GUI: Fix Tomato RAF theme for all builds. Compilation typo.
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / powerpc / kernel / perf_callchain.c
blob95ad9dad298e9d4773117b0406bc4a3378d77e5e
1 /*
2 * Performance counter callchain support - powerpc architecture code
4 * Copyright © 2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/mm.h>
17 #include <asm/ptrace.h>
18 #include <asm/pgtable.h>
19 #include <asm/sigcontext.h>
20 #include <asm/ucontext.h>
21 #include <asm/vdso.h>
22 #ifdef CONFIG_PPC64
23 #include "ppc32.h"
24 #endif
27 * Store another value in a callchain_entry.
29 static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
31 unsigned int nr = entry->nr;
33 if (nr < PERF_MAX_STACK_DEPTH) {
34 entry->ip[nr] = ip;
35 entry->nr = nr + 1;
40 * Is sp valid as the address of the next kernel stack frame after prev_sp?
41 * The next frame may be in a different stack area but should not go
42 * back down in the same stack area.
44 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
46 if (sp & 0xf)
47 return 0; /* must be 16-byte aligned */
48 if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
49 return 0;
50 if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
51 return 1;
53 * sp could decrease when we jump off an interrupt stack
54 * back to the regular process stack.
56 if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
57 return 1;
58 return 0;
61 static void perf_callchain_kernel(struct pt_regs *regs,
62 struct perf_callchain_entry *entry)
64 unsigned long sp, next_sp;
65 unsigned long next_ip;
66 unsigned long lr;
67 long level = 0;
68 unsigned long *fp;
70 lr = regs->link;
71 sp = regs->gpr[1];
72 callchain_store(entry, PERF_CONTEXT_KERNEL);
73 callchain_store(entry, regs->nip);
75 if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
76 return;
78 for (;;) {
79 fp = (unsigned long *) sp;
80 next_sp = fp[0];
82 if (next_sp == sp + STACK_INT_FRAME_SIZE &&
83 fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
85 * This looks like an interrupt frame for an
86 * interrupt that occurred in the kernel
88 regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
89 next_ip = regs->nip;
90 lr = regs->link;
91 level = 0;
92 callchain_store(entry, PERF_CONTEXT_KERNEL);
94 } else {
95 if (level == 0)
96 next_ip = lr;
97 else
98 next_ip = fp[STACK_FRAME_LR_SAVE];
101 * We can't tell which of the first two addresses
102 * we get are valid, but we can filter out the
103 * obviously bogus ones here. We replace them
104 * with 0 rather than removing them entirely so
105 * that userspace can tell which is which.
107 if ((level == 1 && next_ip == lr) ||
108 (level <= 1 && !kernel_text_address(next_ip)))
109 next_ip = 0;
111 ++level;
114 callchain_store(entry, next_ip);
115 if (!valid_next_sp(next_sp, sp))
116 return;
117 sp = next_sp;
121 #ifdef CONFIG_PPC64
123 * On 64-bit we don't want to invoke hash_page on user addresses from
124 * interrupt context, so if the access faults, we read the page tables
125 * to find which page (if any) is mapped and access it directly.
127 static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
129 pgd_t *pgdir;
130 pte_t *ptep, pte;
131 unsigned shift;
132 unsigned long addr = (unsigned long) ptr;
133 unsigned long offset;
134 unsigned long pfn;
135 void *kaddr;
137 pgdir = current->mm->pgd;
138 if (!pgdir)
139 return -EFAULT;
141 ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift);
142 if (!shift)
143 shift = PAGE_SHIFT;
145 /* align address to page boundary */
146 offset = addr & ((1UL << shift) - 1);
147 addr -= offset;
149 if (ptep == NULL)
150 return -EFAULT;
151 pte = *ptep;
152 if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
153 return -EFAULT;
154 pfn = pte_pfn(pte);
155 if (!page_is_ram(pfn))
156 return -EFAULT;
158 /* no highmem to worry about here */
159 kaddr = pfn_to_kaddr(pfn);
160 memcpy(ret, kaddr + offset, nb);
161 return 0;
164 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
166 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
167 ((unsigned long)ptr & 7))
168 return -EFAULT;
170 if (!__get_user_inatomic(*ret, ptr))
171 return 0;
173 return read_user_stack_slow(ptr, ret, 8);
176 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
178 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
179 ((unsigned long)ptr & 3))
180 return -EFAULT;
182 if (!__get_user_inatomic(*ret, ptr))
183 return 0;
185 return read_user_stack_slow(ptr, ret, 4);
188 static inline int valid_user_sp(unsigned long sp, int is_64)
190 if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
191 return 0;
192 return 1;
196 * 64-bit user processes use the same stack frame for RT and non-RT signals.
198 struct signal_frame_64 {
199 char dummy[__SIGNAL_FRAMESIZE];
200 struct ucontext uc;
201 unsigned long unused[2];
202 unsigned int tramp[6];
203 struct siginfo *pinfo;
204 void *puc;
205 struct siginfo info;
206 char abigap[288];
209 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
211 if (nip == fp + offsetof(struct signal_frame_64, tramp))
212 return 1;
213 if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
214 nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
215 return 1;
216 return 0;
220 * Do some sanity checking on the signal frame pointed to by sp.
221 * We check the pinfo and puc pointers in the frame.
223 static int sane_signal_64_frame(unsigned long sp)
225 struct signal_frame_64 __user *sf;
226 unsigned long pinfo, puc;
228 sf = (struct signal_frame_64 __user *) sp;
229 if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
230 read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
231 return 0;
232 return pinfo == (unsigned long) &sf->info &&
233 puc == (unsigned long) &sf->uc;
236 static void perf_callchain_user_64(struct pt_regs *regs,
237 struct perf_callchain_entry *entry)
239 unsigned long sp, next_sp;
240 unsigned long next_ip;
241 unsigned long lr;
242 long level = 0;
243 struct signal_frame_64 __user *sigframe;
244 unsigned long __user *fp, *uregs;
246 next_ip = regs->nip;
247 lr = regs->link;
248 sp = regs->gpr[1];
249 callchain_store(entry, PERF_CONTEXT_USER);
250 callchain_store(entry, next_ip);
252 for (;;) {
253 fp = (unsigned long __user *) sp;
254 if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
255 return;
256 if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
257 return;
260 * Note: the next_sp - sp >= signal frame size check
261 * is true when next_sp < sp, which can happen when
262 * transitioning from an alternate signal stack to the
263 * normal stack.
265 if (next_sp - sp >= sizeof(struct signal_frame_64) &&
266 (is_sigreturn_64_address(next_ip, sp) ||
267 (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
268 sane_signal_64_frame(sp)) {
270 * This looks like an signal frame
272 sigframe = (struct signal_frame_64 __user *) sp;
273 uregs = sigframe->uc.uc_mcontext.gp_regs;
274 if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
275 read_user_stack_64(&uregs[PT_LNK], &lr) ||
276 read_user_stack_64(&uregs[PT_R1], &sp))
277 return;
278 level = 0;
279 callchain_store(entry, PERF_CONTEXT_USER);
280 callchain_store(entry, next_ip);
281 continue;
284 if (level == 0)
285 next_ip = lr;
286 callchain_store(entry, next_ip);
287 ++level;
288 sp = next_sp;
292 static inline int current_is_64bit(void)
295 * We can't use test_thread_flag() here because we may be on an
296 * interrupt stack, and the thread flags don't get copied over
297 * from the thread_info on the main stack to the interrupt stack.
299 return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
302 #else /* CONFIG_PPC64 */
304 * On 32-bit we just access the address and let hash_page create a
305 * HPTE if necessary, so there is no need to fall back to reading
306 * the page tables. Since this is called at interrupt level,
307 * do_page_fault() won't treat a DSI as a page fault.
309 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
311 if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
312 ((unsigned long)ptr & 3))
313 return -EFAULT;
315 return __get_user_inatomic(*ret, ptr);
318 static inline void perf_callchain_user_64(struct pt_regs *regs,
319 struct perf_callchain_entry *entry)
323 static inline int current_is_64bit(void)
325 return 0;
328 static inline int valid_user_sp(unsigned long sp, int is_64)
330 if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
331 return 0;
332 return 1;
335 #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
336 #define sigcontext32 sigcontext
337 #define mcontext32 mcontext
338 #define ucontext32 ucontext
339 #define compat_siginfo_t struct siginfo
341 #endif /* CONFIG_PPC64 */
344 * Layout for non-RT signal frames
346 struct signal_frame_32 {
347 char dummy[__SIGNAL_FRAMESIZE32];
348 struct sigcontext32 sctx;
349 struct mcontext32 mctx;
350 int abigap[56];
354 * Layout for RT signal frames
356 struct rt_signal_frame_32 {
357 char dummy[__SIGNAL_FRAMESIZE32 + 16];
358 compat_siginfo_t info;
359 struct ucontext32 uc;
360 int abigap[56];
363 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
365 if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
366 return 1;
367 if (vdso32_sigtramp && current->mm->context.vdso_base &&
368 nip == current->mm->context.vdso_base + vdso32_sigtramp)
369 return 1;
370 return 0;
373 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
375 if (nip == fp + offsetof(struct rt_signal_frame_32,
376 uc.uc_mcontext.mc_pad))
377 return 1;
378 if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
379 nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
380 return 1;
381 return 0;
384 static int sane_signal_32_frame(unsigned int sp)
386 struct signal_frame_32 __user *sf;
387 unsigned int regs;
389 sf = (struct signal_frame_32 __user *) (unsigned long) sp;
390 if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
391 return 0;
392 return regs == (unsigned long) &sf->mctx;
395 static int sane_rt_signal_32_frame(unsigned int sp)
397 struct rt_signal_frame_32 __user *sf;
398 unsigned int regs;
400 sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
401 if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
402 return 0;
403 return regs == (unsigned long) &sf->uc.uc_mcontext;
406 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
407 unsigned int next_sp, unsigned int next_ip)
409 struct mcontext32 __user *mctx = NULL;
410 struct signal_frame_32 __user *sf;
411 struct rt_signal_frame_32 __user *rt_sf;
414 * Note: the next_sp - sp >= signal frame size check
415 * is true when next_sp < sp, for example, when
416 * transitioning from an alternate signal stack to the
417 * normal stack.
419 if (next_sp - sp >= sizeof(struct signal_frame_32) &&
420 is_sigreturn_32_address(next_ip, sp) &&
421 sane_signal_32_frame(sp)) {
422 sf = (struct signal_frame_32 __user *) (unsigned long) sp;
423 mctx = &sf->mctx;
426 if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
427 is_rt_sigreturn_32_address(next_ip, sp) &&
428 sane_rt_signal_32_frame(sp)) {
429 rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
430 mctx = &rt_sf->uc.uc_mcontext;
433 if (!mctx)
434 return NULL;
435 return mctx->mc_gregs;
438 static void perf_callchain_user_32(struct pt_regs *regs,
439 struct perf_callchain_entry *entry)
441 unsigned int sp, next_sp;
442 unsigned int next_ip;
443 unsigned int lr;
444 long level = 0;
445 unsigned int __user *fp, *uregs;
447 next_ip = regs->nip;
448 lr = regs->link;
449 sp = regs->gpr[1];
450 callchain_store(entry, PERF_CONTEXT_USER);
451 callchain_store(entry, next_ip);
453 while (entry->nr < PERF_MAX_STACK_DEPTH) {
454 fp = (unsigned int __user *) (unsigned long) sp;
455 if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
456 return;
457 if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
458 return;
460 uregs = signal_frame_32_regs(sp, next_sp, next_ip);
461 if (!uregs && level <= 1)
462 uregs = signal_frame_32_regs(sp, next_sp, lr);
463 if (uregs) {
465 * This looks like an signal frame, so restart
466 * the stack trace with the values in it.
468 if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
469 read_user_stack_32(&uregs[PT_LNK], &lr) ||
470 read_user_stack_32(&uregs[PT_R1], &sp))
471 return;
472 level = 0;
473 callchain_store(entry, PERF_CONTEXT_USER);
474 callchain_store(entry, next_ip);
475 continue;
478 if (level == 0)
479 next_ip = lr;
480 callchain_store(entry, next_ip);
481 ++level;
482 sp = next_sp;
487 * Since we can't get PMU interrupts inside a PMU interrupt handler,
488 * we don't need separate irq and nmi entries here.
490 static DEFINE_PER_CPU(struct perf_callchain_entry, cpu_perf_callchain);
492 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
494 struct perf_callchain_entry *entry = &__get_cpu_var(cpu_perf_callchain);
496 entry->nr = 0;
498 if (!user_mode(regs)) {
499 perf_callchain_kernel(regs, entry);
500 if (current->mm)
501 regs = task_pt_regs(current);
502 else
503 regs = NULL;
506 if (regs) {
507 if (current_is_64bit())
508 perf_callchain_user_64(regs, entry);
509 else
510 perf_callchain_user_32(regs, entry);
513 return entry;