 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1225 prom_halt();
1228 pages_avail = 0;
1229 last_valid_pfn = bootmem_init(&pages_avail);
1231 srmmu_nocache_calcsize();
1232 srmmu_nocache_init();
1233 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1234 map_kernel();
1236 /* ctx table has to be physically aligned to its size */
1237 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1238 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1240 for(i = 0; i < num_contexts; i++)
1241 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1243 flush_cache_all();
1244 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1245 #ifdef CONFIG_SMP
1246 /* Stop from hanging here... */
1247 local_flush_tlb_all();
1248 #else
1249 flush_tlb_all();
1250 #endif
1251 poke_srmmu();
1253 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1254 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1256 srmmu_allocate_ptable_skeleton(
1257 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1258 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1260 pgd = pgd_offset_k(PKMAP_BASE);
1261 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1262 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1263 pkmap_page_table = pte;
1265 flush_cache_all();
1266 flush_tlb_all();
1268 sparc_context_init(num_contexts);
1270 kmap_init();
1273 unsigned long zones_size[MAX_NR_ZONES];
1274 unsigned long zholes_size[MAX_NR_ZONES];
1275 unsigned long npages;
1276 int znum;
1278 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1279 zones_size[znum] = zholes_size[znum] = 0;
1281 npages = max_low_pfn - pfn_base;
1283 zones_size[ZONE_DMA] = npages;
1284 zholes_size[ZONE_DMA] = npages - pages_avail;
1286 npages = highend_pfn - max_low_pfn;
1287 zones_size[ZONE_HIGHMEM] = npages;
1288 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1290 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1294 static void srmmu_mmu_info(struct seq_file *m)
1296 seq_printf(m,
1297 "MMU type\t: %s\n"
1298 "contexts\t: %d\n"
1299 "nocache total\t: %ld\n"
1300 "nocache used\t: %d\n",
1301 srmmu_name,
1302 num_contexts,
1303 srmmu_nocache_size,
1304 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1307 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1311 static void srmmu_destroy_context(struct mm_struct *mm)
1314 if(mm->context != NO_CONTEXT) {
1315 flush_cache_mm(mm);
1316 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1317 flush_tlb_mm(mm);
1318 spin_lock(&srmmu_context_spinlock);
1319 free_context(mm->context);
1320 spin_unlock(&srmmu_context_spinlock);
1321 mm->context = NO_CONTEXT;
1325 /* Init various srmmu chip types. */
1326 static void __init srmmu_is_bad(void)
1328 prom_printf("Could not determine SRMMU chip type.\n");
1329 prom_halt();
1332 static void __init init_vac_layout(void)
1334 int nd, cache_lines;
1335 char node_str[128];
1336 #ifdef CONFIG_SMP
1337 int cpu = 0;
1338 unsigned long max_size = 0;
1339 unsigned long min_line_size = 0x10000000;
1340 #endif
1342 nd = prom_getchild(prom_root_node);
1343 while((nd = prom_getsibling(nd)) != 0) {
1344 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1345 if(!strcmp(node_str, "cpu")) {
1346 vac_line_size = prom_getint(nd, "cache-line-size");
1347 if (vac_line_size == -1) {
1348 prom_printf("can't determine cache-line-size, "
1349 "halting.\n");
1350 prom_halt();
1352 cache_lines = prom_getint(nd, "cache-nlines");
1353 if (cache_lines == -1) {
1354 prom_printf("can't determine cache-nlines, halting.\n");
1355 prom_halt();
1358 vac_cache_size = cache_lines * vac_line_size;
1359 #ifdef CONFIG_SMP
1360 if(vac_cache_size > max_size)
1361 max_size = vac_cache_size;
1362 if(vac_line_size < min_line_size)
1363 min_line_size = vac_line_size;
1364 cpu++;
1365 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1366 break;
1367 #else
1368 break;
1369 #endif
1372 if(nd == 0) {
1373 prom_printf("No CPU nodes found, halting.\n");
1374 prom_halt();
1376 #ifdef CONFIG_SMP
1377 vac_cache_size = max_size;
1378 vac_line_size = min_line_size;
1379 #endif
1380 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1381 (int)vac_cache_size, (int)vac_line_size);
1384 static void __cpuinit poke_hypersparc(void)
1386 volatile unsigned long clear;
1387 unsigned long mreg = srmmu_get_mmureg();
1389 hyper_flush_unconditional_combined();
1391 mreg &= ~(HYPERSPARC_CWENABLE);
1392 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1393 mreg |= (HYPERSPARC_CMODE);
1395 srmmu_set_mmureg(mreg);
1398 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1399 hyper_flush_whole_icache();
1400 clear = srmmu_get_faddr();
1401 clear = srmmu_get_fstatus();
1404 static void __init init_hypersparc(void)
1406 srmmu_name = "ROSS HyperSparc";
1407 srmmu_modtype = HyperSparc;
1409 init_vac_layout();
1411 is_hypersparc = 1;
1413 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1414 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1415 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1416 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1417 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1418 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1419 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1421 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1422 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1423 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1424 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1426 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1427 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1428 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1431 poke_srmmu = poke_hypersparc;
1433 hypersparc_setup_blockops();
1436 static void __cpuinit poke_cypress(void)
1438 unsigned long mreg = srmmu_get_mmureg();
1439 unsigned long faddr, tagval;
1440 volatile unsigned long cypress_sucks;
1441 volatile unsigned long clear;
1443 clear = srmmu_get_faddr();
1444 clear = srmmu_get_fstatus();
1446 if (!(mreg & CYPRESS_CENABLE)) {
1447 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1448 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1449 "sta %%g0, [%0] %2\n\t" : :
1450 "r" (faddr), "r" (0x40000),
1451 "i" (ASI_M_DATAC_TAG));
1453 } else {
1454 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1455 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1456 "=r" (tagval) :
1457 "r" (faddr), "r" (0x40000),
1458 "i" (ASI_M_DATAC_TAG));
1460 /* If modified and valid, kick it. */
1461 if((tagval & 0x60) == 0x60)
1462 cypress_sucks = *(unsigned long *)
1463 (0xf0020000 + faddr);
1467 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1468 clear = srmmu_get_faddr();
1469 clear = srmmu_get_fstatus();
1471 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1472 srmmu_set_mmureg(mreg);
1475 static void __init init_cypress_common(void)
1477 init_vac_layout();
1479 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1480 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1481 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1482 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1483 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1484 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1488 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1493 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1494 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1495 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1497 poke_srmmu = poke_cypress;
1500 static void __init init_cypress_604(void)
1502 srmmu_name = "ROSS Cypress-604(UP)";
1503 srmmu_modtype = Cypress;
1504 init_cypress_common();
1507 static void __init init_cypress_605(unsigned long mrev)
1509 srmmu_name = "ROSS Cypress-605(MP)";
1510 if(mrev == 0xe) {
1511 srmmu_modtype = Cypress_vE;
1512 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1513 } else {
1514 if(mrev == 0xd) {
1515 srmmu_modtype = Cypress_vD;
1516 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1517 } else {
1518 srmmu_modtype = Cypress;
1521 init_cypress_common();
1524 static void __cpuinit poke_swift(void)
1526 unsigned long mreg;
1528 /* Clear any crap from the cache or else... */
1529 swift_flush_cache_all();
1531 /* Enable I & D caches */
1532 mreg = srmmu_get_mmureg();
1533 mreg |= (SWIFT_IE | SWIFT_DE);
1535 * The Swift branch folding logic is completely broken. At
1536 * trap time, if things are just right, if can mistakenly
1537 * think that a trap is coming from kernel mode when in fact
1538 * it is coming from user mode (it mis-executes the branch in
1539 * the trap code). So you see things like crashme completely
1540 * hosing your machine which is completely unacceptable. Turn
1541 * this shit off... nice job Fujitsu.
1543 mreg &= ~(SWIFT_BF);
1544 srmmu_set_mmureg(mreg);
1547 #define SWIFT_MASKID_ADDR 0x10003018
1548 static void __init init_swift(void)
1550 unsigned long swift_rev;
1552 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1553 "srl %0, 0x18, %0\n\t" :
1554 "=r" (swift_rev) :
1555 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1556 srmmu_name = "Fujitsu Swift";
1557 switch(swift_rev) {
1558 case 0x11:
1559 case 0x20:
1560 case 0x23:
1561 case 0x30:
1562 srmmu_modtype = Swift_lots_o_bugs;
1563 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1564 break;
1565 case 0x25:
1566 case 0x31:
1567 srmmu_modtype = Swift_bad_c;
1568 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1570 * You see Sun allude to this hardware bug but never
1571 * admit things directly, they'll say things like,
1572 * "the Swift chip cache problems" or similar.
1574 break;
1575 default:
1576 srmmu_modtype = Swift_ok;
1577 break;
1580 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1581 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1582 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1583 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1586 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1587 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1588 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1589 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1591 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1592 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1593 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1595 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1597 flush_page_for_dma_global = 0;
1599 poke_srmmu = poke_swift;
1602 static void turbosparc_flush_cache_all(void)
1604 flush_user_windows();
1605 turbosparc_idflash_clear();
1608 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1610 FLUSH_BEGIN(mm)
1611 flush_user_windows();
1612 turbosparc_idflash_clear();
1613 FLUSH_END
1616 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1618 FLUSH_BEGIN(vma->vm_mm)
1619 flush_user_windows();
1620 turbosparc_idflash_clear();
1621 FLUSH_END
1624 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1626 FLUSH_BEGIN(vma->vm_mm)
1627 flush_user_windows();
1628 if (vma->vm_flags & VM_EXEC)
1629 turbosparc_flush_icache();
1630 turbosparc_flush_dcache();
1631 FLUSH_END
1634 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1635 static void turbosparc_flush_page_to_ram(unsigned long page)
1637 #ifdef TURBOSPARC_WRITEBACK
1638 volatile unsigned long clear;
1640 if (srmmu_hwprobe(page))
1641 turbosparc_flush_page_cache(page);
1642 clear = srmmu_get_fstatus();
1643 #endif
1646 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1650 static void turbosparc_flush_page_for_dma(unsigned long page)
1652 turbosparc_flush_dcache();
1655 static void turbosparc_flush_tlb_all(void)
1657 srmmu_flush_whole_tlb();
1660 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1662 FLUSH_BEGIN(mm)
1663 srmmu_flush_whole_tlb();
1664 FLUSH_END
1667 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1669 FLUSH_BEGIN(vma->vm_mm)
1670 srmmu_flush_whole_tlb();
1671 FLUSH_END
1674 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1676 FLUSH_BEGIN(vma->vm_mm)
1677 srmmu_flush_whole_tlb();
1678 FLUSH_END
1682 static void __cpuinit poke_turbosparc(void)
1684 unsigned long mreg = srmmu_get_mmureg();
1685 unsigned long ccreg;
1687 /* Clear any crap from the cache or else... */
1688 turbosparc_flush_cache_all();
1689 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1690 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1691 srmmu_set_mmureg(mreg);
1693 ccreg = turbosparc_get_ccreg();
1695 #ifdef TURBOSPARC_WRITEBACK
1696 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1697 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1698 /* Write-back D-cache, emulate VLSI
1699 * abortion number three, not number one */
1700 #else
1701 /* For now let's play safe, optimize later */
1702 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1703 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1704 ccreg &= ~(TURBOSPARC_uS2);
1705 /* Emulate VLSI abortion number three, not number one */
1706 #endif
1708 switch (ccreg & 7) {
1709 case 0: /* No SE cache */
1710 case 7: /* Test mode */
1711 break;
1712 default:
1713 ccreg |= (TURBOSPARC_SCENABLE);
1715 turbosparc_set_ccreg (ccreg);
1717 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1718 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1719 srmmu_set_mmureg(mreg);
1722 static void __init init_turbosparc(void)
1724 srmmu_name = "Fujitsu TurboSparc";
1725 srmmu_modtype = TurboSparc;
1727 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1728 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1729 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1730 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1732 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1733 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1734 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1735 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1737 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1739 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1740 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1742 poke_srmmu = poke_turbosparc;
1745 static void __cpuinit poke_tsunami(void)
1747 unsigned long mreg = srmmu_get_mmureg();
1749 tsunami_flush_icache();
1750 tsunami_flush_dcache();
1751 mreg &= ~TSUNAMI_ITD;
1752 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1753 srmmu_set_mmureg(mreg);
1756 static void __init init_tsunami(void)
1759 * Tsunami's pretty sane, Sun and TI actually got it
1760 * somewhat right this time. Fujitsu should have
1761 * taken some lessons from them.
1764 srmmu_name = "TI Tsunami";
1765 srmmu_modtype = Tsunami;
1767 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1768 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1769 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1770 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1773 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1774 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1775 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1776 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1778 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1779 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1780 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1782 poke_srmmu = poke_tsunami;
1784 tsunami_setup_blockops();
1787 static void __cpuinit poke_viking(void)
1789 unsigned long mreg = srmmu_get_mmureg();
1790 static int smp_catch;
1792 if(viking_mxcc_present) {
1793 unsigned long mxcc_control = mxcc_get_creg();
1795 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1796 mxcc_control &= ~(MXCC_CTL_RRC);
1797 mxcc_set_creg(mxcc_control);
1800 /* We do cache ptables on MXCC. */
1801 mreg |= VIKING_TCENABLE;
1802 } else {
1803 unsigned long bpreg;
1805 mreg &= ~(VIKING_TCENABLE);
1806 if(smp_catch++) {
1807 /* Must disable mixed-cmd mode here for other cpu's. */
1808 bpreg = viking_get_bpreg();
1809 bpreg &= ~(VIKING_ACTION_MIX);
1810 viking_set_bpreg(bpreg);
1812 /* Just in case PROM does something funny. */
1813 msi_set_sync();
1817 mreg |= VIKING_SPENABLE;
1818 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1819 mreg |= VIKING_SBENABLE;
1820 mreg &= ~(VIKING_ACENABLE);
1821 srmmu_set_mmureg(mreg);
1824 static void __init init_viking(void)
1826 unsigned long mreg = srmmu_get_mmureg();
1828 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1829 if(mreg & VIKING_MMODE) {
1830 srmmu_name = "TI Viking";
1831 viking_mxcc_present = 0;
1832 msi_set_sync();
1834 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1835 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1836 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1838 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1840 flush_page_for_dma_global = 0;
1841 } else {
1842 srmmu_name = "TI Viking/MXCC";
1843 viking_mxcc_present = 1;
1845 srmmu_cache_pagetables = 1;
1847 /* MXCC vikings lack the DMA snooping bug. */
1848 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1851 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1852 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1853 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1854 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1856 #ifdef CONFIG_SMP
1857 if (sparc_cpu_model == sun4d) {
1858 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1859 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1860 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1861 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1862 } else
1863 #endif
1865 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1867 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1868 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1871 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1872 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1874 poke_srmmu = poke_viking;
1877 #ifdef CONFIG_SPARC_LEON
1879 void __init poke_leonsparc(void)
1883 void __init init_leon(void)
1886 srmmu_name = "LEON";
1888 BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1889 BTFIXUPCALL_NORM);
1890 BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
1891 BTFIXUPCALL_NORM);
1892 BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
1893 BTFIXUPCALL_NORM);
1894 BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
1895 BTFIXUPCALL_NORM);
1896 BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
1897 BTFIXUPCALL_NORM);
1899 BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1900 BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1901 BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1902 BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1904 BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
1905 BTFIXUPCALL_NOP);
1906 BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
1908 poke_srmmu = poke_leonsparc;
1910 srmmu_cache_pagetables = 0;
1912 leon_flush_during_switch = leon_flush_needed();
1914 #endif
1916 /* Probe for the srmmu chip version. */
1917 static void __init get_srmmu_type(void)
1919 unsigned long mreg, psr;
1920 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1922 srmmu_modtype = SRMMU_INVAL_MOD;
1923 hwbug_bitmask = 0;
1925 mreg = srmmu_get_mmureg(); psr = get_psr();
1926 mod_typ = (mreg & 0xf0000000) >> 28;
1927 mod_rev = (mreg & 0x0f000000) >> 24;
1928 psr_typ = (psr >> 28) & 0xf;
1929 psr_vers = (psr >> 24) & 0xf;
1931 /* First, check for sparc-leon. */
1932 if (sparc_cpu_model == sparc_leon) {
1933 init_leon();
1934 return;
1937 /* Second, check for HyperSparc or Cypress. */
1938 if(mod_typ == 1) {
1939 switch(mod_rev) {
1940 case 7:
1941 /* UP or MP Hypersparc */
1942 init_hypersparc();
1943 break;
1944 case 0:
1945 case 2:
1946 /* Uniprocessor Cypress */
1947 init_cypress_604();
1948 break;
1949 case 10:
1950 case 11:
1951 case 12:
1952 /* _REALLY OLD_ Cypress MP chips... */
1953 case 13:
1954 case 14:
1955 case 15:
1956 /* MP Cypress mmu/cache-controller */
1957 init_cypress_605(mod_rev);
1958 break;
1959 default:
1960 /* Some other Cypress revision, assume a 605. */
1961 init_cypress_605(mod_rev);
1962 break;
1964 return;
1968 * Now Fujitsu TurboSparc. It might happen that it is
1969 * in Swift emulation mode, so we will check later...
1971 if (psr_typ == 0 && psr_vers == 5) {
1972 init_turbosparc();
1973 return;
1976 /* Next check for Fujitsu Swift. */
1977 if(psr_typ == 0 && psr_vers == 4) {
1978 int cpunode;
1979 char node_str[128];
1981 /* Look if it is not a TurboSparc emulating Swift... */
1982 cpunode = prom_getchild(prom_root_node);
1983 while((cpunode = prom_getsibling(cpunode)) != 0) {
1984 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1985 if(!strcmp(node_str, "cpu")) {
1986 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1987 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1988 init_turbosparc();
1989 return;
1991 break;
1995 init_swift();
1996 return;
1999 /* Now the Viking family of srmmu. */
2000 if(psr_typ == 4 &&
2001 ((psr_vers == 0) ||
2002 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2003 init_viking();
2004 return;
2007 /* Finally the Tsunami. */
2008 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2009 init_tsunami();
2010 return;
2013 /* Oh well */
2014 srmmu_is_bad();
2017 /* don't laugh, static pagetables */
2018 static void srmmu_check_pgt_cache(int low, int high)
2022 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2023 tsetup_mmu_patchme, rtrap_mmu_patchme;
2025 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2026 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2028 extern unsigned long srmmu_fault;
2030 #define PATCH_BRANCH(insn, dest) do { \
2031 iaddr = &(insn); \
2032 daddr = &(dest); \
2033 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2034 } while(0)
2036 static void __init patch_window_trap_handlers(void)
2038 unsigned long *iaddr, *daddr;
2040 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2041 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2042 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2043 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2044 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2045 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2046 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2049 #ifdef CONFIG_SMP
2050 /* Local cross-calls. */
2051 static void smp_flush_page_for_dma(unsigned long page)
2053 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2054 local_flush_page_for_dma(page);
2057 #endif
2059 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2061 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2064 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2066 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2069 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2071 prot &= ~__pgprot(SRMMU_CACHE);
2073 return prot;
2076 /* Load up routines and constants for sun4m and sun4d mmu */
2077 void __init ld_mmu_srmmu(void)
2079 extern void ld_mmu_iommu(void);
2080 extern void ld_mmu_iounit(void);
2081 extern void ___xchg32_sun4md(void);
2083 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2084 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2085 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2087 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2088 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2090 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2091 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2092 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2093 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2094 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2095 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2097 /* Functions */
2098 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2099 #ifndef CONFIG_SMP
2100 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2101 #endif
2102 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2104 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2105 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2107 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2108 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2109 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2111 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2112 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2114 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2115 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2116 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2118 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2119 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2120 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2121 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2123 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2124 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2125 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2126 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2127 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2128 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2130 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2131 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2132 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2134 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2135 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2136 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2137 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2138 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2139 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2140 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2141 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2143 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2144 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2145 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2146 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2147 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2148 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2149 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2150 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2151 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2152 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2153 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2154 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2156 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2157 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2159 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2160 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2161 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2163 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2165 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2166 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2168 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2169 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2171 get_srmmu_type();
2172 patch_window_trap_handlers();
2174 #ifdef CONFIG_SMP
2175 /* El switcheroo... */
2177 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2178 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2179 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2180 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2181 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2182 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2183 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2184 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2185 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2186 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2187 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2189 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2190 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2191 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2192 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2193 if (sparc_cpu_model != sun4d &&
2194 sparc_cpu_model != sparc_leon) {
2195 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2196 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2197 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2198 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2200 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2201 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2202 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2204 if (poke_srmmu == poke_viking) {
2205 /* Avoid unnecessary cross calls. */
2206 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2207 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2208 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2209 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2210 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2211 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2212 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
2214 #endif
2216 if (sparc_cpu_model == sun4d)
2217 ld_mmu_iounit();
2218 else
2219 ld_mmu_iommu();
2220 #ifdef CONFIG_SMP
2221 if (sparc_cpu_model == sun4d)
2222 sun4d_init_smp();
2223 else if (sparc_cpu_model == sparc_leon)
2224 leon_init_smp();
2225 else
2226 sun4m_init_smp();
2227 #endif