GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / powerpc / mm / numa.c
blob7f7930463d826f2e5ff9d632eefc25e2f2fca295
1 /*
2 * pSeries NUMA support
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <asm/sparsemem.h>
24 #include <asm/prom.h>
25 #include <asm/system.h>
26 #include <asm/smp.h>
28 static int numa_enabled = 1;
30 static char *cmdline __initdata;
32 static int numa_debug;
33 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
35 int numa_cpu_lookup_table[NR_CPUS];
36 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
37 struct pglist_data *node_data[MAX_NUMNODES];
39 EXPORT_SYMBOL(numa_cpu_lookup_table);
40 EXPORT_SYMBOL(node_to_cpumask_map);
41 EXPORT_SYMBOL(node_data);
43 static int min_common_depth;
44 static int n_mem_addr_cells, n_mem_size_cells;
45 static int form1_affinity;
47 #define MAX_DISTANCE_REF_POINTS 4
48 static int distance_ref_points_depth;
49 static const unsigned int *distance_ref_points;
50 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
53 * Allocate node_to_cpumask_map based on number of available nodes
54 * Requires node_possible_map to be valid.
56 * Note: node_to_cpumask() is not valid until after this is done.
58 static void __init setup_node_to_cpumask_map(void)
60 unsigned int node, num = 0;
62 /* setup nr_node_ids if not done yet */
63 if (nr_node_ids == MAX_NUMNODES) {
64 for_each_node_mask(node, node_possible_map)
65 num = node;
66 nr_node_ids = num + 1;
69 /* allocate the map */
70 for (node = 0; node < nr_node_ids; node++)
71 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
73 /* cpumask_of_node() will now work */
74 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
77 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
78 unsigned int *nid)
80 unsigned long long mem;
81 char *p = cmdline;
82 static unsigned int fake_nid;
83 static unsigned long long curr_boundary;
86 * Modify node id, iff we started creating NUMA nodes
87 * We want to continue from where we left of the last time
89 if (fake_nid)
90 *nid = fake_nid;
92 * In case there are no more arguments to parse, the
93 * node_id should be the same as the last fake node id
94 * (we've handled this above).
96 if (!p)
97 return 0;
99 mem = memparse(p, &p);
100 if (!mem)
101 return 0;
103 if (mem < curr_boundary)
104 return 0;
106 curr_boundary = mem;
108 if ((end_pfn << PAGE_SHIFT) > mem) {
110 * Skip commas and spaces
112 while (*p == ',' || *p == ' ' || *p == '\t')
113 p++;
115 cmdline = p;
116 fake_nid++;
117 *nid = fake_nid;
118 dbg("created new fake_node with id %d\n", fake_nid);
119 return 1;
121 return 0;
125 * get_active_region_work_fn - A helper function for get_node_active_region
126 * Returns datax set to the start_pfn and end_pfn if they contain
127 * the initial value of datax->start_pfn between them
128 * @start_pfn: start page(inclusive) of region to check
129 * @end_pfn: end page(exclusive) of region to check
130 * @datax: comes in with ->start_pfn set to value to search for and
131 * goes out with active range if it contains it
132 * Returns 1 if search value is in range else 0
134 static int __init get_active_region_work_fn(unsigned long start_pfn,
135 unsigned long end_pfn, void *datax)
137 struct node_active_region *data;
138 data = (struct node_active_region *)datax;
140 if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
141 data->start_pfn = start_pfn;
142 data->end_pfn = end_pfn;
143 return 1;
145 return 0;
150 * get_node_active_region - Return active region containing start_pfn
151 * Active range returned is empty if none found.
152 * @start_pfn: The page to return the region for.
153 * @node_ar: Returned set to the active region containing start_pfn
155 static void __init get_node_active_region(unsigned long start_pfn,
156 struct node_active_region *node_ar)
158 int nid = early_pfn_to_nid(start_pfn);
160 node_ar->nid = nid;
161 node_ar->start_pfn = start_pfn;
162 node_ar->end_pfn = start_pfn;
163 work_with_active_regions(nid, get_active_region_work_fn, node_ar);
166 static void __cpuinit map_cpu_to_node(int cpu, int node)
168 numa_cpu_lookup_table[cpu] = node;
170 dbg("adding cpu %d to node %d\n", cpu, node);
172 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
173 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
176 #ifdef CONFIG_HOTPLUG_CPU
177 static void unmap_cpu_from_node(unsigned long cpu)
179 int node = numa_cpu_lookup_table[cpu];
181 dbg("removing cpu %lu from node %d\n", cpu, node);
183 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
184 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
185 } else {
186 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
187 cpu, node);
190 #endif /* CONFIG_HOTPLUG_CPU */
192 /* must hold reference to node during call */
193 static const int *of_get_associativity(struct device_node *dev)
195 return of_get_property(dev, "ibm,associativity", NULL);
199 * Returns the property linux,drconf-usable-memory if
200 * it exists (the property exists only in kexec/kdump kernels,
201 * added by kexec-tools)
203 static const u32 *of_get_usable_memory(struct device_node *memory)
205 const u32 *prop;
206 u32 len;
207 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
208 if (!prop || len < sizeof(unsigned int))
209 return 0;
210 return prop;
213 int __node_distance(int a, int b)
215 int i;
216 int distance = LOCAL_DISTANCE;
218 if (!form1_affinity)
219 return distance;
221 for (i = 0; i < distance_ref_points_depth; i++) {
222 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
223 break;
225 /* Double the distance for each NUMA level */
226 distance *= 2;
229 return distance;
232 static void initialize_distance_lookup_table(int nid,
233 const unsigned int *associativity)
235 int i;
237 if (!form1_affinity)
238 return;
240 for (i = 0; i < distance_ref_points_depth; i++) {
241 distance_lookup_table[nid][i] =
242 associativity[distance_ref_points[i]];
246 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
247 * info is found.
249 static int of_node_to_nid_single(struct device_node *device)
251 int nid = -1;
252 const unsigned int *tmp;
254 if (min_common_depth == -1)
255 goto out;
257 tmp = of_get_associativity(device);
258 if (!tmp)
259 goto out;
261 if (tmp[0] >= min_common_depth)
262 nid = tmp[min_common_depth];
264 /* POWER4 LPAR uses 0xffff as invalid node */
265 if (nid == 0xffff || nid >= MAX_NUMNODES)
266 nid = -1;
268 if (nid > 0 && tmp[0] >= distance_ref_points_depth)
269 initialize_distance_lookup_table(nid, tmp);
271 out:
272 return nid;
275 /* Walk the device tree upwards, looking for an associativity id */
276 int of_node_to_nid(struct device_node *device)
278 struct device_node *tmp;
279 int nid = -1;
281 of_node_get(device);
282 while (device) {
283 nid = of_node_to_nid_single(device);
284 if (nid != -1)
285 break;
287 tmp = device;
288 device = of_get_parent(tmp);
289 of_node_put(tmp);
291 of_node_put(device);
293 return nid;
295 EXPORT_SYMBOL_GPL(of_node_to_nid);
297 static int __init find_min_common_depth(void)
299 int depth;
300 struct device_node *rtas_root;
301 struct device_node *chosen;
302 const char *vec5;
304 rtas_root = of_find_node_by_path("/rtas");
306 if (!rtas_root)
307 return -1;
310 * This property is a set of 32-bit integers, each representing
311 * an index into the ibm,associativity nodes.
313 * With form 0 affinity the first integer is for an SMP configuration
314 * (should be all 0's) and the second is for a normal NUMA
315 * configuration. We have only one level of NUMA.
317 * With form 1 affinity the first integer is the most significant
318 * NUMA boundary and the following are progressively less significant
319 * boundaries. There can be more than one level of NUMA.
321 distance_ref_points = of_get_property(rtas_root,
322 "ibm,associativity-reference-points",
323 &distance_ref_points_depth);
325 if (!distance_ref_points) {
326 dbg("NUMA: ibm,associativity-reference-points not found.\n");
327 goto err;
330 distance_ref_points_depth /= sizeof(int);
332 #define VEC5_AFFINITY_BYTE 5
333 #define VEC5_AFFINITY 0x80
334 chosen = of_find_node_by_path("/chosen");
335 if (chosen) {
336 vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL);
337 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) {
338 dbg("Using form 1 affinity\n");
339 form1_affinity = 1;
343 if (form1_affinity) {
344 depth = distance_ref_points[0];
345 } else {
346 if (distance_ref_points_depth < 2) {
347 printk(KERN_WARNING "NUMA: "
348 "short ibm,associativity-reference-points\n");
349 goto err;
352 depth = distance_ref_points[1];
356 * Warn and cap if the hardware supports more than
357 * MAX_DISTANCE_REF_POINTS domains.
359 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
360 printk(KERN_WARNING "NUMA: distance array capped at "
361 "%d entries\n", MAX_DISTANCE_REF_POINTS);
362 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
365 of_node_put(rtas_root);
366 return depth;
368 err:
369 of_node_put(rtas_root);
370 return -1;
373 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
375 struct device_node *memory = NULL;
377 memory = of_find_node_by_type(memory, "memory");
378 if (!memory)
379 panic("numa.c: No memory nodes found!");
381 *n_addr_cells = of_n_addr_cells(memory);
382 *n_size_cells = of_n_size_cells(memory);
383 of_node_put(memory);
386 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
388 unsigned long result = 0;
390 while (n--) {
391 result = (result << 32) | **buf;
392 (*buf)++;
394 return result;
397 struct of_drconf_cell {
398 u64 base_addr;
399 u32 drc_index;
400 u32 reserved;
401 u32 aa_index;
402 u32 flags;
405 #define DRCONF_MEM_ASSIGNED 0x00000008
406 #define DRCONF_MEM_AI_INVALID 0x00000040
407 #define DRCONF_MEM_RESERVED 0x00000080
410 * Read the next memblock list entry from the ibm,dynamic-memory property
411 * and return the information in the provided of_drconf_cell structure.
413 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
415 const u32 *cp;
417 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
419 cp = *cellp;
420 drmem->drc_index = cp[0];
421 drmem->reserved = cp[1];
422 drmem->aa_index = cp[2];
423 drmem->flags = cp[3];
425 *cellp = cp + 4;
429 * Retreive and validate the ibm,dynamic-memory property of the device tree.
431 * The layout of the ibm,dynamic-memory property is a number N of memblock
432 * list entries followed by N memblock list entries. Each memblock list entry
433 * contains information as layed out in the of_drconf_cell struct above.
435 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
437 const u32 *prop;
438 u32 len, entries;
440 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
441 if (!prop || len < sizeof(unsigned int))
442 return 0;
444 entries = *prop++;
446 /* Now that we know the number of entries, revalidate the size
447 * of the property read in to ensure we have everything
449 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
450 return 0;
452 *dm = prop;
453 return entries;
457 * Retreive and validate the ibm,lmb-size property for drconf memory
458 * from the device tree.
460 static u64 of_get_lmb_size(struct device_node *memory)
462 const u32 *prop;
463 u32 len;
465 prop = of_get_property(memory, "ibm,lmb-size", &len);
466 if (!prop || len < sizeof(unsigned int))
467 return 0;
469 return read_n_cells(n_mem_size_cells, &prop);
472 struct assoc_arrays {
473 u32 n_arrays;
474 u32 array_sz;
475 const u32 *arrays;
479 * Retreive and validate the list of associativity arrays for drconf
480 * memory from the ibm,associativity-lookup-arrays property of the
481 * device tree..
483 * The layout of the ibm,associativity-lookup-arrays property is a number N
484 * indicating the number of associativity arrays, followed by a number M
485 * indicating the size of each associativity array, followed by a list
486 * of N associativity arrays.
488 static int of_get_assoc_arrays(struct device_node *memory,
489 struct assoc_arrays *aa)
491 const u32 *prop;
492 u32 len;
494 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
495 if (!prop || len < 2 * sizeof(unsigned int))
496 return -1;
498 aa->n_arrays = *prop++;
499 aa->array_sz = *prop++;
501 /* Now that we know the number of arrrays and size of each array,
502 * revalidate the size of the property read in.
504 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
505 return -1;
507 aa->arrays = prop;
508 return 0;
512 * This is like of_node_to_nid_single() for memory represented in the
513 * ibm,dynamic-reconfiguration-memory node.
515 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
516 struct assoc_arrays *aa)
518 int default_nid = 0;
519 int nid = default_nid;
520 int index;
522 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
523 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
524 drmem->aa_index < aa->n_arrays) {
525 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
526 nid = aa->arrays[index];
528 if (nid == 0xffff || nid >= MAX_NUMNODES)
529 nid = default_nid;
532 return nid;
536 * Figure out to which domain a cpu belongs and stick it there.
537 * Return the id of the domain used.
539 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
541 int nid = 0;
542 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
544 if (!cpu) {
545 WARN_ON(1);
546 goto out;
549 nid = of_node_to_nid_single(cpu);
551 if (nid < 0 || !node_online(nid))
552 nid = first_online_node;
553 out:
554 map_cpu_to_node(lcpu, nid);
556 of_node_put(cpu);
558 return nid;
561 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
562 unsigned long action,
563 void *hcpu)
565 unsigned long lcpu = (unsigned long)hcpu;
566 int ret = NOTIFY_DONE;
568 switch (action) {
569 case CPU_UP_PREPARE:
570 case CPU_UP_PREPARE_FROZEN:
571 numa_setup_cpu(lcpu);
572 ret = NOTIFY_OK;
573 break;
574 #ifdef CONFIG_HOTPLUG_CPU
575 case CPU_DEAD:
576 case CPU_DEAD_FROZEN:
577 case CPU_UP_CANCELED:
578 case CPU_UP_CANCELED_FROZEN:
579 unmap_cpu_from_node(lcpu);
580 break;
581 ret = NOTIFY_OK;
582 #endif
584 return ret;
588 * Check and possibly modify a memory region to enforce the memory limit.
590 * Returns the size the region should have to enforce the memory limit.
591 * This will either be the original value of size, a truncated value,
592 * or zero. If the returned value of size is 0 the region should be
593 * discarded as it lies wholy above the memory limit.
595 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
596 unsigned long size)
599 * We use memblock_end_of_DRAM() in here instead of memory_limit because
600 * we've already adjusted it for the limit and it takes care of
601 * having memory holes below the limit. Also, in the case of
602 * iommu_is_off, memory_limit is not set but is implicitly enforced.
605 if (start + size <= memblock_end_of_DRAM())
606 return size;
608 if (start >= memblock_end_of_DRAM())
609 return 0;
611 return memblock_end_of_DRAM() - start;
615 * Reads the counter for a given entry in
616 * linux,drconf-usable-memory property
618 static inline int __init read_usm_ranges(const u32 **usm)
621 * For each lmb in ibm,dynamic-memory a corresponding
622 * entry in linux,drconf-usable-memory property contains
623 * a counter followed by that many (base, size) duple.
624 * read the counter from linux,drconf-usable-memory
626 return read_n_cells(n_mem_size_cells, usm);
630 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
631 * node. This assumes n_mem_{addr,size}_cells have been set.
633 static void __init parse_drconf_memory(struct device_node *memory)
635 const u32 *dm, *usm;
636 unsigned int n, rc, ranges, is_kexec_kdump = 0;
637 unsigned long lmb_size, base, size, sz;
638 int nid;
639 struct assoc_arrays aa;
641 n = of_get_drconf_memory(memory, &dm);
642 if (!n)
643 return;
645 lmb_size = of_get_lmb_size(memory);
646 if (!lmb_size)
647 return;
649 rc = of_get_assoc_arrays(memory, &aa);
650 if (rc)
651 return;
653 /* check if this is a kexec/kdump kernel */
654 usm = of_get_usable_memory(memory);
655 if (usm != NULL)
656 is_kexec_kdump = 1;
658 for (; n != 0; --n) {
659 struct of_drconf_cell drmem;
661 read_drconf_cell(&drmem, &dm);
663 /* skip this block if the reserved bit is set in flags (0x80)
664 or if the block is not assigned to this partition (0x8) */
665 if ((drmem.flags & DRCONF_MEM_RESERVED)
666 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
667 continue;
669 base = drmem.base_addr;
670 size = lmb_size;
671 ranges = 1;
673 if (is_kexec_kdump) {
674 ranges = read_usm_ranges(&usm);
675 if (!ranges) /* there are no (base, size) duple */
676 continue;
678 do {
679 if (is_kexec_kdump) {
680 base = read_n_cells(n_mem_addr_cells, &usm);
681 size = read_n_cells(n_mem_size_cells, &usm);
683 nid = of_drconf_to_nid_single(&drmem, &aa);
684 fake_numa_create_new_node(
685 ((base + size) >> PAGE_SHIFT),
686 &nid);
687 node_set_online(nid);
688 sz = numa_enforce_memory_limit(base, size);
689 if (sz)
690 add_active_range(nid, base >> PAGE_SHIFT,
691 (base >> PAGE_SHIFT)
692 + (sz >> PAGE_SHIFT));
693 } while (--ranges);
697 static int __init parse_numa_properties(void)
699 struct device_node *cpu = NULL;
700 struct device_node *memory = NULL;
701 int default_nid = 0;
702 unsigned long i;
704 if (numa_enabled == 0) {
705 printk(KERN_WARNING "NUMA disabled by user\n");
706 return -1;
709 min_common_depth = find_min_common_depth();
711 if (min_common_depth < 0)
712 return min_common_depth;
714 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
717 * Even though we connect cpus to numa domains later in SMP
718 * init, we need to know the node ids now. This is because
719 * each node to be onlined must have NODE_DATA etc backing it.
721 for_each_present_cpu(i) {
722 int nid;
724 cpu = of_get_cpu_node(i, NULL);
725 BUG_ON(!cpu);
726 nid = of_node_to_nid_single(cpu);
727 of_node_put(cpu);
730 * Don't fall back to default_nid yet -- we will plug
731 * cpus into nodes once the memory scan has discovered
732 * the topology.
734 if (nid < 0)
735 continue;
736 node_set_online(nid);
739 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
740 memory = NULL;
741 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
742 unsigned long start;
743 unsigned long size;
744 int nid;
745 int ranges;
746 const unsigned int *memcell_buf;
747 unsigned int len;
749 memcell_buf = of_get_property(memory,
750 "linux,usable-memory", &len);
751 if (!memcell_buf || len <= 0)
752 memcell_buf = of_get_property(memory, "reg", &len);
753 if (!memcell_buf || len <= 0)
754 continue;
756 /* ranges in cell */
757 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
758 new_range:
759 /* these are order-sensitive, and modify the buffer pointer */
760 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
761 size = read_n_cells(n_mem_size_cells, &memcell_buf);
764 * Assumption: either all memory nodes or none will
765 * have associativity properties. If none, then
766 * everything goes to default_nid.
768 nid = of_node_to_nid_single(memory);
769 if (nid < 0)
770 nid = default_nid;
772 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
773 node_set_online(nid);
775 if (!(size = numa_enforce_memory_limit(start, size))) {
776 if (--ranges)
777 goto new_range;
778 else
779 continue;
782 add_active_range(nid, start >> PAGE_SHIFT,
783 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
785 if (--ranges)
786 goto new_range;
790 * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory
791 * property in the ibm,dynamic-reconfiguration-memory node.
793 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
794 if (memory)
795 parse_drconf_memory(memory);
797 return 0;
800 static void __init setup_nonnuma(void)
802 unsigned long top_of_ram = memblock_end_of_DRAM();
803 unsigned long total_ram = memblock_phys_mem_size();
804 unsigned long start_pfn, end_pfn;
805 unsigned int i, nid = 0;
807 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
808 top_of_ram, total_ram);
809 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
810 (top_of_ram - total_ram) >> 20);
812 for (i = 0; i < memblock.memory.cnt; ++i) {
813 start_pfn = memblock.memory.region[i].base >> PAGE_SHIFT;
814 end_pfn = start_pfn + memblock_size_pages(&memblock.memory, i);
816 fake_numa_create_new_node(end_pfn, &nid);
817 add_active_range(nid, start_pfn, end_pfn);
818 node_set_online(nid);
822 void __init dump_numa_cpu_topology(void)
824 unsigned int node;
825 unsigned int cpu, count;
827 if (min_common_depth == -1 || !numa_enabled)
828 return;
830 for_each_online_node(node) {
831 printk(KERN_DEBUG "Node %d CPUs:", node);
833 count = 0;
835 * If we used a CPU iterator here we would miss printing
836 * the holes in the cpumap.
838 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
839 if (cpumask_test_cpu(cpu,
840 node_to_cpumask_map[node])) {
841 if (count == 0)
842 printk(" %u", cpu);
843 ++count;
844 } else {
845 if (count > 1)
846 printk("-%u", cpu - 1);
847 count = 0;
851 if (count > 1)
852 printk("-%u", nr_cpu_ids - 1);
853 printk("\n");
857 static void __init dump_numa_memory_topology(void)
859 unsigned int node;
860 unsigned int count;
862 if (min_common_depth == -1 || !numa_enabled)
863 return;
865 for_each_online_node(node) {
866 unsigned long i;
868 printk(KERN_DEBUG "Node %d Memory:", node);
870 count = 0;
872 for (i = 0; i < memblock_end_of_DRAM();
873 i += (1 << SECTION_SIZE_BITS)) {
874 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
875 if (count == 0)
876 printk(" 0x%lx", i);
877 ++count;
878 } else {
879 if (count > 0)
880 printk("-0x%lx", i);
881 count = 0;
885 if (count > 0)
886 printk("-0x%lx", i);
887 printk("\n");
892 * Allocate some memory, satisfying the memblock or bootmem allocator where
893 * required. nid is the preferred node and end is the physical address of
894 * the highest address in the node.
896 * Returns the virtual address of the memory.
898 static void __init *careful_zallocation(int nid, unsigned long size,
899 unsigned long align,
900 unsigned long end_pfn)
902 void *ret;
903 int new_nid;
904 unsigned long ret_paddr;
906 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
908 /* retry over all memory */
909 if (!ret_paddr)
910 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
912 if (!ret_paddr)
913 panic("numa.c: cannot allocate %lu bytes for node %d",
914 size, nid);
916 ret = __va(ret_paddr);
919 * We initialize the nodes in numeric order: 0, 1, 2...
920 * and hand over control from the MEMBLOCK allocator to the
921 * bootmem allocator. If this function is called for
922 * node 5, then we know that all nodes <5 are using the
923 * bootmem allocator instead of the MEMBLOCK allocator.
925 * So, check the nid from which this allocation came
926 * and double check to see if we need to use bootmem
927 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
928 * since it would be useless.
930 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
931 if (new_nid < nid) {
932 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
933 size, align, 0);
935 dbg("alloc_bootmem %p %lx\n", ret, size);
938 memset(ret, 0, size);
939 return ret;
942 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
943 .notifier_call = cpu_numa_callback,
944 .priority = 1 /* Must run before sched domains notifier. */
947 static void mark_reserved_regions_for_nid(int nid)
949 struct pglist_data *node = NODE_DATA(nid);
950 int i;
952 for (i = 0; i < memblock.reserved.cnt; i++) {
953 unsigned long physbase = memblock.reserved.region[i].base;
954 unsigned long size = memblock.reserved.region[i].size;
955 unsigned long start_pfn = physbase >> PAGE_SHIFT;
956 unsigned long end_pfn = PFN_UP(physbase + size);
957 struct node_active_region node_ar;
958 unsigned long node_end_pfn = node->node_start_pfn +
959 node->node_spanned_pages;
962 * Check to make sure that this memblock.reserved area is
963 * within the bounds of the node that we care about.
964 * Checking the nid of the start and end points is not
965 * sufficient because the reserved area could span the
966 * entire node.
968 if (end_pfn <= node->node_start_pfn ||
969 start_pfn >= node_end_pfn)
970 continue;
972 get_node_active_region(start_pfn, &node_ar);
973 while (start_pfn < end_pfn &&
974 node_ar.start_pfn < node_ar.end_pfn) {
975 unsigned long reserve_size = size;
977 * if reserved region extends past active region
978 * then trim size to active region
980 if (end_pfn > node_ar.end_pfn)
981 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
982 - physbase;
984 * Only worry about *this* node, others may not
985 * yet have valid NODE_DATA().
987 if (node_ar.nid == nid) {
988 dbg("reserve_bootmem %lx %lx nid=%d\n",
989 physbase, reserve_size, node_ar.nid);
990 reserve_bootmem_node(NODE_DATA(node_ar.nid),
991 physbase, reserve_size,
992 BOOTMEM_DEFAULT);
995 * if reserved region is contained in the active region
996 * then done.
998 if (end_pfn <= node_ar.end_pfn)
999 break;
1002 * reserved region extends past the active region
1003 * get next active region that contains this
1004 * reserved region
1006 start_pfn = node_ar.end_pfn;
1007 physbase = start_pfn << PAGE_SHIFT;
1008 size = size - reserve_size;
1009 get_node_active_region(start_pfn, &node_ar);
1015 void __init do_init_bootmem(void)
1017 int nid;
1019 min_low_pfn = 0;
1020 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1021 max_pfn = max_low_pfn;
1023 if (parse_numa_properties())
1024 setup_nonnuma();
1025 else
1026 dump_numa_memory_topology();
1028 for_each_online_node(nid) {
1029 unsigned long start_pfn, end_pfn;
1030 void *bootmem_vaddr;
1031 unsigned long bootmap_pages;
1033 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1036 * Allocate the node structure node local if possible
1038 * Be careful moving this around, as it relies on all
1039 * previous nodes' bootmem to be initialized and have
1040 * all reserved areas marked.
1042 NODE_DATA(nid) = careful_zallocation(nid,
1043 sizeof(struct pglist_data),
1044 SMP_CACHE_BYTES, end_pfn);
1046 dbg("node %d\n", nid);
1047 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1049 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1050 NODE_DATA(nid)->node_start_pfn = start_pfn;
1051 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1053 if (NODE_DATA(nid)->node_spanned_pages == 0)
1054 continue;
1056 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1057 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1059 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1060 bootmem_vaddr = careful_zallocation(nid,
1061 bootmap_pages << PAGE_SHIFT,
1062 PAGE_SIZE, end_pfn);
1064 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1066 init_bootmem_node(NODE_DATA(nid),
1067 __pa(bootmem_vaddr) >> PAGE_SHIFT,
1068 start_pfn, end_pfn);
1070 free_bootmem_with_active_regions(nid, end_pfn);
1072 * Be very careful about moving this around. Future
1073 * calls to careful_zallocation() depend on this getting
1074 * done correctly.
1076 mark_reserved_regions_for_nid(nid);
1077 sparse_memory_present_with_active_regions(nid);
1080 init_bootmem_done = 1;
1083 * Now bootmem is initialised we can create the node to cpumask
1084 * lookup tables and setup the cpu callback to populate them.
1086 setup_node_to_cpumask_map();
1088 register_cpu_notifier(&ppc64_numa_nb);
1089 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1090 (void *)(unsigned long)boot_cpuid);
1093 void __init paging_init(void)
1095 unsigned long max_zone_pfns[MAX_NR_ZONES];
1096 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1097 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1098 free_area_init_nodes(max_zone_pfns);
1101 static int __init early_numa(char *p)
1103 if (!p)
1104 return 0;
1106 if (strstr(p, "off"))
1107 numa_enabled = 0;
1109 if (strstr(p, "debug"))
1110 numa_debug = 1;
1112 p = strstr(p, "fake=");
1113 if (p)
1114 cmdline = p + strlen("fake=");
1116 return 0;
1118 early_param("numa", early_numa);
1120 #ifdef CONFIG_MEMORY_HOTPLUG
1122 * Find the node associated with a hot added memory section for
1123 * memory represented in the device tree by the property
1124 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1126 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1127 unsigned long scn_addr)
1129 const u32 *dm;
1130 unsigned int drconf_cell_cnt, rc;
1131 unsigned long lmb_size;
1132 struct assoc_arrays aa;
1133 int nid = -1;
1135 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1136 if (!drconf_cell_cnt)
1137 return -1;
1139 lmb_size = of_get_lmb_size(memory);
1140 if (!lmb_size)
1141 return -1;
1143 rc = of_get_assoc_arrays(memory, &aa);
1144 if (rc)
1145 return -1;
1147 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1148 struct of_drconf_cell drmem;
1150 read_drconf_cell(&drmem, &dm);
1152 /* skip this block if it is reserved or not assigned to
1153 * this partition */
1154 if ((drmem.flags & DRCONF_MEM_RESERVED)
1155 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1156 continue;
1158 if ((scn_addr < drmem.base_addr)
1159 || (scn_addr >= (drmem.base_addr + lmb_size)))
1160 continue;
1162 nid = of_drconf_to_nid_single(&drmem, &aa);
1163 break;
1166 return nid;
1169 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1171 struct device_node *memory = NULL;
1172 int nid = -1;
1174 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1175 unsigned long start, size;
1176 int ranges;
1177 const unsigned int *memcell_buf;
1178 unsigned int len;
1180 memcell_buf = of_get_property(memory, "reg", &len);
1181 if (!memcell_buf || len <= 0)
1182 continue;
1184 /* ranges in cell */
1185 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1187 while (ranges--) {
1188 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1189 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1191 if ((scn_addr < start) || (scn_addr >= (start + size)))
1192 continue;
1194 nid = of_node_to_nid_single(memory);
1195 break;
1198 of_node_put(memory);
1199 if (nid >= 0)
1200 break;
1203 return nid;
1207 * Find the node associated with a hot added memory section. Section
1208 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1209 * sections are fully contained within a single MEMBLOCK.
1211 int hot_add_scn_to_nid(unsigned long scn_addr)
1213 struct device_node *memory = NULL;
1214 int nid, found = 0;
1216 if (!numa_enabled || (min_common_depth < 0))
1217 return first_online_node;
1219 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1220 if (memory) {
1221 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1222 of_node_put(memory);
1223 } else {
1224 nid = hot_add_node_scn_to_nid(scn_addr);
1227 if (nid < 0 || !node_online(nid))
1228 nid = first_online_node;
1230 if (NODE_DATA(nid)->node_spanned_pages)
1231 return nid;
1233 for_each_online_node(nid) {
1234 if (NODE_DATA(nid)->node_spanned_pages) {
1235 found = 1;
1236 break;
1240 BUG_ON(!found);
1241 return nid;
1244 #endif /* CONFIG_MEMORY_HOTPLUG */