TCP: paws check and RFC1323 updates from upstream
[tomato.git] / release / src-rt / linux / linux-2.6 / net / ipv4 / tcp_input.c
blobc10f8d98452fc0a81ec3300780c50225bdbdf0c0
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
108 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
111 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
112 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
115 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
116 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
118 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 /* Adapt the MSS value used to make delayed ack decision to the
123 * real world.
125 static void tcp_measure_rcv_mss(struct sock *sk,
126 const struct sk_buff *skb)
128 struct inet_connection_sock *icsk = inet_csk(sk);
129 const unsigned int lss = icsk->icsk_ack.last_seg_size;
130 unsigned int len;
132 icsk->icsk_ack.last_seg_size = 0;
134 /* skb->len may jitter because of SACKs, even if peer
135 * sends good full-sized frames.
137 len = skb_shinfo(skb)->gso_size ?: skb->len;
138 if (len >= icsk->icsk_ack.rcv_mss) {
139 icsk->icsk_ack.rcv_mss = len;
140 } else {
141 /* Otherwise, we make more careful check taking into account,
142 * that SACKs block is variable.
144 * "len" is invariant segment length, including TCP header.
146 len += skb->data - skb_transport_header(skb);
147 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
148 /* If PSH is not set, packet should be
149 * full sized, provided peer TCP is not badly broken.
150 * This observation (if it is correct 8)) allows
151 * to handle super-low mtu links fairly.
153 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
154 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
155 /* Subtract also invariant (if peer is RFC compliant),
156 * tcp header plus fixed timestamp option length.
157 * Resulting "len" is MSS free of SACK jitter.
159 len -= tcp_sk(sk)->tcp_header_len;
160 icsk->icsk_ack.last_seg_size = len;
161 if (len == lss) {
162 icsk->icsk_ack.rcv_mss = len;
163 return;
166 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
167 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 static void tcp_incr_quickack(struct sock *sk)
174 struct inet_connection_sock *icsk = inet_csk(sk);
175 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 if (quickacks==0)
178 quickacks=2;
179 if (quickacks > icsk->icsk_ack.quick)
180 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 void tcp_enter_quickack_mode(struct sock *sk)
185 struct inet_connection_sock *icsk = inet_csk(sk);
186 tcp_incr_quickack(sk);
187 icsk->icsk_ack.pingpong = 0;
188 icsk->icsk_ack.ato = TCP_ATO_MIN;
191 /* Send ACKs quickly, if "quick" count is not exhausted
192 * and the session is not interactive.
195 static inline int tcp_in_quickack_mode(const struct sock *sk)
197 const struct inet_connection_sock *icsk = inet_csk(sk);
198 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 /* Buffer size and advertised window tuning.
203 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
206 static void tcp_fixup_sndbuf(struct sock *sk)
208 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
209 sizeof(struct sk_buff);
211 if (sk->sk_sndbuf < 3 * sndmem)
212 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
215 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
217 * All tcp_full_space() is split to two parts: "network" buffer, allocated
218 * forward and advertised in receiver window (tp->rcv_wnd) and
219 * "application buffer", required to isolate scheduling/application
220 * latencies from network.
221 * window_clamp is maximal advertised window. It can be less than
222 * tcp_full_space(), in this case tcp_full_space() - window_clamp
223 * is reserved for "application" buffer. The less window_clamp is
224 * the smoother our behaviour from viewpoint of network, but the lower
225 * throughput and the higher sensitivity of the connection to losses. 8)
227 * rcv_ssthresh is more strict window_clamp used at "slow start"
228 * phase to predict further behaviour of this connection.
229 * It is used for two goals:
230 * - to enforce header prediction at sender, even when application
231 * requires some significant "application buffer". It is check #1.
232 * - to prevent pruning of receive queue because of misprediction
233 * of receiver window. Check #2.
235 * The scheme does not work when sender sends good segments opening
236 * window and then starts to feed us spaghetti. But it should work
237 * in common situations. Otherwise, we have to rely on queue collapsing.
240 /* Slow part of check#2. */
241 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
243 struct tcp_sock *tp = tcp_sk(sk);
244 /* Optimize this! */
245 int truesize = tcp_win_from_space(skb->truesize) >> 1;
246 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
248 while (tp->rcv_ssthresh <= window) {
249 if (truesize <= skb->len)
250 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
252 truesize >>= 1;
253 window >>= 1;
255 return 0;
258 static void tcp_grow_window(struct sock *sk,
259 struct sk_buff *skb)
261 struct tcp_sock *tp = tcp_sk(sk);
263 /* Check #1 */
264 if (tp->rcv_ssthresh < tp->window_clamp &&
265 (int)tp->rcv_ssthresh < tcp_space(sk) &&
266 !tcp_memory_pressure) {
267 int incr;
269 /* Check #2. Increase window, if skb with such overhead
270 * will fit to rcvbuf in future.
272 if (tcp_win_from_space(skb->truesize) <= skb->len)
273 incr = 2*tp->advmss;
274 else
275 incr = __tcp_grow_window(sk, skb);
277 if (incr) {
278 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
279 inet_csk(sk)->icsk_ack.quick |= 1;
284 /* 3. Tuning rcvbuf, when connection enters established state. */
286 static void tcp_fixup_rcvbuf(struct sock *sk)
288 struct tcp_sock *tp = tcp_sk(sk);
289 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
291 /* Try to select rcvbuf so that 4 mss-sized segments
292 * will fit to window and corresponding skbs will fit to our rcvbuf.
293 * (was 3; 4 is minimum to allow fast retransmit to work.)
295 while (tcp_win_from_space(rcvmem) < tp->advmss)
296 rcvmem += 128;
297 if (sk->sk_rcvbuf < 4 * rcvmem)
298 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
301 /* 4. Try to fixup all. It is made immediately after connection enters
302 * established state.
304 static void tcp_init_buffer_space(struct sock *sk)
306 struct tcp_sock *tp = tcp_sk(sk);
307 int maxwin;
309 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
310 tcp_fixup_rcvbuf(sk);
311 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
312 tcp_fixup_sndbuf(sk);
314 tp->rcvq_space.space = tp->rcv_wnd;
316 maxwin = tcp_full_space(sk);
318 if (tp->window_clamp >= maxwin) {
319 tp->window_clamp = maxwin;
321 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
322 tp->window_clamp = max(maxwin -
323 (maxwin >> sysctl_tcp_app_win),
324 4 * tp->advmss);
327 /* Force reservation of one segment. */
328 if (sysctl_tcp_app_win &&
329 tp->window_clamp > 2 * tp->advmss &&
330 tp->window_clamp + tp->advmss > maxwin)
331 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
333 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
334 tp->snd_cwnd_stamp = tcp_time_stamp;
337 /* 5. Recalculate window clamp after socket hit its memory bounds. */
338 static void tcp_clamp_window(struct sock *sk)
340 struct tcp_sock *tp = tcp_sk(sk);
341 struct inet_connection_sock *icsk = inet_csk(sk);
343 icsk->icsk_ack.quick = 0;
345 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
346 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
347 !tcp_memory_pressure &&
348 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
349 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
350 sysctl_tcp_rmem[2]);
352 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
353 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
357 /* Initialize RCV_MSS value.
358 * RCV_MSS is an our guess about MSS used by the peer.
359 * We haven't any direct information about the MSS.
360 * It's better to underestimate the RCV_MSS rather than overestimate.
361 * Overestimations make us ACKing less frequently than needed.
362 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
364 void tcp_initialize_rcv_mss(struct sock *sk)
366 struct tcp_sock *tp = tcp_sk(sk);
367 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
369 hint = min(hint, tp->rcv_wnd/2);
370 hint = min(hint, TCP_MIN_RCVMSS);
371 hint = max(hint, TCP_MIN_MSS);
373 inet_csk(sk)->icsk_ack.rcv_mss = hint;
376 /* Receiver "autotuning" code.
378 * The algorithm for RTT estimation w/o timestamps is based on
379 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
380 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
382 * More detail on this code can be found at
383 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
384 * though this reference is out of date. A new paper
385 * is pending.
387 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
389 u32 new_sample = tp->rcv_rtt_est.rtt;
390 long m = sample;
392 if (m == 0)
393 m = 1;
395 if (new_sample != 0) {
396 /* If we sample in larger samples in the non-timestamp
397 * case, we could grossly overestimate the RTT especially
398 * with chatty applications or bulk transfer apps which
399 * are stalled on filesystem I/O.
401 * Also, since we are only going for a minimum in the
402 * non-timestamp case, we do not smooth things out
403 * else with timestamps disabled convergence takes too
404 * long.
406 if (!win_dep) {
407 m -= (new_sample >> 3);
408 new_sample += m;
409 } else if (m < new_sample)
410 new_sample = m << 3;
411 } else {
412 /* No previous measure. */
413 new_sample = m << 3;
416 if (tp->rcv_rtt_est.rtt != new_sample)
417 tp->rcv_rtt_est.rtt = new_sample;
420 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
422 if (tp->rcv_rtt_est.time == 0)
423 goto new_measure;
424 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
425 return;
426 tcp_rcv_rtt_update(tp,
427 jiffies - tp->rcv_rtt_est.time,
430 new_measure:
431 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
432 tp->rcv_rtt_est.time = tcp_time_stamp;
435 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
437 struct tcp_sock *tp = tcp_sk(sk);
438 if (tp->rx_opt.rcv_tsecr &&
439 (TCP_SKB_CB(skb)->end_seq -
440 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
441 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
445 * This function should be called every time data is copied to user space.
446 * It calculates the appropriate TCP receive buffer space.
448 void tcp_rcv_space_adjust(struct sock *sk)
450 struct tcp_sock *tp = tcp_sk(sk);
451 int time;
452 int space;
454 if (tp->rcvq_space.time == 0)
455 goto new_measure;
457 time = tcp_time_stamp - tp->rcvq_space.time;
458 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
459 tp->rcv_rtt_est.rtt == 0)
460 return;
462 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
464 space = max(tp->rcvq_space.space, space);
466 if (tp->rcvq_space.space != space) {
467 int rcvmem;
469 tp->rcvq_space.space = space;
471 if (sysctl_tcp_moderate_rcvbuf &&
472 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
473 int new_clamp = space;
475 /* Receive space grows, normalize in order to
476 * take into account packet headers and sk_buff
477 * structure overhead.
479 space /= tp->advmss;
480 if (!space)
481 space = 1;
482 rcvmem = (tp->advmss + MAX_TCP_HEADER +
483 16 + sizeof(struct sk_buff));
484 while (tcp_win_from_space(rcvmem) < tp->advmss)
485 rcvmem += 128;
486 space *= rcvmem;
487 space = min(space, sysctl_tcp_rmem[2]);
488 if (space > sk->sk_rcvbuf) {
489 sk->sk_rcvbuf = space;
491 /* Make the window clamp follow along. */
492 tp->window_clamp = new_clamp;
497 new_measure:
498 tp->rcvq_space.seq = tp->copied_seq;
499 tp->rcvq_space.time = tcp_time_stamp;
502 /* There is something which you must keep in mind when you analyze the
503 * behavior of the tp->ato delayed ack timeout interval. When a
504 * connection starts up, we want to ack as quickly as possible. The
505 * problem is that "good" TCP's do slow start at the beginning of data
506 * transmission. The means that until we send the first few ACK's the
507 * sender will sit on his end and only queue most of his data, because
508 * he can only send snd_cwnd unacked packets at any given time. For
509 * each ACK we send, he increments snd_cwnd and transmits more of his
510 * queue. -DaveM
512 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
514 struct tcp_sock *tp = tcp_sk(sk);
515 struct inet_connection_sock *icsk = inet_csk(sk);
516 u32 now;
518 inet_csk_schedule_ack(sk);
520 tcp_measure_rcv_mss(sk, skb);
522 tcp_rcv_rtt_measure(tp);
524 now = tcp_time_stamp;
526 if (!icsk->icsk_ack.ato) {
527 /* The _first_ data packet received, initialize
528 * delayed ACK engine.
530 tcp_incr_quickack(sk);
531 icsk->icsk_ack.ato = TCP_ATO_MIN;
532 } else {
533 int m = now - icsk->icsk_ack.lrcvtime;
535 if (m <= TCP_ATO_MIN/2) {
536 /* The fastest case is the first. */
537 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
538 } else if (m < icsk->icsk_ack.ato) {
539 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
540 if (icsk->icsk_ack.ato > icsk->icsk_rto)
541 icsk->icsk_ack.ato = icsk->icsk_rto;
542 } else if (m > icsk->icsk_rto) {
543 /* Too long gap. Apparently sender failed to
544 * restart window, so that we send ACKs quickly.
546 tcp_incr_quickack(sk);
547 sk_stream_mem_reclaim(sk);
550 icsk->icsk_ack.lrcvtime = now;
552 TCP_ECN_check_ce(tp, skb);
554 if (skb->len >= 128)
555 tcp_grow_window(sk, skb);
558 /* Called to compute a smoothed rtt estimate. The data fed to this
559 * routine either comes from timestamps, or from segments that were
560 * known _not_ to have been retransmitted [see Karn/Partridge
561 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
562 * piece by Van Jacobson.
563 * NOTE: the next three routines used to be one big routine.
564 * To save cycles in the RFC 1323 implementation it was better to break
565 * it up into three procedures. -- erics
567 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
569 struct tcp_sock *tp = tcp_sk(sk);
570 long m = mrtt; /* RTT */
572 /* The following amusing code comes from Jacobson's
573 * article in SIGCOMM '88. Note that rtt and mdev
574 * are scaled versions of rtt and mean deviation.
575 * This is designed to be as fast as possible
576 * m stands for "measurement".
578 * On a 1990 paper the rto value is changed to:
579 * RTO = rtt + 4 * mdev
581 * Funny. This algorithm seems to be very broken.
582 * These formulae increase RTO, when it should be decreased, increase
583 * too slowly, when it should be increased quickly, decrease too quickly
584 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
585 * does not matter how to _calculate_ it. Seems, it was trap
586 * that VJ failed to avoid. 8)
588 if (m == 0)
589 m = 1;
590 if (tp->srtt != 0) {
591 m -= (tp->srtt >> 3); /* m is now error in rtt est */
592 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
593 if (m < 0) {
594 m = -m; /* m is now abs(error) */
595 m -= (tp->mdev >> 2); /* similar update on mdev */
596 /* This is similar to one of Eifel findings.
597 * Eifel blocks mdev updates when rtt decreases.
598 * This solution is a bit different: we use finer gain
599 * for mdev in this case (alpha*beta).
600 * Like Eifel it also prevents growth of rto,
601 * but also it limits too fast rto decreases,
602 * happening in pure Eifel.
604 if (m > 0)
605 m >>= 3;
606 } else {
607 m -= (tp->mdev >> 2); /* similar update on mdev */
609 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
610 if (tp->mdev > tp->mdev_max) {
611 tp->mdev_max = tp->mdev;
612 if (tp->mdev_max > tp->rttvar)
613 tp->rttvar = tp->mdev_max;
615 if (after(tp->snd_una, tp->rtt_seq)) {
616 if (tp->mdev_max < tp->rttvar)
617 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
618 tp->rtt_seq = tp->snd_nxt;
619 tp->mdev_max = tcp_rto_min(sk);
621 } else {
622 /* no previous measure. */
623 tp->srtt = m<<3; /* take the measured time to be rtt */
624 tp->mdev = m<<1; /* make sure rto = 3*rtt */
625 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
626 tp->rtt_seq = tp->snd_nxt;
630 /* Calculate rto without backoff. This is the second half of Van Jacobson's
631 * routine referred to above.
633 static inline void tcp_set_rto(struct sock *sk)
635 const struct tcp_sock *tp = tcp_sk(sk);
636 /* Old crap is replaced with new one. 8)
638 * More seriously:
639 * 1. If rtt variance happened to be less 50msec, it is hallucination.
640 * It cannot be less due to utterly erratic ACK generation made
641 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
642 * to do with delayed acks, because at cwnd>2 true delack timeout
643 * is invisible. Actually, Linux-2.4 also generates erratic
644 * ACKs in some circumstances.
646 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
648 /* 2. Fixups made earlier cannot be right.
649 * If we do not estimate RTO correctly without them,
650 * all the algo is pure shit and should be replaced
651 * with correct one. It is exactly, which we pretend to do.
655 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
656 * guarantees that rto is higher.
658 static inline void tcp_bound_rto(struct sock *sk)
660 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
661 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
664 /* Save metrics learned by this TCP session.
665 This function is called only, when TCP finishes successfully
666 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
668 void tcp_update_metrics(struct sock *sk)
670 struct tcp_sock *tp = tcp_sk(sk);
671 struct dst_entry *dst = __sk_dst_get(sk);
673 if (sysctl_tcp_nometrics_save)
674 return;
676 dst_confirm(dst);
678 if (dst && (dst->flags&DST_HOST)) {
679 const struct inet_connection_sock *icsk = inet_csk(sk);
680 int m;
682 if (icsk->icsk_backoff || !tp->srtt) {
683 /* This session failed to estimate rtt. Why?
684 * Probably, no packets returned in time.
685 * Reset our results.
687 if (!(dst_metric_locked(dst, RTAX_RTT)))
688 dst->metrics[RTAX_RTT-1] = 0;
689 return;
692 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
694 /* If newly calculated rtt larger than stored one,
695 * store new one. Otherwise, use EWMA. Remember,
696 * rtt overestimation is always better than underestimation.
698 if (!(dst_metric_locked(dst, RTAX_RTT))) {
699 if (m <= 0)
700 dst->metrics[RTAX_RTT-1] = tp->srtt;
701 else
702 dst->metrics[RTAX_RTT-1] -= (m>>3);
705 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
706 if (m < 0)
707 m = -m;
709 /* Scale deviation to rttvar fixed point */
710 m >>= 1;
711 if (m < tp->mdev)
712 m = tp->mdev;
714 if (m >= dst_metric(dst, RTAX_RTTVAR))
715 dst->metrics[RTAX_RTTVAR-1] = m;
716 else
717 dst->metrics[RTAX_RTTVAR-1] -=
718 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
721 if (tp->snd_ssthresh >= 0xFFFF) {
722 /* Slow start still did not finish. */
723 if (dst_metric(dst, RTAX_SSTHRESH) &&
724 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
725 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
726 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
727 if (!dst_metric_locked(dst, RTAX_CWND) &&
728 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
729 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
730 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
731 icsk->icsk_ca_state == TCP_CA_Open) {
732 /* Cong. avoidance phase, cwnd is reliable. */
733 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
734 dst->metrics[RTAX_SSTHRESH-1] =
735 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
736 if (!dst_metric_locked(dst, RTAX_CWND))
737 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
738 } else {
739 /* Else slow start did not finish, cwnd is non-sense,
740 ssthresh may be also invalid.
742 if (!dst_metric_locked(dst, RTAX_CWND))
743 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
744 if (dst->metrics[RTAX_SSTHRESH-1] &&
745 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
746 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
747 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
750 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
751 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
752 tp->reordering != sysctl_tcp_reordering)
753 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
758 /* Numbers are taken from RFC2414. */
759 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
761 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
763 if (!cwnd) {
764 if (tp->mss_cache > 1460)
765 cwnd = 2;
766 else
767 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
769 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
772 /* Set slow start threshold and cwnd not falling to slow start */
773 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
775 struct tcp_sock *tp = tcp_sk(sk);
776 const struct inet_connection_sock *icsk = inet_csk(sk);
778 tp->prior_ssthresh = 0;
779 tp->bytes_acked = 0;
780 if (icsk->icsk_ca_state < TCP_CA_CWR) {
781 tp->undo_marker = 0;
782 if (set_ssthresh)
783 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
784 tp->snd_cwnd = min(tp->snd_cwnd,
785 tcp_packets_in_flight(tp) + 1U);
786 tp->snd_cwnd_cnt = 0;
787 tp->high_seq = tp->snd_nxt;
788 tp->snd_cwnd_stamp = tcp_time_stamp;
789 TCP_ECN_queue_cwr(tp);
791 tcp_set_ca_state(sk, TCP_CA_CWR);
795 /* Initialize metrics on socket. */
797 static void tcp_init_metrics(struct sock *sk)
799 struct tcp_sock *tp = tcp_sk(sk);
800 struct dst_entry *dst = __sk_dst_get(sk);
802 if (dst == NULL)
803 goto reset;
805 dst_confirm(dst);
807 if (dst_metric_locked(dst, RTAX_CWND))
808 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
809 if (dst_metric(dst, RTAX_SSTHRESH)) {
810 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
811 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
812 tp->snd_ssthresh = tp->snd_cwnd_clamp;
814 if (dst_metric(dst, RTAX_REORDERING) &&
815 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
816 tp->rx_opt.sack_ok &= ~2;
817 tp->reordering = dst_metric(dst, RTAX_REORDERING);
820 if (dst_metric(dst, RTAX_RTT) == 0)
821 goto reset;
823 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
824 goto reset;
826 /* Initial rtt is determined from SYN,SYN-ACK.
827 * The segment is small and rtt may appear much
828 * less than real one. Use per-dst memory
829 * to make it more realistic.
831 * A bit of theory. RTT is time passed after "normal" sized packet
832 * is sent until it is ACKed. In normal circumstances sending small
833 * packets force peer to delay ACKs and calculation is correct too.
834 * The algorithm is adaptive and, provided we follow specs, it
835 * NEVER underestimate RTT. BUT! If peer tries to make some clever
836 * tricks sort of "quick acks" for time long enough to decrease RTT
837 * to low value, and then abruptly stops to do it and starts to delay
838 * ACKs, wait for troubles.
840 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
841 tp->srtt = dst_metric(dst, RTAX_RTT);
842 tp->rtt_seq = tp->snd_nxt;
844 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
845 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
846 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
848 tcp_set_rto(sk);
849 tcp_bound_rto(sk);
850 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
851 goto reset;
852 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 return;
856 reset:
857 /* Play conservative. If timestamps are not
858 * supported, TCP will fail to recalculate correct
859 * rtt, if initial rto is too small. FORGET ALL AND RESET!
861 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
862 tp->srtt = 0;
863 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
864 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
868 static void tcp_update_reordering(struct sock *sk, const int metric,
869 const int ts)
871 struct tcp_sock *tp = tcp_sk(sk);
872 if (metric > tp->reordering) {
873 tp->reordering = min(TCP_MAX_REORDERING, metric);
875 /* This exciting event is worth to be remembered. 8) */
876 if (ts)
877 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
878 else if (IsReno(tp))
879 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
880 else if (IsFack(tp))
881 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
882 else
883 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
884 #if FASTRETRANS_DEBUG > 1
885 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
886 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
887 tp->reordering,
888 tp->fackets_out,
889 tp->sacked_out,
890 tp->undo_marker ? tp->undo_retrans : 0);
891 #endif
892 /* Disable FACK yet. */
893 tp->rx_opt.sack_ok &= ~2;
897 /* This procedure tags the retransmission queue when SACKs arrive.
899 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
900 * Packets in queue with these bits set are counted in variables
901 * sacked_out, retrans_out and lost_out, correspondingly.
903 * Valid combinations are:
904 * Tag InFlight Description
905 * 0 1 - orig segment is in flight.
906 * S 0 - nothing flies, orig reached receiver.
907 * L 0 - nothing flies, orig lost by net.
908 * R 2 - both orig and retransmit are in flight.
909 * L|R 1 - orig is lost, retransmit is in flight.
910 * S|R 1 - orig reached receiver, retrans is still in flight.
911 * (L|S|R is logically valid, it could occur when L|R is sacked,
912 * but it is equivalent to plain S and code short-curcuits it to S.
913 * L|S is logically invalid, it would mean -1 packet in flight 8))
915 * These 6 states form finite state machine, controlled by the following events:
916 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
917 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
918 * 3. Loss detection event of one of three flavors:
919 * A. Scoreboard estimator decided the packet is lost.
920 * A'. Reno "three dupacks" marks head of queue lost.
921 * A''. Its FACK modfication, head until snd.fack is lost.
922 * B. SACK arrives sacking data transmitted after never retransmitted
923 * hole was sent out.
924 * C. SACK arrives sacking SND.NXT at the moment, when the
925 * segment was retransmitted.
926 * 4. D-SACK added new rule: D-SACK changes any tag to S.
928 * It is pleasant to note, that state diagram turns out to be commutative,
929 * so that we are allowed not to be bothered by order of our actions,
930 * when multiple events arrive simultaneously. (see the function below).
932 * Reordering detection.
933 * --------------------
934 * Reordering metric is maximal distance, which a packet can be displaced
935 * in packet stream. With SACKs we can estimate it:
937 * 1. SACK fills old hole and the corresponding segment was not
938 * ever retransmitted -> reordering. Alas, we cannot use it
939 * when segment was retransmitted.
940 * 2. The last flaw is solved with D-SACK. D-SACK arrives
941 * for retransmitted and already SACKed segment -> reordering..
942 * Both of these heuristics are not used in Loss state, when we cannot
943 * account for retransmits accurately.
945 static int
946 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
948 const struct inet_connection_sock *icsk = inet_csk(sk);
949 struct tcp_sock *tp = tcp_sk(sk);
950 unsigned char *ptr = (skb_transport_header(ack_skb) +
951 TCP_SKB_CB(ack_skb)->sacked);
952 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
953 struct sk_buff *cached_skb;
954 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
955 int reord = tp->packets_out;
956 int prior_fackets;
957 u32 lost_retrans = 0;
958 int flag = 0;
959 int found_dup_sack = 0;
960 int cached_fack_count;
961 int i;
962 int first_sack_index;
964 if (!tp->sacked_out)
965 tp->fackets_out = 0;
966 prior_fackets = tp->fackets_out;
968 /* Check for D-SACK. */
969 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
970 flag |= FLAG_DSACKING_ACK;
971 found_dup_sack = 1;
972 tp->rx_opt.sack_ok |= 4;
973 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
974 } else if (num_sacks > 1 &&
975 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
976 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
977 flag |= FLAG_DSACKING_ACK;
978 found_dup_sack = 1;
979 tp->rx_opt.sack_ok |= 4;
980 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
983 /* D-SACK for already forgotten data...
984 * Do dumb counting. */
985 if (found_dup_sack &&
986 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
987 after(ntohl(sp[0].end_seq), tp->undo_marker))
988 tp->undo_retrans--;
990 /* Eliminate too old ACKs, but take into
991 * account more or less fresh ones, they can
992 * contain valid SACK info.
994 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
995 return 0;
997 if (!tp->packets_out)
998 goto out;
1000 /* SACK fastpath:
1001 * if the only SACK change is the increase of the end_seq of
1002 * the first block then only apply that SACK block
1003 * and use retrans queue hinting otherwise slowpath */
1004 flag = 1;
1005 for (i = 0; i < num_sacks; i++) {
1006 __be32 start_seq = sp[i].start_seq;
1007 __be32 end_seq = sp[i].end_seq;
1009 if (i == 0) {
1010 if (tp->recv_sack_cache[i].start_seq != start_seq)
1011 flag = 0;
1012 } else {
1013 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1014 (tp->recv_sack_cache[i].end_seq != end_seq))
1015 flag = 0;
1017 tp->recv_sack_cache[i].start_seq = start_seq;
1018 tp->recv_sack_cache[i].end_seq = end_seq;
1020 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1021 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1022 tp->recv_sack_cache[i].start_seq = 0;
1023 tp->recv_sack_cache[i].end_seq = 0;
1026 first_sack_index = 0;
1027 if (flag)
1028 num_sacks = 1;
1029 else {
1030 int j;
1031 tp->fastpath_skb_hint = NULL;
1033 /* order SACK blocks to allow in order walk of the retrans queue */
1034 for (i = num_sacks-1; i > 0; i--) {
1035 for (j = 0; j < i; j++){
1036 if (after(ntohl(sp[j].start_seq),
1037 ntohl(sp[j+1].start_seq))){
1038 struct tcp_sack_block_wire tmp;
1040 tmp = sp[j];
1041 sp[j] = sp[j+1];
1042 sp[j+1] = tmp;
1044 /* Track where the first SACK block goes to */
1045 if (j == first_sack_index)
1046 first_sack_index = j+1;
1053 /* clear flag as used for different purpose in following code */
1054 flag = 0;
1056 /* Use SACK fastpath hint if valid */
1057 cached_skb = tp->fastpath_skb_hint;
1058 cached_fack_count = tp->fastpath_cnt_hint;
1059 if (!cached_skb) {
1060 cached_skb = tcp_write_queue_head(sk);
1061 cached_fack_count = 0;
1064 for (i=0; i<num_sacks; i++, sp++) {
1065 struct sk_buff *skb;
1066 __u32 start_seq = ntohl(sp->start_seq);
1067 __u32 end_seq = ntohl(sp->end_seq);
1068 int fack_count;
1069 int dup_sack = (found_dup_sack && (i == first_sack_index));
1071 skb = cached_skb;
1072 fack_count = cached_fack_count;
1074 /* Event "B" in the comment above. */
1075 if (after(end_seq, tp->high_seq))
1076 flag |= FLAG_DATA_LOST;
1078 tcp_for_write_queue_from(skb, sk) {
1079 int in_sack, pcount;
1080 u8 sacked;
1082 if (skb == tcp_send_head(sk))
1083 break;
1085 cached_skb = skb;
1086 cached_fack_count = fack_count;
1087 if (i == first_sack_index) {
1088 tp->fastpath_skb_hint = skb;
1089 tp->fastpath_cnt_hint = fack_count;
1092 /* The retransmission queue is always in order, so
1093 * we can short-circuit the walk early.
1095 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1096 break;
1098 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1099 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1101 pcount = tcp_skb_pcount(skb);
1103 if (pcount > 1 && !in_sack &&
1104 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1105 unsigned int pkt_len;
1107 in_sack = !after(start_seq,
1108 TCP_SKB_CB(skb)->seq);
1110 if (!in_sack)
1111 pkt_len = (start_seq -
1112 TCP_SKB_CB(skb)->seq);
1113 else
1114 pkt_len = (end_seq -
1115 TCP_SKB_CB(skb)->seq);
1116 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1117 break;
1118 pcount = tcp_skb_pcount(skb);
1121 fack_count += pcount;
1123 sacked = TCP_SKB_CB(skb)->sacked;
1125 /* Account D-SACK for retransmitted packet. */
1126 if ((dup_sack && in_sack) &&
1127 (sacked & TCPCB_RETRANS) &&
1128 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1129 tp->undo_retrans--;
1131 /* The frame is ACKed. */
1132 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1133 if (sacked&TCPCB_RETRANS) {
1134 if ((dup_sack && in_sack) &&
1135 (sacked&TCPCB_SACKED_ACKED))
1136 reord = min(fack_count, reord);
1137 } else {
1138 /* If it was in a hole, we detected reordering. */
1139 if (fack_count < prior_fackets &&
1140 !(sacked&TCPCB_SACKED_ACKED))
1141 reord = min(fack_count, reord);
1144 /* Nothing to do; acked frame is about to be dropped. */
1145 continue;
1148 if ((sacked&TCPCB_SACKED_RETRANS) &&
1149 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1150 (!lost_retrans || after(end_seq, lost_retrans)))
1151 lost_retrans = end_seq;
1153 if (!in_sack)
1154 continue;
1156 if (!(sacked&TCPCB_SACKED_ACKED)) {
1157 if (sacked & TCPCB_SACKED_RETRANS) {
1158 /* If the segment is not tagged as lost,
1159 * we do not clear RETRANS, believing
1160 * that retransmission is still in flight.
1162 if (sacked & TCPCB_LOST) {
1163 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1164 tp->lost_out -= tcp_skb_pcount(skb);
1165 tp->retrans_out -= tcp_skb_pcount(skb);
1167 /* clear lost hint */
1168 tp->retransmit_skb_hint = NULL;
1170 } else {
1171 /* New sack for not retransmitted frame,
1172 * which was in hole. It is reordering.
1174 if (!(sacked & TCPCB_RETRANS) &&
1175 fack_count < prior_fackets)
1176 reord = min(fack_count, reord);
1178 if (sacked & TCPCB_LOST) {
1179 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1180 tp->lost_out -= tcp_skb_pcount(skb);
1182 /* clear lost hint */
1183 tp->retransmit_skb_hint = NULL;
1185 /* SACK enhanced F-RTO detection.
1186 * Set flag if and only if non-rexmitted
1187 * segments below frto_highmark are
1188 * SACKed (RFC4138; Appendix B).
1189 * Clearing correct due to in-order walk
1191 if (after(end_seq, tp->frto_highmark)) {
1192 flag &= ~FLAG_ONLY_ORIG_SACKED;
1193 } else {
1194 if (!(sacked & TCPCB_RETRANS))
1195 flag |= FLAG_ONLY_ORIG_SACKED;
1199 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1200 flag |= FLAG_DATA_SACKED;
1201 tp->sacked_out += tcp_skb_pcount(skb);
1203 if (fack_count > tp->fackets_out)
1204 tp->fackets_out = fack_count;
1205 } else {
1206 if (dup_sack && (sacked&TCPCB_RETRANS))
1207 reord = min(fack_count, reord);
1210 /* D-SACK. We can detect redundant retransmission
1211 * in S|R and plain R frames and clear it.
1212 * undo_retrans is decreased above, L|R frames
1213 * are accounted above as well.
1215 if (dup_sack &&
1216 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1217 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1218 tp->retrans_out -= tcp_skb_pcount(skb);
1219 tp->retransmit_skb_hint = NULL;
1224 /* Check for lost retransmit. This superb idea is
1225 * borrowed from "ratehalving". Event "C".
1226 * Later note: FACK people cheated me again 8),
1227 * we have to account for reordering! Ugly,
1228 * but should help.
1230 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1231 struct sk_buff *skb;
1233 tcp_for_write_queue(skb, sk) {
1234 if (skb == tcp_send_head(sk))
1235 break;
1236 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1237 break;
1238 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1239 continue;
1240 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1241 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1242 (IsFack(tp) ||
1243 !before(lost_retrans,
1244 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1245 tp->mss_cache))) {
1246 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1247 tp->retrans_out -= tcp_skb_pcount(skb);
1249 /* clear lost hint */
1250 tp->retransmit_skb_hint = NULL;
1252 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1253 tp->lost_out += tcp_skb_pcount(skb);
1254 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1255 flag |= FLAG_DATA_SACKED;
1256 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1262 tp->left_out = tp->sacked_out + tp->lost_out;
1264 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1265 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1266 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1268 out:
1270 #if FASTRETRANS_DEBUG > 0
1271 BUG_TRAP((int)tp->sacked_out >= 0);
1272 BUG_TRAP((int)tp->lost_out >= 0);
1273 BUG_TRAP((int)tp->retrans_out >= 0);
1274 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1275 #endif
1276 return flag;
1279 /* F-RTO can only be used if TCP has never retransmitted anything other than
1280 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1282 int tcp_use_frto(struct sock *sk)
1284 const struct tcp_sock *tp = tcp_sk(sk);
1285 struct sk_buff *skb;
1287 if (!sysctl_tcp_frto)
1288 return 0;
1290 if (IsSackFrto())
1291 return 1;
1293 /* Avoid expensive walking of rexmit queue if possible */
1294 if (tp->retrans_out > 1)
1295 return 0;
1297 skb = tcp_write_queue_head(sk);
1298 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1299 tcp_for_write_queue_from(skb, sk) {
1300 if (skb == tcp_send_head(sk))
1301 break;
1302 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1303 return 0;
1304 /* Short-circuit when first non-SACKed skb has been checked */
1305 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1306 break;
1308 return 1;
1311 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1312 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1313 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1314 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1315 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1316 * bits are handled if the Loss state is really to be entered (in
1317 * tcp_enter_frto_loss).
1319 * Do like tcp_enter_loss() would; when RTO expires the second time it
1320 * does:
1321 * "Reduce ssthresh if it has not yet been made inside this window."
1323 void tcp_enter_frto(struct sock *sk)
1325 const struct inet_connection_sock *icsk = inet_csk(sk);
1326 struct tcp_sock *tp = tcp_sk(sk);
1327 struct sk_buff *skb;
1329 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1330 tp->snd_una == tp->high_seq ||
1331 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1332 !icsk->icsk_retransmits)) {
1333 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1334 /* Our state is too optimistic in ssthresh() call because cwnd
1335 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1336 * recovery has not yet completed. Pattern would be this: RTO,
1337 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1338 * up here twice).
1339 * RFC4138 should be more specific on what to do, even though
1340 * RTO is quite unlikely to occur after the first Cumulative ACK
1341 * due to back-off and complexity of triggering events ...
1343 if (tp->frto_counter) {
1344 u32 stored_cwnd;
1345 stored_cwnd = tp->snd_cwnd;
1346 tp->snd_cwnd = 2;
1347 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1348 tp->snd_cwnd = stored_cwnd;
1349 } else {
1350 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1352 /* ... in theory, cong.control module could do "any tricks" in
1353 * ssthresh(), which means that ca_state, lost bits and lost_out
1354 * counter would have to be faked before the call occurs. We
1355 * consider that too expensive, unlikely and hacky, so modules
1356 * using these in ssthresh() must deal these incompatibility
1357 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1359 tcp_ca_event(sk, CA_EVENT_FRTO);
1362 tp->undo_marker = tp->snd_una;
1363 tp->undo_retrans = 0;
1365 skb = tcp_write_queue_head(sk);
1366 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1367 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1368 tp->retrans_out -= tcp_skb_pcount(skb);
1370 tcp_sync_left_out(tp);
1372 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1373 * The last condition is necessary at least in tp->frto_counter case.
1375 if (IsSackFrto() && (tp->frto_counter ||
1376 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1377 after(tp->high_seq, tp->snd_una)) {
1378 tp->frto_highmark = tp->high_seq;
1379 } else {
1380 tp->frto_highmark = tp->snd_nxt;
1382 tcp_set_ca_state(sk, TCP_CA_Disorder);
1383 tp->high_seq = tp->snd_nxt;
1384 tp->frto_counter = 1;
1387 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1388 * which indicates that we should follow the traditional RTO recovery,
1389 * i.e. mark everything lost and do go-back-N retransmission.
1391 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1393 struct tcp_sock *tp = tcp_sk(sk);
1394 struct sk_buff *skb;
1395 int cnt = 0;
1397 tp->sacked_out = 0;
1398 tp->lost_out = 0;
1399 tp->fackets_out = 0;
1400 tp->retrans_out = 0;
1402 tcp_for_write_queue(skb, sk) {
1403 if (skb == tcp_send_head(sk))
1404 break;
1405 cnt += tcp_skb_pcount(skb);
1406 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1408 * Count the retransmission made on RTO correctly (only when
1409 * waiting for the first ACK and did not get it)...
1411 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1412 /* For some reason this R-bit might get cleared? */
1413 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1414 tp->retrans_out += tcp_skb_pcount(skb);
1415 /* ...enter this if branch just for the first segment */
1416 flag |= FLAG_DATA_ACKED;
1417 } else {
1418 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_SACKED_RETRANS);
1420 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1422 /* Do not mark those segments lost that were
1423 * forward transmitted after RTO
1425 if (!after(TCP_SKB_CB(skb)->end_seq,
1426 tp->frto_highmark)) {
1427 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1428 tp->lost_out += tcp_skb_pcount(skb);
1430 } else {
1431 tp->sacked_out += tcp_skb_pcount(skb);
1432 tp->fackets_out = cnt;
1435 tcp_sync_left_out(tp);
1437 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1438 tp->snd_cwnd_cnt = 0;
1439 tp->snd_cwnd_stamp = tcp_time_stamp;
1440 tp->undo_marker = 0;
1441 tp->frto_counter = 0;
1443 tp->reordering = min_t(unsigned int, tp->reordering,
1444 sysctl_tcp_reordering);
1445 tcp_set_ca_state(sk, TCP_CA_Loss);
1446 tp->high_seq = tp->frto_highmark;
1447 TCP_ECN_queue_cwr(tp);
1449 clear_all_retrans_hints(tp);
1452 void tcp_clear_retrans(struct tcp_sock *tp)
1454 tp->left_out = 0;
1455 tp->retrans_out = 0;
1457 tp->fackets_out = 0;
1458 tp->sacked_out = 0;
1459 tp->lost_out = 0;
1461 tp->undo_marker = 0;
1462 tp->undo_retrans = 0;
1465 /* Enter Loss state. If "how" is not zero, forget all SACK information
1466 * and reset tags completely, otherwise preserve SACKs. If receiver
1467 * dropped its ofo queue, we will know this due to reneging detection.
1469 void tcp_enter_loss(struct sock *sk, int how)
1471 const struct inet_connection_sock *icsk = inet_csk(sk);
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 struct sk_buff *skb;
1474 int cnt = 0;
1476 /* Reduce ssthresh if it has not yet been made inside this window. */
1477 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1478 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1479 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1480 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1481 tcp_ca_event(sk, CA_EVENT_LOSS);
1483 tp->snd_cwnd = 1;
1484 tp->snd_cwnd_cnt = 0;
1485 tp->snd_cwnd_stamp = tcp_time_stamp;
1487 tp->bytes_acked = 0;
1488 tcp_clear_retrans(tp);
1490 /* Push undo marker, if it was plain RTO and nothing
1491 * was retransmitted. */
1492 if (!how)
1493 tp->undo_marker = tp->snd_una;
1495 tcp_for_write_queue(skb, sk) {
1496 if (skb == tcp_send_head(sk))
1497 break;
1498 cnt += tcp_skb_pcount(skb);
1499 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1500 tp->undo_marker = 0;
1501 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1502 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1503 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1504 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1505 tp->lost_out += tcp_skb_pcount(skb);
1506 } else {
1507 tp->sacked_out += tcp_skb_pcount(skb);
1508 tp->fackets_out = cnt;
1511 tcp_sync_left_out(tp);
1513 tp->reordering = min_t(unsigned int, tp->reordering,
1514 sysctl_tcp_reordering);
1515 tcp_set_ca_state(sk, TCP_CA_Loss);
1516 tp->high_seq = tp->snd_nxt;
1517 TCP_ECN_queue_cwr(tp);
1518 /* Abort FRTO algorithm if one is in progress */
1519 tp->frto_counter = 0;
1521 clear_all_retrans_hints(tp);
1524 static int tcp_check_sack_reneging(struct sock *sk)
1526 struct sk_buff *skb;
1528 /* If ACK arrived pointing to a remembered SACK,
1529 * it means that our remembered SACKs do not reflect
1530 * real state of receiver i.e.
1531 * receiver _host_ is heavily congested (or buggy).
1532 * Do processing similar to RTO timeout.
1534 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1535 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1536 struct inet_connection_sock *icsk = inet_csk(sk);
1537 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1539 tcp_enter_loss(sk, 1);
1540 icsk->icsk_retransmits++;
1541 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1542 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1543 icsk->icsk_rto, TCP_RTO_MAX);
1544 return 1;
1546 return 0;
1549 static inline int tcp_fackets_out(struct tcp_sock *tp)
1551 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1554 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1556 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1559 static inline int tcp_head_timedout(struct sock *sk)
1561 struct tcp_sock *tp = tcp_sk(sk);
1563 return tp->packets_out &&
1564 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1567 /* Linux NewReno/SACK/FACK/ECN state machine.
1568 * --------------------------------------
1570 * "Open" Normal state, no dubious events, fast path.
1571 * "Disorder" In all the respects it is "Open",
1572 * but requires a bit more attention. It is entered when
1573 * we see some SACKs or dupacks. It is split of "Open"
1574 * mainly to move some processing from fast path to slow one.
1575 * "CWR" CWND was reduced due to some Congestion Notification event.
1576 * It can be ECN, ICMP source quench, local device congestion.
1577 * "Recovery" CWND was reduced, we are fast-retransmitting.
1578 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1580 * tcp_fastretrans_alert() is entered:
1581 * - each incoming ACK, if state is not "Open"
1582 * - when arrived ACK is unusual, namely:
1583 * * SACK
1584 * * Duplicate ACK.
1585 * * ECN ECE.
1587 * Counting packets in flight is pretty simple.
1589 * in_flight = packets_out - left_out + retrans_out
1591 * packets_out is SND.NXT-SND.UNA counted in packets.
1593 * retrans_out is number of retransmitted segments.
1595 * left_out is number of segments left network, but not ACKed yet.
1597 * left_out = sacked_out + lost_out
1599 * sacked_out: Packets, which arrived to receiver out of order
1600 * and hence not ACKed. With SACKs this number is simply
1601 * amount of SACKed data. Even without SACKs
1602 * it is easy to give pretty reliable estimate of this number,
1603 * counting duplicate ACKs.
1605 * lost_out: Packets lost by network. TCP has no explicit
1606 * "loss notification" feedback from network (for now).
1607 * It means that this number can be only _guessed_.
1608 * Actually, it is the heuristics to predict lossage that
1609 * distinguishes different algorithms.
1611 * F.e. after RTO, when all the queue is considered as lost,
1612 * lost_out = packets_out and in_flight = retrans_out.
1614 * Essentially, we have now two algorithms counting
1615 * lost packets.
1617 * FACK: It is the simplest heuristics. As soon as we decided
1618 * that something is lost, we decide that _all_ not SACKed
1619 * packets until the most forward SACK are lost. I.e.
1620 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1621 * It is absolutely correct estimate, if network does not reorder
1622 * packets. And it loses any connection to reality when reordering
1623 * takes place. We use FACK by default until reordering
1624 * is suspected on the path to this destination.
1626 * NewReno: when Recovery is entered, we assume that one segment
1627 * is lost (classic Reno). While we are in Recovery and
1628 * a partial ACK arrives, we assume that one more packet
1629 * is lost (NewReno). This heuristics are the same in NewReno
1630 * and SACK.
1632 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1633 * deflation etc. CWND is real congestion window, never inflated, changes
1634 * only according to classic VJ rules.
1636 * Really tricky (and requiring careful tuning) part of algorithm
1637 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1638 * The first determines the moment _when_ we should reduce CWND and,
1639 * hence, slow down forward transmission. In fact, it determines the moment
1640 * when we decide that hole is caused by loss, rather than by a reorder.
1642 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1643 * holes, caused by lost packets.
1645 * And the most logically complicated part of algorithm is undo
1646 * heuristics. We detect false retransmits due to both too early
1647 * fast retransmit (reordering) and underestimated RTO, analyzing
1648 * timestamps and D-SACKs. When we detect that some segments were
1649 * retransmitted by mistake and CWND reduction was wrong, we undo
1650 * window reduction and abort recovery phase. This logic is hidden
1651 * inside several functions named tcp_try_undo_<something>.
1654 /* This function decides, when we should leave Disordered state
1655 * and enter Recovery phase, reducing congestion window.
1657 * Main question: may we further continue forward transmission
1658 * with the same cwnd?
1660 static int tcp_time_to_recover(struct sock *sk)
1662 struct tcp_sock *tp = tcp_sk(sk);
1663 __u32 packets_out;
1665 /* Do not perform any recovery during FRTO algorithm */
1666 if (tp->frto_counter)
1667 return 0;
1669 /* Trick#1: The loss is proven. */
1670 if (tp->lost_out)
1671 return 1;
1673 /* Not-A-Trick#2 : Classic rule... */
1674 if (tcp_fackets_out(tp) > tp->reordering)
1675 return 1;
1677 /* Trick#3 : when we use RFC2988 timer restart, fast
1678 * retransmit can be triggered by timeout of queue head.
1680 if (tcp_head_timedout(sk))
1681 return 1;
1683 /* Trick#4: It is still not OK... But will it be useful to delay
1684 * recovery more?
1686 packets_out = tp->packets_out;
1687 if (packets_out <= tp->reordering &&
1688 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1689 !tcp_may_send_now(sk)) {
1690 /* We have nothing to send. This connection is limited
1691 * either by receiver window or by application.
1693 return 1;
1696 return 0;
1699 /* If we receive more dupacks than we expected counting segments
1700 * in assumption of absent reordering, interpret this as reordering.
1701 * The only another reason could be bug in receiver TCP.
1703 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1705 struct tcp_sock *tp = tcp_sk(sk);
1706 u32 holes;
1708 holes = max(tp->lost_out, 1U);
1709 holes = min(holes, tp->packets_out);
1711 if ((tp->sacked_out + holes) > tp->packets_out) {
1712 tp->sacked_out = tp->packets_out - holes;
1713 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1717 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1719 static void tcp_add_reno_sack(struct sock *sk)
1721 struct tcp_sock *tp = tcp_sk(sk);
1722 tp->sacked_out++;
1723 tcp_check_reno_reordering(sk, 0);
1724 tcp_sync_left_out(tp);
1727 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1729 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1731 struct tcp_sock *tp = tcp_sk(sk);
1733 if (acked > 0) {
1734 /* One ACK acked hole. The rest eat duplicate ACKs. */
1735 if (acked-1 >= tp->sacked_out)
1736 tp->sacked_out = 0;
1737 else
1738 tp->sacked_out -= acked-1;
1740 tcp_check_reno_reordering(sk, acked);
1741 tcp_sync_left_out(tp);
1744 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1746 tp->sacked_out = 0;
1747 tp->left_out = tp->lost_out;
1750 /* Mark head of queue up as lost. */
1751 static void tcp_mark_head_lost(struct sock *sk,
1752 int packets, u32 high_seq)
1754 struct tcp_sock *tp = tcp_sk(sk);
1755 struct sk_buff *skb;
1756 int cnt, oldcnt;
1757 int err;
1758 unsigned int mss;
1760 if (packets == 0)
1761 return;
1763 BUG_TRAP(packets <= tp->packets_out);
1764 if (tp->lost_skb_hint) {
1765 skb = tp->lost_skb_hint;
1766 cnt = tp->lost_cnt_hint;
1767 } else {
1768 skb = tcp_write_queue_head(sk);
1769 cnt = 0;
1772 tcp_for_write_queue_from(skb, sk) {
1773 if (skb == tcp_send_head(sk))
1774 break;
1775 /* TODO: do this better */
1776 /* this is not the most efficient way to do this... */
1777 tp->lost_skb_hint = skb;
1778 tp->lost_cnt_hint = cnt;
1780 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
1781 break;
1783 oldcnt = cnt;
1784 if (IsFack(tp) || IsReno(tp) ||
1785 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1786 cnt += tcp_skb_pcount(skb);
1788 if (cnt > packets) {
1789 if ((tp->rx_opt.sack_ok && !IsFack(tp)) ||
1790 (oldcnt >= packets))
1791 break;
1793 mss = skb_shinfo(skb)->gso_size;
1794 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
1795 if (err < 0)
1796 break;
1797 cnt = packets;
1800 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
1801 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1802 tp->lost_out += tcp_skb_pcount(skb);
1804 /* clear xmit_retransmit_queue hints
1805 * if this is beyond hint */
1806 if (tp->retransmit_skb_hint != NULL &&
1807 before(TCP_SKB_CB(skb)->seq,
1808 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1809 tp->retransmit_skb_hint = NULL;
1813 tcp_sync_left_out(tp);
1816 /* Account newly detected lost packet(s) */
1818 static void tcp_update_scoreboard(struct sock *sk)
1820 struct tcp_sock *tp = tcp_sk(sk);
1822 if (IsFack(tp)) {
1823 int lost = tp->fackets_out - tp->reordering;
1824 if (lost <= 0)
1825 lost = 1;
1826 tcp_mark_head_lost(sk, lost, tp->high_seq);
1827 } else {
1828 tcp_mark_head_lost(sk, 1, tp->high_seq);
1831 /* New heuristics: it is possible only after we switched
1832 * to restart timer each time when something is ACKed.
1833 * Hence, we can detect timed out packets during fast
1834 * retransmit without falling to slow start.
1836 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1837 struct sk_buff *skb;
1839 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1840 : tcp_write_queue_head(sk);
1842 tcp_for_write_queue_from(skb, sk) {
1843 if (skb == tcp_send_head(sk))
1844 break;
1845 if (!tcp_skb_timedout(sk, skb))
1846 break;
1848 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
1849 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1850 tp->lost_out += tcp_skb_pcount(skb);
1852 /* clear xmit_retrans hint */
1853 if (tp->retransmit_skb_hint &&
1854 before(TCP_SKB_CB(skb)->seq,
1855 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1857 tp->retransmit_skb_hint = NULL;
1861 tp->scoreboard_skb_hint = skb;
1863 tcp_sync_left_out(tp);
1867 /* CWND moderation, preventing bursts due to too big ACKs
1868 * in dubious situations.
1870 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1872 tp->snd_cwnd = min(tp->snd_cwnd,
1873 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1874 tp->snd_cwnd_stamp = tcp_time_stamp;
1877 /* Lower bound on congestion window is slow start threshold
1878 * unless congestion avoidance choice decides to overide it.
1880 static inline u32 tcp_cwnd_min(const struct sock *sk)
1882 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1884 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1887 /* Decrease cwnd each second ack. */
1888 static void tcp_cwnd_down(struct sock *sk, int flag)
1890 struct tcp_sock *tp = tcp_sk(sk);
1891 int decr = tp->snd_cwnd_cnt + 1;
1893 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
1894 (IsReno(tp) && !(flag&FLAG_NOT_DUP))) {
1895 tp->snd_cwnd_cnt = decr&1;
1896 decr >>= 1;
1898 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1899 tp->snd_cwnd -= decr;
1901 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1902 tp->snd_cwnd_stamp = tcp_time_stamp;
1906 /* Nothing was retransmitted or returned timestamp is less
1907 * than timestamp of the first retransmission.
1909 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1911 return !tp->retrans_stamp ||
1912 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1913 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1916 /* Undo procedures. */
1918 #if FASTRETRANS_DEBUG > 1
1919 static void DBGUNDO(struct sock *sk, const char *msg)
1921 struct tcp_sock *tp = tcp_sk(sk);
1922 struct inet_sock *inet = inet_sk(sk);
1924 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1925 msg,
1926 NIPQUAD(inet->daddr), ntohs(inet->dport),
1927 tp->snd_cwnd, tp->left_out,
1928 tp->snd_ssthresh, tp->prior_ssthresh,
1929 tp->packets_out);
1931 #else
1932 #define DBGUNDO(x...) do { } while (0)
1933 #endif
1935 static void tcp_undo_cwr(struct sock *sk, const int undo)
1937 struct tcp_sock *tp = tcp_sk(sk);
1939 if (tp->prior_ssthresh) {
1940 const struct inet_connection_sock *icsk = inet_csk(sk);
1942 if (icsk->icsk_ca_ops->undo_cwnd)
1943 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1944 else
1945 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1947 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1948 tp->snd_ssthresh = tp->prior_ssthresh;
1949 TCP_ECN_withdraw_cwr(tp);
1951 } else {
1952 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1954 tcp_moderate_cwnd(tp);
1955 tp->snd_cwnd_stamp = tcp_time_stamp;
1957 /* There is something screwy going on with the retrans hints after
1958 an undo */
1959 clear_all_retrans_hints(tp);
1962 static inline int tcp_may_undo(struct tcp_sock *tp)
1964 return tp->undo_marker &&
1965 (!tp->undo_retrans || tcp_packet_delayed(tp));
1968 /* People celebrate: "We love our President!" */
1969 static int tcp_try_undo_recovery(struct sock *sk)
1971 struct tcp_sock *tp = tcp_sk(sk);
1973 if (tcp_may_undo(tp)) {
1974 /* Happy end! We did not retransmit anything
1975 * or our original transmission succeeded.
1977 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1978 tcp_undo_cwr(sk, 1);
1979 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1980 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1981 else
1982 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1983 tp->undo_marker = 0;
1985 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1986 /* Hold old state until something *above* high_seq
1987 * is ACKed. For Reno it is MUST to prevent false
1988 * fast retransmits (RFC2582). SACK TCP is safe. */
1989 tcp_moderate_cwnd(tp);
1990 return 1;
1992 tcp_set_ca_state(sk, TCP_CA_Open);
1993 return 0;
1996 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1997 static void tcp_try_undo_dsack(struct sock *sk)
1999 struct tcp_sock *tp = tcp_sk(sk);
2001 if (tp->undo_marker && !tp->undo_retrans) {
2002 DBGUNDO(sk, "D-SACK");
2003 tcp_undo_cwr(sk, 1);
2004 tp->undo_marker = 0;
2005 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2009 /* Undo during fast recovery after partial ACK. */
2011 static int tcp_try_undo_partial(struct sock *sk, int acked)
2013 struct tcp_sock *tp = tcp_sk(sk);
2014 /* Partial ACK arrived. Force Hoe's retransmit. */
2015 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
2017 if (tcp_may_undo(tp)) {
2018 /* Plain luck! Hole if filled with delayed
2019 * packet, rather than with a retransmit.
2021 if (tp->retrans_out == 0)
2022 tp->retrans_stamp = 0;
2024 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2026 DBGUNDO(sk, "Hoe");
2027 tcp_undo_cwr(sk, 0);
2028 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2030 /* So... Do not make Hoe's retransmit yet.
2031 * If the first packet was delayed, the rest
2032 * ones are most probably delayed as well.
2034 failed = 0;
2036 return failed;
2039 /* Undo during loss recovery after partial ACK. */
2040 static int tcp_try_undo_loss(struct sock *sk)
2042 struct tcp_sock *tp = tcp_sk(sk);
2044 if (tcp_may_undo(tp)) {
2045 struct sk_buff *skb;
2046 tcp_for_write_queue(skb, sk) {
2047 if (skb == tcp_send_head(sk))
2048 break;
2049 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2052 clear_all_retrans_hints(tp);
2054 DBGUNDO(sk, "partial loss");
2055 tp->lost_out = 0;
2056 tp->left_out = tp->sacked_out;
2057 tcp_undo_cwr(sk, 1);
2058 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2059 inet_csk(sk)->icsk_retransmits = 0;
2060 tp->undo_marker = 0;
2061 if (!IsReno(tp))
2062 tcp_set_ca_state(sk, TCP_CA_Open);
2063 return 1;
2065 return 0;
2068 static inline void tcp_complete_cwr(struct sock *sk)
2070 struct tcp_sock *tp = tcp_sk(sk);
2071 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2072 tp->snd_cwnd_stamp = tcp_time_stamp;
2073 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2076 static void tcp_try_to_open(struct sock *sk, int flag)
2078 struct tcp_sock *tp = tcp_sk(sk);
2080 tcp_sync_left_out(tp);
2082 if (tp->retrans_out == 0)
2083 tp->retrans_stamp = 0;
2085 if (flag&FLAG_ECE)
2086 tcp_enter_cwr(sk, 1);
2088 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2089 int state = TCP_CA_Open;
2091 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2092 state = TCP_CA_Disorder;
2094 if (inet_csk(sk)->icsk_ca_state != state) {
2095 tcp_set_ca_state(sk, state);
2096 tp->high_seq = tp->snd_nxt;
2098 tcp_moderate_cwnd(tp);
2099 } else {
2100 tcp_cwnd_down(sk, flag);
2104 static void tcp_mtup_probe_failed(struct sock *sk)
2106 struct inet_connection_sock *icsk = inet_csk(sk);
2108 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2109 icsk->icsk_mtup.probe_size = 0;
2112 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2114 struct tcp_sock *tp = tcp_sk(sk);
2115 struct inet_connection_sock *icsk = inet_csk(sk);
2117 /* FIXME: breaks with very large cwnd */
2118 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2119 tp->snd_cwnd = tp->snd_cwnd *
2120 tcp_mss_to_mtu(sk, tp->mss_cache) /
2121 icsk->icsk_mtup.probe_size;
2122 tp->snd_cwnd_cnt = 0;
2123 tp->snd_cwnd_stamp = tcp_time_stamp;
2124 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2126 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2127 icsk->icsk_mtup.probe_size = 0;
2128 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2132 /* Process an event, which can update packets-in-flight not trivially.
2133 * Main goal of this function is to calculate new estimate for left_out,
2134 * taking into account both packets sitting in receiver's buffer and
2135 * packets lost by network.
2137 * Besides that it does CWND reduction, when packet loss is detected
2138 * and changes state of machine.
2140 * It does _not_ decide what to send, it is made in function
2141 * tcp_xmit_retransmit_queue().
2143 static void
2144 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2145 int pkts_acked, int flag)
2147 struct inet_connection_sock *icsk = inet_csk(sk);
2148 struct tcp_sock *tp = tcp_sk(sk);
2149 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2150 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2151 (tp->fackets_out > tp->reordering));
2153 /* Some technical things:
2154 * 1. Reno does not count dupacks (sacked_out) automatically. */
2155 if (!tp->packets_out)
2156 tp->sacked_out = 0;
2157 /* 2. SACK counts snd_fack in packets inaccurately. */
2158 if (tp->sacked_out == 0)
2159 tp->fackets_out = 0;
2161 /* Now state machine starts.
2162 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2163 if (flag&FLAG_ECE)
2164 tp->prior_ssthresh = 0;
2166 /* B. In all the states check for reneging SACKs. */
2167 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2168 return;
2170 /* C. Process data loss notification, provided it is valid. */
2171 if ((flag&FLAG_DATA_LOST) &&
2172 before(tp->snd_una, tp->high_seq) &&
2173 icsk->icsk_ca_state != TCP_CA_Open &&
2174 tp->fackets_out > tp->reordering) {
2175 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2176 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2179 /* D. Synchronize left_out to current state. */
2180 tcp_sync_left_out(tp);
2182 /* E. Check state exit conditions. State can be terminated
2183 * when high_seq is ACKed. */
2184 if (icsk->icsk_ca_state == TCP_CA_Open) {
2185 BUG_TRAP(tp->retrans_out == 0);
2186 tp->retrans_stamp = 0;
2187 } else if (!before(tp->snd_una, tp->high_seq)) {
2188 switch (icsk->icsk_ca_state) {
2189 case TCP_CA_Loss:
2190 icsk->icsk_retransmits = 0;
2191 if (tcp_try_undo_recovery(sk))
2192 return;
2193 break;
2195 case TCP_CA_CWR:
2196 /* CWR is to be held something *above* high_seq
2197 * is ACKed for CWR bit to reach receiver. */
2198 if (tp->snd_una != tp->high_seq) {
2199 tcp_complete_cwr(sk);
2200 tcp_set_ca_state(sk, TCP_CA_Open);
2202 break;
2204 case TCP_CA_Disorder:
2205 tcp_try_undo_dsack(sk);
2206 if (!tp->undo_marker ||
2207 /* For SACK case do not Open to allow to undo
2208 * catching for all duplicate ACKs. */
2209 IsReno(tp) || tp->snd_una != tp->high_seq) {
2210 tp->undo_marker = 0;
2211 tcp_set_ca_state(sk, TCP_CA_Open);
2213 break;
2215 case TCP_CA_Recovery:
2216 if (IsReno(tp))
2217 tcp_reset_reno_sack(tp);
2218 if (tcp_try_undo_recovery(sk))
2219 return;
2220 tcp_complete_cwr(sk);
2221 break;
2225 /* F. Process state. */
2226 switch (icsk->icsk_ca_state) {
2227 case TCP_CA_Recovery:
2228 if (prior_snd_una == tp->snd_una) {
2229 if (IsReno(tp) && is_dupack)
2230 tcp_add_reno_sack(sk);
2231 } else
2232 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2233 break;
2234 case TCP_CA_Loss:
2235 if (flag&FLAG_DATA_ACKED)
2236 icsk->icsk_retransmits = 0;
2237 if (!tcp_try_undo_loss(sk)) {
2238 tcp_moderate_cwnd(tp);
2239 tcp_xmit_retransmit_queue(sk);
2240 return;
2242 if (icsk->icsk_ca_state != TCP_CA_Open)
2243 return;
2244 /* Loss is undone; fall through to processing in Open state. */
2245 default:
2246 if (IsReno(tp)) {
2247 if (tp->snd_una != prior_snd_una)
2248 tcp_reset_reno_sack(tp);
2249 if (is_dupack)
2250 tcp_add_reno_sack(sk);
2253 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2254 tcp_try_undo_dsack(sk);
2256 if (!tcp_time_to_recover(sk)) {
2257 tcp_try_to_open(sk, flag);
2258 return;
2261 /* MTU probe failure: don't reduce cwnd */
2262 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2263 icsk->icsk_mtup.probe_size &&
2264 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2265 tcp_mtup_probe_failed(sk);
2266 /* Restores the reduction we did in tcp_mtup_probe() */
2267 tp->snd_cwnd++;
2268 tcp_simple_retransmit(sk);
2269 return;
2272 /* Otherwise enter Recovery state */
2274 if (IsReno(tp))
2275 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2276 else
2277 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2279 tp->high_seq = tp->snd_nxt;
2280 tp->prior_ssthresh = 0;
2281 tp->undo_marker = tp->snd_una;
2282 tp->undo_retrans = tp->retrans_out;
2284 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2285 if (!(flag&FLAG_ECE))
2286 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2287 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2288 TCP_ECN_queue_cwr(tp);
2291 tp->bytes_acked = 0;
2292 tp->snd_cwnd_cnt = 0;
2293 tcp_set_ca_state(sk, TCP_CA_Recovery);
2296 if (do_lost || tcp_head_timedout(sk))
2297 tcp_update_scoreboard(sk);
2298 tcp_cwnd_down(sk, flag);
2299 tcp_xmit_retransmit_queue(sk);
2302 /* Read draft-ietf-tcplw-high-performance before mucking
2303 * with this code. (Supersedes RFC1323)
2305 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2307 /* RTTM Rule: A TSecr value received in a segment is used to
2308 * update the averaged RTT measurement only if the segment
2309 * acknowledges some new data, i.e., only if it advances the
2310 * left edge of the send window.
2312 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2313 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2315 * Changed: reset backoff as soon as we see the first valid sample.
2316 * If we do not, we get strongly overestimated rto. With timestamps
2317 * samples are accepted even from very old segments: f.e., when rtt=1
2318 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2319 * answer arrives rto becomes 120 seconds! If at least one of segments
2320 * in window is lost... Voila. --ANK (010210)
2322 struct tcp_sock *tp = tcp_sk(sk);
2323 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2324 tcp_rtt_estimator(sk, seq_rtt);
2325 tcp_set_rto(sk);
2326 inet_csk(sk)->icsk_backoff = 0;
2327 tcp_bound_rto(sk);
2330 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2332 /* We don't have a timestamp. Can only use
2333 * packets that are not retransmitted to determine
2334 * rtt estimates. Also, we must not reset the
2335 * backoff for rto until we get a non-retransmitted
2336 * packet. This allows us to deal with a situation
2337 * where the network delay has increased suddenly.
2338 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2341 if (flag & FLAG_RETRANS_DATA_ACKED)
2342 return;
2344 tcp_rtt_estimator(sk, seq_rtt);
2345 tcp_set_rto(sk);
2346 inet_csk(sk)->icsk_backoff = 0;
2347 tcp_bound_rto(sk);
2350 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2351 const s32 seq_rtt)
2353 const struct tcp_sock *tp = tcp_sk(sk);
2354 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2355 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2356 tcp_ack_saw_tstamp(sk, flag);
2357 else if (seq_rtt >= 0)
2358 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2361 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2362 u32 in_flight, int good)
2364 const struct inet_connection_sock *icsk = inet_csk(sk);
2365 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2366 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2369 /* Restart timer after forward progress on connection.
2370 * RFC2988 recommends to restart timer to now+rto.
2373 static void tcp_ack_packets_out(struct sock *sk)
2375 struct tcp_sock *tp = tcp_sk(sk);
2377 if (!tp->packets_out) {
2378 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2379 } else {
2380 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2384 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2385 __u32 now, __s32 *seq_rtt)
2387 struct tcp_sock *tp = tcp_sk(sk);
2388 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2389 __u32 seq = tp->snd_una;
2390 __u32 packets_acked;
2391 int acked = 0;
2393 /* If we get here, the whole TSO packet has not been
2394 * acked.
2396 BUG_ON(!after(scb->end_seq, seq));
2398 packets_acked = tcp_skb_pcount(skb);
2399 if (tcp_trim_head(sk, skb, seq - scb->seq))
2400 return 0;
2401 packets_acked -= tcp_skb_pcount(skb);
2403 if (packets_acked) {
2404 __u8 sacked = scb->sacked;
2406 acked |= FLAG_DATA_ACKED;
2407 if (sacked) {
2408 if (sacked & TCPCB_RETRANS) {
2409 if (sacked & TCPCB_SACKED_RETRANS)
2410 tp->retrans_out -= packets_acked;
2411 acked |= FLAG_RETRANS_DATA_ACKED;
2412 *seq_rtt = -1;
2413 } else if (*seq_rtt < 0)
2414 *seq_rtt = now - scb->when;
2415 if (sacked & TCPCB_SACKED_ACKED)
2416 tp->sacked_out -= packets_acked;
2417 if (sacked & TCPCB_LOST)
2418 tp->lost_out -= packets_acked;
2419 if (sacked & TCPCB_URG) {
2420 if (tp->urg_mode &&
2421 !before(seq, tp->snd_up))
2422 tp->urg_mode = 0;
2424 } else if (*seq_rtt < 0)
2425 *seq_rtt = now - scb->when;
2427 if (tp->fackets_out) {
2428 __u32 dval = min(tp->fackets_out, packets_acked);
2429 tp->fackets_out -= dval;
2431 /* hint's skb might be NULL but we don't need to care */
2432 tp->fastpath_cnt_hint -= min_t(u32, packets_acked,
2433 tp->fastpath_cnt_hint);
2434 tp->packets_out -= packets_acked;
2436 BUG_ON(tcp_skb_pcount(skb) == 0);
2437 BUG_ON(!before(scb->seq, scb->end_seq));
2440 return acked;
2443 /* Remove acknowledged frames from the retransmission queue. */
2444 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2446 struct tcp_sock *tp = tcp_sk(sk);
2447 const struct inet_connection_sock *icsk = inet_csk(sk);
2448 struct sk_buff *skb;
2449 __u32 now = tcp_time_stamp;
2450 int acked = 0;
2451 int prior_packets = tp->packets_out;
2452 __s32 seq_rtt = -1;
2453 ktime_t last_ackt = net_invalid_timestamp();
2455 while ((skb = tcp_write_queue_head(sk)) &&
2456 skb != tcp_send_head(sk)) {
2457 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2458 __u8 sacked = scb->sacked;
2460 /* If our packet is before the ack sequence we can
2461 * discard it as it's confirmed to have arrived at
2462 * the other end.
2464 if (after(scb->end_seq, tp->snd_una)) {
2465 if (tcp_skb_pcount(skb) > 1 &&
2466 after(tp->snd_una, scb->seq))
2467 acked |= tcp_tso_acked(sk, skb,
2468 now, &seq_rtt);
2469 break;
2472 /* Initial outgoing SYN's get put onto the write_queue
2473 * just like anything else we transmit. It is not
2474 * true data, and if we misinform our callers that
2475 * this ACK acks real data, we will erroneously exit
2476 * connection startup slow start one packet too
2477 * quickly. This is severely frowned upon behavior.
2479 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2480 acked |= FLAG_DATA_ACKED;
2481 } else {
2482 acked |= FLAG_SYN_ACKED;
2483 tp->retrans_stamp = 0;
2486 /* MTU probing checks */
2487 if (icsk->icsk_mtup.probe_size) {
2488 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2489 tcp_mtup_probe_success(sk, skb);
2493 if (sacked) {
2494 if (sacked & TCPCB_RETRANS) {
2495 if (sacked & TCPCB_SACKED_RETRANS)
2496 tp->retrans_out -= tcp_skb_pcount(skb);
2497 acked |= FLAG_RETRANS_DATA_ACKED;
2498 seq_rtt = -1;
2499 } else if (seq_rtt < 0) {
2500 seq_rtt = now - scb->when;
2501 last_ackt = skb->tstamp;
2503 if (sacked & TCPCB_SACKED_ACKED)
2504 tp->sacked_out -= tcp_skb_pcount(skb);
2505 if (sacked & TCPCB_LOST)
2506 tp->lost_out -= tcp_skb_pcount(skb);
2507 if (sacked & TCPCB_URG) {
2508 if (tp->urg_mode &&
2509 !before(scb->end_seq, tp->snd_up))
2510 tp->urg_mode = 0;
2512 } else if (seq_rtt < 0) {
2513 seq_rtt = now - scb->when;
2514 last_ackt = skb->tstamp;
2516 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2517 tcp_packets_out_dec(tp, skb);
2518 tcp_unlink_write_queue(skb, sk);
2519 sk_stream_free_skb(sk, skb);
2520 clear_all_retrans_hints(tp);
2523 if (acked&FLAG_ACKED) {
2524 u32 pkts_acked = prior_packets - tp->packets_out;
2525 const struct tcp_congestion_ops *ca_ops
2526 = inet_csk(sk)->icsk_ca_ops;
2528 tcp_ack_update_rtt(sk, acked, seq_rtt);
2529 tcp_ack_packets_out(sk);
2531 if (IsReno(tp))
2532 tcp_remove_reno_sacks(sk, pkts_acked);
2534 /* Is the ACK triggering packet unambiguous? */
2535 if (acked & FLAG_RETRANS_DATA_ACKED)
2536 last_ackt = net_invalid_timestamp();
2538 if (ca_ops->pkts_acked)
2539 ca_ops->pkts_acked(sk, pkts_acked, last_ackt);
2542 #if FASTRETRANS_DEBUG > 0
2543 BUG_TRAP((int)tp->sacked_out >= 0);
2544 BUG_TRAP((int)tp->lost_out >= 0);
2545 BUG_TRAP((int)tp->retrans_out >= 0);
2546 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2547 const struct inet_connection_sock *icsk = inet_csk(sk);
2548 if (tp->lost_out) {
2549 printk(KERN_DEBUG "Leak l=%u %d\n",
2550 tp->lost_out, icsk->icsk_ca_state);
2551 tp->lost_out = 0;
2553 if (tp->sacked_out) {
2554 printk(KERN_DEBUG "Leak s=%u %d\n",
2555 tp->sacked_out, icsk->icsk_ca_state);
2556 tp->sacked_out = 0;
2558 if (tp->retrans_out) {
2559 printk(KERN_DEBUG "Leak r=%u %d\n",
2560 tp->retrans_out, icsk->icsk_ca_state);
2561 tp->retrans_out = 0;
2564 #endif
2565 *seq_rtt_p = seq_rtt;
2566 return acked;
2569 static void tcp_ack_probe(struct sock *sk)
2571 const struct tcp_sock *tp = tcp_sk(sk);
2572 struct inet_connection_sock *icsk = inet_csk(sk);
2574 /* Was it a usable window open? */
2576 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2577 tp->snd_una + tp->snd_wnd)) {
2578 icsk->icsk_backoff = 0;
2579 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2580 /* Socket must be waked up by subsequent tcp_data_snd_check().
2581 * This function is not for random using!
2583 } else {
2584 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2585 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2586 TCP_RTO_MAX);
2590 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2592 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2593 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2596 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2598 const struct tcp_sock *tp = tcp_sk(sk);
2599 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2600 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2603 /* Check that window update is acceptable.
2604 * The function assumes that snd_una<=ack<=snd_next.
2606 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2607 const u32 ack_seq, const u32 nwin)
2609 return (after(ack, tp->snd_una) ||
2610 after(ack_seq, tp->snd_wl1) ||
2611 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2614 /* Update our send window.
2616 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2617 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2619 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2620 u32 ack_seq)
2622 struct tcp_sock *tp = tcp_sk(sk);
2623 int flag = 0;
2624 u32 nwin = ntohs(tcp_hdr(skb)->window);
2626 if (likely(!tcp_hdr(skb)->syn))
2627 nwin <<= tp->rx_opt.snd_wscale;
2629 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2630 flag |= FLAG_WIN_UPDATE;
2631 tcp_update_wl(tp, ack, ack_seq);
2633 if (tp->snd_wnd != nwin) {
2634 tp->snd_wnd = nwin;
2636 /* Note, it is the only place, where
2637 * fast path is recovered for sending TCP.
2639 tp->pred_flags = 0;
2640 tcp_fast_path_check(sk);
2642 if (nwin > tp->max_window) {
2643 tp->max_window = nwin;
2644 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2649 tp->snd_una = ack;
2651 return flag;
2654 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2655 * continue in congestion avoidance.
2657 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2659 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2660 tp->snd_cwnd_cnt = 0;
2661 TCP_ECN_queue_cwr(tp);
2662 tcp_moderate_cwnd(tp);
2665 /* A conservative spurious RTO response algorithm: reduce cwnd using
2666 * rate halving and continue in congestion avoidance.
2668 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2670 tcp_enter_cwr(sk, 0);
2673 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2675 if (flag&FLAG_ECE)
2676 tcp_ratehalving_spur_to_response(sk);
2677 else
2678 tcp_undo_cwr(sk, 1);
2681 /* F-RTO spurious RTO detection algorithm (RFC4138)
2683 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2684 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2685 * window (but not to or beyond highest sequence sent before RTO):
2686 * On First ACK, send two new segments out.
2687 * On Second ACK, RTO was likely spurious. Do spurious response (response
2688 * algorithm is not part of the F-RTO detection algorithm
2689 * given in RFC4138 but can be selected separately).
2690 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2691 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2692 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2693 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2695 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2696 * original window even after we transmit two new data segments.
2698 * SACK version:
2699 * on first step, wait until first cumulative ACK arrives, then move to
2700 * the second step. In second step, the next ACK decides.
2702 * F-RTO is implemented (mainly) in four functions:
2703 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2704 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2705 * called when tcp_use_frto() showed green light
2706 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2707 * - tcp_enter_frto_loss() is called if there is not enough evidence
2708 * to prove that the RTO is indeed spurious. It transfers the control
2709 * from F-RTO to the conventional RTO recovery
2711 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2713 struct tcp_sock *tp = tcp_sk(sk);
2715 tcp_sync_left_out(tp);
2717 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2718 if (flag&FLAG_DATA_ACKED)
2719 inet_csk(sk)->icsk_retransmits = 0;
2721 if (!before(tp->snd_una, tp->frto_highmark)) {
2722 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2723 return 1;
2726 if (!IsSackFrto() || IsReno(tp)) {
2727 /* RFC4138 shortcoming in step 2; should also have case c):
2728 * ACK isn't duplicate nor advances window, e.g., opposite dir
2729 * data, winupdate
2731 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2732 !(flag&FLAG_FORWARD_PROGRESS))
2733 return 1;
2735 if (!(flag&FLAG_DATA_ACKED)) {
2736 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2737 flag);
2738 return 1;
2740 } else {
2741 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2742 /* Prevent sending of new data. */
2743 tp->snd_cwnd = min(tp->snd_cwnd,
2744 tcp_packets_in_flight(tp));
2745 return 1;
2748 if ((tp->frto_counter >= 2) &&
2749 (!(flag&FLAG_FORWARD_PROGRESS) ||
2750 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2751 /* RFC4138 shortcoming (see comment above) */
2752 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2753 return 1;
2755 tcp_enter_frto_loss(sk, 3, flag);
2756 return 1;
2760 if (tp->frto_counter == 1) {
2761 /* Sending of the next skb must be allowed or no FRTO */
2762 if (!tcp_send_head(sk) ||
2763 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2764 tp->snd_una + tp->snd_wnd)) {
2765 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2766 flag);
2767 return 1;
2770 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2771 tp->frto_counter = 2;
2772 return 1;
2773 } else {
2774 switch (sysctl_tcp_frto_response) {
2775 case 2:
2776 tcp_undo_spur_to_response(sk, flag);
2777 break;
2778 case 1:
2779 tcp_conservative_spur_to_response(tp);
2780 break;
2781 default:
2782 tcp_ratehalving_spur_to_response(sk);
2783 break;
2785 tp->frto_counter = 0;
2787 return 0;
2790 /* This routine deals with incoming acks, but not outgoing ones. */
2791 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2793 struct inet_connection_sock *icsk = inet_csk(sk);
2794 struct tcp_sock *tp = tcp_sk(sk);
2795 u32 prior_snd_una = tp->snd_una;
2796 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2797 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2798 u32 prior_in_flight;
2799 s32 seq_rtt;
2800 int prior_packets;
2801 int frto_cwnd = 0;
2803 /* If the ack is newer than sent or older than previous acks
2804 * then we can probably ignore it.
2806 if (after(ack, tp->snd_nxt))
2807 goto uninteresting_ack;
2809 if (before(ack, prior_snd_una))
2810 goto old_ack;
2812 if (after(ack, prior_snd_una))
2813 flag |= FLAG_SND_UNA_ADVANCED;
2815 if (sysctl_tcp_abc) {
2816 if (icsk->icsk_ca_state < TCP_CA_CWR)
2817 tp->bytes_acked += ack - prior_snd_una;
2818 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2819 /* we assume just one segment left network */
2820 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2823 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2824 /* Window is constant, pure forward advance.
2825 * No more checks are required.
2826 * Note, we use the fact that SND.UNA>=SND.WL2.
2828 tcp_update_wl(tp, ack, ack_seq);
2829 tp->snd_una = ack;
2830 flag |= FLAG_WIN_UPDATE;
2832 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2834 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2835 } else {
2836 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2837 flag |= FLAG_DATA;
2838 else
2839 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2841 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2843 if (TCP_SKB_CB(skb)->sacked)
2844 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2846 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2847 flag |= FLAG_ECE;
2849 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2852 /* We passed data and got it acked, remove any soft error
2853 * log. Something worked...
2855 sk->sk_err_soft = 0;
2856 tp->rcv_tstamp = tcp_time_stamp;
2857 prior_packets = tp->packets_out;
2858 if (!prior_packets)
2859 goto no_queue;
2861 prior_in_flight = tcp_packets_in_flight(tp);
2863 /* See if we can take anything off of the retransmit queue. */
2864 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2866 if (tp->frto_counter)
2867 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2869 if (tcp_ack_is_dubious(sk, flag)) {
2870 /* Advance CWND, if state allows this. */
2871 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2872 tcp_may_raise_cwnd(sk, flag))
2873 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2874 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets - tp->packets_out, flag);
2875 } else {
2876 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2877 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2880 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2881 dst_confirm(sk->sk_dst_cache);
2883 return 1;
2885 no_queue:
2886 icsk->icsk_probes_out = 0;
2888 /* If this ack opens up a zero window, clear backoff. It was
2889 * being used to time the probes, and is probably far higher than
2890 * it needs to be for normal retransmission.
2892 if (tcp_send_head(sk))
2893 tcp_ack_probe(sk);
2894 return 1;
2896 old_ack:
2897 if (TCP_SKB_CB(skb)->sacked)
2898 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2900 uninteresting_ack:
2901 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2902 return 0;
2906 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2907 * But, this can also be called on packets in the established flow when
2908 * the fast version below fails.
2910 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2912 unsigned char *ptr;
2913 struct tcphdr *th = tcp_hdr(skb);
2914 int length=(th->doff*4)-sizeof(struct tcphdr);
2916 ptr = (unsigned char *)(th + 1);
2917 opt_rx->saw_tstamp = 0;
2919 while (length > 0) {
2920 int opcode=*ptr++;
2921 int opsize;
2923 switch (opcode) {
2924 case TCPOPT_EOL:
2925 return;
2926 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2927 length--;
2928 continue;
2929 default:
2930 opsize=*ptr++;
2931 if (opsize < 2) /* "silly options" */
2932 return;
2933 if (opsize > length)
2934 return; /* don't parse partial options */
2935 switch (opcode) {
2936 case TCPOPT_MSS:
2937 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2938 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2939 if (in_mss) {
2940 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2941 in_mss = opt_rx->user_mss;
2942 opt_rx->mss_clamp = in_mss;
2945 break;
2946 case TCPOPT_WINDOW:
2947 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2948 if (sysctl_tcp_window_scaling) {
2949 __u8 snd_wscale = *(__u8 *) ptr;
2950 opt_rx->wscale_ok = 1;
2951 if (snd_wscale > 14) {
2952 if (net_ratelimit())
2953 printk(KERN_INFO "tcp_parse_options: Illegal window "
2954 "scaling value %d >14 received.\n",
2955 snd_wscale);
2956 snd_wscale = 14;
2958 opt_rx->snd_wscale = snd_wscale;
2960 break;
2961 case TCPOPT_TIMESTAMP:
2962 if (opsize==TCPOLEN_TIMESTAMP) {
2963 if ((estab && opt_rx->tstamp_ok) ||
2964 (!estab && sysctl_tcp_timestamps)) {
2965 opt_rx->saw_tstamp = 1;
2966 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2967 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2970 break;
2971 case TCPOPT_SACK_PERM:
2972 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2973 if (sysctl_tcp_sack) {
2974 opt_rx->sack_ok = 1;
2975 tcp_sack_reset(opt_rx);
2978 break;
2980 case TCPOPT_SACK:
2981 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2982 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2983 opt_rx->sack_ok) {
2984 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2986 break;
2987 #ifdef CONFIG_TCP_MD5SIG
2988 case TCPOPT_MD5SIG:
2990 * The MD5 Hash has already been
2991 * checked (see tcp_v{4,6}_do_rcv()).
2993 break;
2994 #endif
2997 ptr+=opsize-2;
2998 length-=opsize;
3003 /* Fast parse options. This hopes to only see timestamps.
3004 * If it is wrong it falls back on tcp_parse_options().
3006 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3007 struct tcp_sock *tp)
3009 if (th->doff == sizeof(struct tcphdr)>>2) {
3010 tp->rx_opt.saw_tstamp = 0;
3011 return 0;
3012 } else if (tp->rx_opt.tstamp_ok &&
3013 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3014 __be32 *ptr = (__be32 *)(th + 1);
3015 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3016 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3017 tp->rx_opt.saw_tstamp = 1;
3018 ++ptr;
3019 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3020 ++ptr;
3021 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3022 return 1;
3025 tcp_parse_options(skb, &tp->rx_opt, 1);
3026 return 1;
3029 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3031 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3032 tp->rx_opt.ts_recent_stamp = get_seconds();
3035 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3037 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3038 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3039 * extra check below makes sure this can only happen
3040 * for pure ACK frames. -DaveM
3042 * Not only, also it occurs for expired timestamps.
3045 if (tcp_paws_check(&tp->rx_opt, 0))
3046 tcp_store_ts_recent(tp);
3050 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3052 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3053 * it can pass through stack. So, the following predicate verifies that
3054 * this segment is not used for anything but congestion avoidance or
3055 * fast retransmit. Moreover, we even are able to eliminate most of such
3056 * second order effects, if we apply some small "replay" window (~RTO)
3057 * to timestamp space.
3059 * All these measures still do not guarantee that we reject wrapped ACKs
3060 * on networks with high bandwidth, when sequence space is recycled fastly,
3061 * but it guarantees that such events will be very rare and do not affect
3062 * connection seriously. This doesn't look nice, but alas, PAWS is really
3063 * buggy extension.
3065 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3066 * states that events when retransmit arrives after original data are rare.
3067 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3068 * the biggest problem on large power networks even with minor reordering.
3069 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3070 * up to bandwidth of 18Gigabit/sec. 8) ]
3073 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3075 struct tcp_sock *tp = tcp_sk(sk);
3076 struct tcphdr *th = tcp_hdr(skb);
3077 u32 seq = TCP_SKB_CB(skb)->seq;
3078 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3080 return (/* 1. Pure ACK with correct sequence number. */
3081 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3083 /* 2. ... and duplicate ACK. */
3084 ack == tp->snd_una &&
3086 /* 3. ... and does not update window. */
3087 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3089 /* 4. ... and sits in replay window. */
3090 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3093 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3095 const struct tcp_sock *tp = tcp_sk(sk);
3097 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3098 !tcp_disordered_ack(sk, skb);
3101 /* Check segment sequence number for validity.
3103 * Segment controls are considered valid, if the segment
3104 * fits to the window after truncation to the window. Acceptability
3105 * of data (and SYN, FIN, of course) is checked separately.
3106 * See tcp_data_queue(), for example.
3108 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3109 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3110 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3111 * (borrowed from freebsd)
3114 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3116 return !before(end_seq, tp->rcv_wup) &&
3117 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3120 /* When we get a reset we do this. */
3121 static void tcp_reset(struct sock *sk)
3123 /* We want the right error as BSD sees it (and indeed as we do). */
3124 switch (sk->sk_state) {
3125 case TCP_SYN_SENT:
3126 sk->sk_err = ECONNREFUSED;
3127 break;
3128 case TCP_CLOSE_WAIT:
3129 sk->sk_err = EPIPE;
3130 break;
3131 case TCP_CLOSE:
3132 return;
3133 default:
3134 sk->sk_err = ECONNRESET;
3137 if (!sock_flag(sk, SOCK_DEAD))
3138 sk->sk_error_report(sk);
3140 tcp_done(sk);
3144 * Process the FIN bit. This now behaves as it is supposed to work
3145 * and the FIN takes effect when it is validly part of sequence
3146 * space. Not before when we get holes.
3148 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3149 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3150 * TIME-WAIT)
3152 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3153 * close and we go into CLOSING (and later onto TIME-WAIT)
3155 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3157 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3159 struct tcp_sock *tp = tcp_sk(sk);
3161 inet_csk_schedule_ack(sk);
3163 sk->sk_shutdown |= RCV_SHUTDOWN;
3164 sock_set_flag(sk, SOCK_DONE);
3166 switch (sk->sk_state) {
3167 case TCP_SYN_RECV:
3168 case TCP_ESTABLISHED:
3169 /* Move to CLOSE_WAIT */
3170 tcp_set_state(sk, TCP_CLOSE_WAIT);
3171 inet_csk(sk)->icsk_ack.pingpong = 1;
3172 break;
3174 case TCP_CLOSE_WAIT:
3175 case TCP_CLOSING:
3176 /* Received a retransmission of the FIN, do
3177 * nothing.
3179 break;
3180 case TCP_LAST_ACK:
3181 /* RFC793: Remain in the LAST-ACK state. */
3182 break;
3184 case TCP_FIN_WAIT1:
3185 /* This case occurs when a simultaneous close
3186 * happens, we must ack the received FIN and
3187 * enter the CLOSING state.
3189 tcp_send_ack(sk);
3190 tcp_set_state(sk, TCP_CLOSING);
3191 break;
3192 case TCP_FIN_WAIT2:
3193 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3194 tcp_send_ack(sk);
3195 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3196 break;
3197 default:
3198 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3199 * cases we should never reach this piece of code.
3201 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3202 __FUNCTION__, sk->sk_state);
3203 break;
3206 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3207 * Probably, we should reset in this case. For now drop them.
3209 __skb_queue_purge(&tp->out_of_order_queue);
3210 if (tp->rx_opt.sack_ok)
3211 tcp_sack_reset(&tp->rx_opt);
3212 sk_stream_mem_reclaim(sk);
3214 if (!sock_flag(sk, SOCK_DEAD)) {
3215 sk->sk_state_change(sk);
3217 /* Do not send POLL_HUP for half duplex close. */
3218 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3219 sk->sk_state == TCP_CLOSE)
3220 sk_wake_async(sk, 1, POLL_HUP);
3221 else
3222 sk_wake_async(sk, 1, POLL_IN);
3226 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3228 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3229 if (before(seq, sp->start_seq))
3230 sp->start_seq = seq;
3231 if (after(end_seq, sp->end_seq))
3232 sp->end_seq = end_seq;
3233 return 1;
3235 return 0;
3238 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3240 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3241 if (before(seq, tp->rcv_nxt))
3242 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3243 else
3244 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3246 tp->rx_opt.dsack = 1;
3247 tp->duplicate_sack[0].start_seq = seq;
3248 tp->duplicate_sack[0].end_seq = end_seq;
3249 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3253 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3255 if (!tp->rx_opt.dsack)
3256 tcp_dsack_set(tp, seq, end_seq);
3257 else
3258 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3261 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3263 struct tcp_sock *tp = tcp_sk(sk);
3265 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3266 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3267 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3268 tcp_enter_quickack_mode(sk);
3270 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3271 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3273 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3274 end_seq = tp->rcv_nxt;
3275 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3279 tcp_send_ack(sk);
3282 /* These routines update the SACK block as out-of-order packets arrive or
3283 * in-order packets close up the sequence space.
3285 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3287 int this_sack;
3288 struct tcp_sack_block *sp = &tp->selective_acks[0];
3289 struct tcp_sack_block *swalk = sp+1;
3291 /* See if the recent change to the first SACK eats into
3292 * or hits the sequence space of other SACK blocks, if so coalesce.
3294 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3295 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3296 int i;
3298 /* Zap SWALK, by moving every further SACK up by one slot.
3299 * Decrease num_sacks.
3301 tp->rx_opt.num_sacks--;
3302 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3303 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3304 sp[i] = sp[i+1];
3305 continue;
3307 this_sack++, swalk++;
3311 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3313 __u32 tmp;
3315 tmp = sack1->start_seq;
3316 sack1->start_seq = sack2->start_seq;
3317 sack2->start_seq = tmp;
3319 tmp = sack1->end_seq;
3320 sack1->end_seq = sack2->end_seq;
3321 sack2->end_seq = tmp;
3324 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3326 struct tcp_sock *tp = tcp_sk(sk);
3327 struct tcp_sack_block *sp = &tp->selective_acks[0];
3328 int cur_sacks = tp->rx_opt.num_sacks;
3329 int this_sack;
3331 if (!cur_sacks)
3332 goto new_sack;
3334 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3335 if (tcp_sack_extend(sp, seq, end_seq)) {
3336 /* Rotate this_sack to the first one. */
3337 for (; this_sack>0; this_sack--, sp--)
3338 tcp_sack_swap(sp, sp-1);
3339 if (cur_sacks > 1)
3340 tcp_sack_maybe_coalesce(tp);
3341 return;
3345 /* Could not find an adjacent existing SACK, build a new one,
3346 * put it at the front, and shift everyone else down. We
3347 * always know there is at least one SACK present already here.
3349 * If the sack array is full, forget about the last one.
3351 if (this_sack >= 4) {
3352 this_sack--;
3353 tp->rx_opt.num_sacks--;
3354 sp--;
3356 for (; this_sack > 0; this_sack--, sp--)
3357 *sp = *(sp-1);
3359 new_sack:
3360 /* Build the new head SACK, and we're done. */
3361 sp->start_seq = seq;
3362 sp->end_seq = end_seq;
3363 tp->rx_opt.num_sacks++;
3364 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3367 /* RCV.NXT advances, some SACKs should be eaten. */
3369 static void tcp_sack_remove(struct tcp_sock *tp)
3371 struct tcp_sack_block *sp = &tp->selective_acks[0];
3372 int num_sacks = tp->rx_opt.num_sacks;
3373 int this_sack;
3375 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3376 if (skb_queue_empty(&tp->out_of_order_queue)) {
3377 tp->rx_opt.num_sacks = 0;
3378 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3379 return;
3382 for (this_sack = 0; this_sack < num_sacks; ) {
3383 /* Check if the start of the sack is covered by RCV.NXT. */
3384 if (!before(tp->rcv_nxt, sp->start_seq)) {
3385 int i;
3387 /* RCV.NXT must cover all the block! */
3388 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3390 /* Zap this SACK, by moving forward any other SACKS. */
3391 for (i=this_sack+1; i < num_sacks; i++)
3392 tp->selective_acks[i-1] = tp->selective_acks[i];
3393 num_sacks--;
3394 continue;
3396 this_sack++;
3397 sp++;
3399 if (num_sacks != tp->rx_opt.num_sacks) {
3400 tp->rx_opt.num_sacks = num_sacks;
3401 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3405 /* This one checks to see if we can put data from the
3406 * out_of_order queue into the receive_queue.
3408 static void tcp_ofo_queue(struct sock *sk)
3410 struct tcp_sock *tp = tcp_sk(sk);
3411 __u32 dsack_high = tp->rcv_nxt;
3412 struct sk_buff *skb;
3414 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3415 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3416 break;
3418 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3419 __u32 dsack = dsack_high;
3420 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3421 dsack_high = TCP_SKB_CB(skb)->end_seq;
3422 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3425 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3426 SOCK_DEBUG(sk, "ofo packet was already received \n");
3427 __skb_unlink(skb, &tp->out_of_order_queue);
3428 __kfree_skb(skb);
3429 continue;
3431 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3432 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3433 TCP_SKB_CB(skb)->end_seq);
3435 __skb_unlink(skb, &tp->out_of_order_queue);
3436 __skb_queue_tail(&sk->sk_receive_queue, skb);
3437 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3438 if (tcp_hdr(skb)->fin)
3439 tcp_fin(skb, sk, tcp_hdr(skb));
3443 static int tcp_prune_queue(struct sock *sk);
3445 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3447 struct tcphdr *th = tcp_hdr(skb);
3448 struct tcp_sock *tp = tcp_sk(sk);
3449 int eaten = -1;
3451 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3452 goto drop;
3454 __skb_pull(skb, th->doff*4);
3456 TCP_ECN_accept_cwr(tp, skb);
3458 if (tp->rx_opt.dsack) {
3459 tp->rx_opt.dsack = 0;
3460 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3461 4 - tp->rx_opt.tstamp_ok);
3464 /* Queue data for delivery to the user.
3465 * Packets in sequence go to the receive queue.
3466 * Out of sequence packets to the out_of_order_queue.
3468 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3469 if (tcp_receive_window(tp) == 0)
3470 goto out_of_window;
3472 /* Ok. In sequence. In window. */
3473 if (tp->ucopy.task == current &&
3474 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3475 sock_owned_by_user(sk) && !tp->urg_data) {
3476 int chunk = min_t(unsigned int, skb->len,
3477 tp->ucopy.len);
3479 __set_current_state(TASK_RUNNING);
3481 local_bh_enable();
3482 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3483 tp->ucopy.len -= chunk;
3484 tp->copied_seq += chunk;
3485 eaten = (chunk == skb->len && !th->fin);
3486 tcp_rcv_space_adjust(sk);
3488 local_bh_disable();
3491 if (eaten <= 0) {
3492 queue_and_out:
3493 if (eaten < 0 &&
3494 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3495 !sk_stream_rmem_schedule(sk, skb))) {
3496 if (tcp_prune_queue(sk) < 0 ||
3497 !sk_stream_rmem_schedule(sk, skb))
3498 goto drop;
3500 sk_stream_set_owner_r(skb, sk);
3501 __skb_queue_tail(&sk->sk_receive_queue, skb);
3503 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3504 if (skb->len)
3505 tcp_event_data_recv(sk, skb);
3506 if (th->fin)
3507 tcp_fin(skb, sk, th);
3509 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3510 tcp_ofo_queue(sk);
3512 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3513 * gap in queue is filled.
3515 if (skb_queue_empty(&tp->out_of_order_queue))
3516 inet_csk(sk)->icsk_ack.pingpong = 0;
3519 if (tp->rx_opt.num_sacks)
3520 tcp_sack_remove(tp);
3522 tcp_fast_path_check(sk);
3524 if (eaten > 0)
3525 __kfree_skb(skb);
3526 else if (!sock_flag(sk, SOCK_DEAD))
3527 sk->sk_data_ready(sk, 0);
3528 return;
3531 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3532 /* A retransmit, 2nd most common case. Force an immediate ack. */
3533 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3534 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3536 out_of_window:
3537 tcp_enter_quickack_mode(sk);
3538 inet_csk_schedule_ack(sk);
3539 drop:
3540 __kfree_skb(skb);
3541 return;
3544 /* Out of window. F.e. zero window probe. */
3545 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3546 goto out_of_window;
3548 tcp_enter_quickack_mode(sk);
3550 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3551 /* Partial packet, seq < rcv_next < end_seq */
3552 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3553 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3554 TCP_SKB_CB(skb)->end_seq);
3556 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3558 /* If window is closed, drop tail of packet. But after
3559 * remembering D-SACK for its head made in previous line.
3561 if (!tcp_receive_window(tp))
3562 goto out_of_window;
3563 goto queue_and_out;
3566 TCP_ECN_check_ce(tp, skb);
3568 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3569 !sk_stream_rmem_schedule(sk, skb)) {
3570 if (tcp_prune_queue(sk) < 0 ||
3571 !sk_stream_rmem_schedule(sk, skb))
3572 goto drop;
3575 /* Disable header prediction. */
3576 tp->pred_flags = 0;
3577 inet_csk_schedule_ack(sk);
3579 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3580 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3582 sk_stream_set_owner_r(skb, sk);
3584 if (!skb_peek(&tp->out_of_order_queue)) {
3585 /* Initial out of order segment, build 1 SACK. */
3586 if (tp->rx_opt.sack_ok) {
3587 tp->rx_opt.num_sacks = 1;
3588 tp->rx_opt.dsack = 0;
3589 tp->rx_opt.eff_sacks = 1;
3590 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3591 tp->selective_acks[0].end_seq =
3592 TCP_SKB_CB(skb)->end_seq;
3594 __skb_queue_head(&tp->out_of_order_queue,skb);
3595 } else {
3596 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3597 u32 seq = TCP_SKB_CB(skb)->seq;
3598 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3600 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3601 __skb_append(skb1, skb, &tp->out_of_order_queue);
3603 if (!tp->rx_opt.num_sacks ||
3604 tp->selective_acks[0].end_seq != seq)
3605 goto add_sack;
3607 /* Common case: data arrive in order after hole. */
3608 tp->selective_acks[0].end_seq = end_seq;
3609 return;
3612 /* Find place to insert this segment. */
3613 do {
3614 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3615 break;
3616 } while ((skb1 = skb1->prev) !=
3617 (struct sk_buff*)&tp->out_of_order_queue);
3619 /* Do skb overlap to previous one? */
3620 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3621 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3622 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3623 /* All the bits are present. Drop. */
3624 __kfree_skb(skb);
3625 tcp_dsack_set(tp, seq, end_seq);
3626 goto add_sack;
3628 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3629 /* Partial overlap. */
3630 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3631 } else {
3632 skb1 = skb1->prev;
3635 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3637 /* And clean segments covered by new one as whole. */
3638 while ((skb1 = skb->next) !=
3639 (struct sk_buff*)&tp->out_of_order_queue &&
3640 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3641 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3642 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3643 break;
3645 __skb_unlink(skb1, &tp->out_of_order_queue);
3646 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3647 __kfree_skb(skb1);
3650 add_sack:
3651 if (tp->rx_opt.sack_ok)
3652 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3656 /* Collapse contiguous sequence of skbs head..tail with
3657 * sequence numbers start..end.
3658 * Segments with FIN/SYN are not collapsed (only because this
3659 * simplifies code)
3661 static void
3662 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3663 struct sk_buff *head, struct sk_buff *tail,
3664 u32 start, u32 end)
3666 struct sk_buff *skb;
3668 /* First, check that queue is collapsible and find
3669 * the point where collapsing can be useful. */
3670 for (skb = head; skb != tail; ) {
3671 /* No new bits? It is possible on ofo queue. */
3672 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3673 struct sk_buff *next = skb->next;
3674 __skb_unlink(skb, list);
3675 __kfree_skb(skb);
3676 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3677 skb = next;
3678 continue;
3681 /* The first skb to collapse is:
3682 * - not SYN/FIN and
3683 * - bloated or contains data before "start" or
3684 * overlaps to the next one.
3686 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3687 (tcp_win_from_space(skb->truesize) > skb->len ||
3688 before(TCP_SKB_CB(skb)->seq, start) ||
3689 (skb->next != tail &&
3690 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3691 break;
3693 /* Decided to skip this, advance start seq. */
3694 start = TCP_SKB_CB(skb)->end_seq;
3695 skb = skb->next;
3697 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3698 return;
3700 while (before(start, end)) {
3701 struct sk_buff *nskb;
3702 int header = skb_headroom(skb);
3703 int copy = SKB_MAX_ORDER(header, 0);
3705 /* Too big header? This can happen with IPv6. */
3706 if (copy < 0)
3707 return;
3708 if (end-start < copy)
3709 copy = end-start;
3710 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3711 if (!nskb)
3712 return;
3714 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3715 skb_set_network_header(nskb, (skb_network_header(skb) -
3716 skb->head));
3717 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3718 skb->head));
3719 skb_reserve(nskb, header);
3720 memcpy(nskb->head, skb->head, header);
3721 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3722 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3723 __skb_insert(nskb, skb->prev, skb, list);
3724 sk_stream_set_owner_r(nskb, sk);
3726 /* Copy data, releasing collapsed skbs. */
3727 while (copy > 0) {
3728 int offset = start - TCP_SKB_CB(skb)->seq;
3729 int size = TCP_SKB_CB(skb)->end_seq - start;
3731 BUG_ON(offset < 0);
3732 if (size > 0) {
3733 size = min(copy, size);
3734 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3735 BUG();
3736 TCP_SKB_CB(nskb)->end_seq += size;
3737 copy -= size;
3738 start += size;
3740 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3741 struct sk_buff *next = skb->next;
3742 __skb_unlink(skb, list);
3743 __kfree_skb(skb);
3744 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3745 skb = next;
3746 if (skb == tail ||
3747 tcp_hdr(skb)->syn ||
3748 tcp_hdr(skb)->fin)
3749 return;
3755 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3756 * and tcp_collapse() them until all the queue is collapsed.
3758 static void tcp_collapse_ofo_queue(struct sock *sk)
3760 struct tcp_sock *tp = tcp_sk(sk);
3761 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3762 struct sk_buff *head;
3763 u32 start, end;
3765 if (skb == NULL)
3766 return;
3768 start = TCP_SKB_CB(skb)->seq;
3769 end = TCP_SKB_CB(skb)->end_seq;
3770 head = skb;
3772 for (;;) {
3773 skb = skb->next;
3775 /* Segment is terminated when we see gap or when
3776 * we are at the end of all the queue. */
3777 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3778 after(TCP_SKB_CB(skb)->seq, end) ||
3779 before(TCP_SKB_CB(skb)->end_seq, start)) {
3780 tcp_collapse(sk, &tp->out_of_order_queue,
3781 head, skb, start, end);
3782 head = skb;
3783 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3784 break;
3785 /* Start new segment */
3786 start = TCP_SKB_CB(skb)->seq;
3787 end = TCP_SKB_CB(skb)->end_seq;
3788 } else {
3789 if (before(TCP_SKB_CB(skb)->seq, start))
3790 start = TCP_SKB_CB(skb)->seq;
3791 if (after(TCP_SKB_CB(skb)->end_seq, end))
3792 end = TCP_SKB_CB(skb)->end_seq;
3797 /* Reduce allocated memory if we can, trying to get
3798 * the socket within its memory limits again.
3800 * Return less than zero if we should start dropping frames
3801 * until the socket owning process reads some of the data
3802 * to stabilize the situation.
3804 static int tcp_prune_queue(struct sock *sk)
3806 struct tcp_sock *tp = tcp_sk(sk);
3808 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3810 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3812 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3813 tcp_clamp_window(sk);
3814 else if (tcp_memory_pressure)
3815 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3817 tcp_collapse_ofo_queue(sk);
3818 tcp_collapse(sk, &sk->sk_receive_queue,
3819 sk->sk_receive_queue.next,
3820 (struct sk_buff*)&sk->sk_receive_queue,
3821 tp->copied_seq, tp->rcv_nxt);
3822 sk_stream_mem_reclaim(sk);
3824 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3825 return 0;
3827 /* Collapsing did not help, destructive actions follow.
3828 * This must not ever occur. */
3830 /* First, purge the out_of_order queue. */
3831 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3832 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3833 __skb_queue_purge(&tp->out_of_order_queue);
3835 /* Reset SACK state. A conforming SACK implementation will
3836 * do the same at a timeout based retransmit. When a connection
3837 * is in a sad state like this, we care only about integrity
3838 * of the connection not performance.
3840 if (tp->rx_opt.sack_ok)
3841 tcp_sack_reset(&tp->rx_opt);
3842 sk_stream_mem_reclaim(sk);
3845 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3846 return 0;
3848 /* If we are really being abused, tell the caller to silently
3849 * drop receive data on the floor. It will get retransmitted
3850 * and hopefully then we'll have sufficient space.
3852 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3854 /* Massive buffer overcommit. */
3855 tp->pred_flags = 0;
3856 return -1;
3860 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3861 * As additional protections, we do not touch cwnd in retransmission phases,
3862 * and if application hit its sndbuf limit recently.
3864 void tcp_cwnd_application_limited(struct sock *sk)
3866 struct tcp_sock *tp = tcp_sk(sk);
3868 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3869 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3870 /* Limited by application or receiver window. */
3871 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3872 u32 win_used = max(tp->snd_cwnd_used, init_win);
3873 if (win_used < tp->snd_cwnd) {
3874 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3875 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3877 tp->snd_cwnd_used = 0;
3879 tp->snd_cwnd_stamp = tcp_time_stamp;
3882 static int tcp_should_expand_sndbuf(struct sock *sk)
3884 struct tcp_sock *tp = tcp_sk(sk);
3886 /* If the user specified a specific send buffer setting, do
3887 * not modify it.
3889 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3890 return 0;
3892 /* If we are under global TCP memory pressure, do not expand. */
3893 if (tcp_memory_pressure)
3894 return 0;
3896 /* If we are under soft global TCP memory pressure, do not expand. */
3897 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3898 return 0;
3900 /* If we filled the congestion window, do not expand. */
3901 if (tp->packets_out >= tp->snd_cwnd)
3902 return 0;
3904 return 1;
3907 /* When incoming ACK allowed to free some skb from write_queue,
3908 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3909 * on the exit from tcp input handler.
3911 * PROBLEM: sndbuf expansion does not work well with largesend.
3913 static void tcp_new_space(struct sock *sk)
3915 struct tcp_sock *tp = tcp_sk(sk);
3917 if (tcp_should_expand_sndbuf(sk)) {
3918 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3919 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3920 demanded = max_t(unsigned int, tp->snd_cwnd,
3921 tp->reordering + 1);
3922 sndmem *= 2*demanded;
3923 if (sndmem > sk->sk_sndbuf)
3924 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3925 tp->snd_cwnd_stamp = tcp_time_stamp;
3928 sk->sk_write_space(sk);
3931 static void tcp_check_space(struct sock *sk)
3933 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3934 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3935 if (sk->sk_socket &&
3936 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3937 tcp_new_space(sk);
3941 static inline void tcp_data_snd_check(struct sock *sk)
3943 tcp_push_pending_frames(sk);
3944 tcp_check_space(sk);
3948 * Check if sending an ack is needed.
3950 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3952 struct tcp_sock *tp = tcp_sk(sk);
3954 /* More than one full frame received... */
3955 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3956 /* ... and right edge of window advances far enough.
3957 * (tcp_recvmsg() will send ACK otherwise). Or...
3959 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3960 /* We ACK each frame or... */
3961 tcp_in_quickack_mode(sk) ||
3962 /* We have out of order data. */
3963 (ofo_possible &&
3964 skb_peek(&tp->out_of_order_queue))) {
3965 /* Then ack it now */
3966 tcp_send_ack(sk);
3967 } else {
3968 /* Else, send delayed ack. */
3969 tcp_send_delayed_ack(sk);
3973 static inline void tcp_ack_snd_check(struct sock *sk)
3975 if (!inet_csk_ack_scheduled(sk)) {
3976 /* We sent a data segment already. */
3977 return;
3979 __tcp_ack_snd_check(sk, 1);
3983 * This routine is only called when we have urgent data
3984 * signaled. Its the 'slow' part of tcp_urg. It could be
3985 * moved inline now as tcp_urg is only called from one
3986 * place. We handle URGent data wrong. We have to - as
3987 * BSD still doesn't use the correction from RFC961.
3988 * For 1003.1g we should support a new option TCP_STDURG to permit
3989 * either form (or just set the sysctl tcp_stdurg).
3992 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3994 struct tcp_sock *tp = tcp_sk(sk);
3995 u32 ptr = ntohs(th->urg_ptr);
3997 if (ptr && !sysctl_tcp_stdurg)
3998 ptr--;
3999 ptr += ntohl(th->seq);
4001 /* Ignore urgent data that we've already seen and read. */
4002 if (after(tp->copied_seq, ptr))
4003 return;
4005 /* Do not replay urg ptr.
4007 * NOTE: interesting situation not covered by specs.
4008 * Misbehaving sender may send urg ptr, pointing to segment,
4009 * which we already have in ofo queue. We are not able to fetch
4010 * such data and will stay in TCP_URG_NOTYET until will be eaten
4011 * by recvmsg(). Seems, we are not obliged to handle such wicked
4012 * situations. But it is worth to think about possibility of some
4013 * DoSes using some hypothetical application level deadlock.
4015 if (before(ptr, tp->rcv_nxt))
4016 return;
4018 /* Do we already have a newer (or duplicate) urgent pointer? */
4019 if (tp->urg_data && !after(ptr, tp->urg_seq))
4020 return;
4022 /* Tell the world about our new urgent pointer. */
4023 sk_send_sigurg(sk);
4025 /* We may be adding urgent data when the last byte read was
4026 * urgent. To do this requires some care. We cannot just ignore
4027 * tp->copied_seq since we would read the last urgent byte again
4028 * as data, nor can we alter copied_seq until this data arrives
4029 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4031 * NOTE. Double Dutch. Rendering to plain English: author of comment
4032 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4033 * and expect that both A and B disappear from stream. This is _wrong_.
4034 * Though this happens in BSD with high probability, this is occasional.
4035 * Any application relying on this is buggy. Note also, that fix "works"
4036 * only in this artificial test. Insert some normal data between A and B and we will
4037 * decline of BSD again. Verdict: it is better to remove to trap
4038 * buggy users.
4040 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4041 !sock_flag(sk, SOCK_URGINLINE) &&
4042 tp->copied_seq != tp->rcv_nxt) {
4043 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4044 tp->copied_seq++;
4045 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4046 __skb_unlink(skb, &sk->sk_receive_queue);
4047 __kfree_skb(skb);
4051 tp->urg_data = TCP_URG_NOTYET;
4052 tp->urg_seq = ptr;
4054 /* Disable header prediction. */
4055 tp->pred_flags = 0;
4058 /* This is the 'fast' part of urgent handling. */
4059 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4061 struct tcp_sock *tp = tcp_sk(sk);
4063 /* Check if we get a new urgent pointer - normally not. */
4064 if (th->urg)
4065 tcp_check_urg(sk,th);
4067 /* Do we wait for any urgent data? - normally not... */
4068 if (tp->urg_data == TCP_URG_NOTYET) {
4069 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4070 th->syn;
4072 /* Is the urgent pointer pointing into this packet? */
4073 if (ptr < skb->len) {
4074 u8 tmp;
4075 if (skb_copy_bits(skb, ptr, &tmp, 1))
4076 BUG();
4077 tp->urg_data = TCP_URG_VALID | tmp;
4078 if (!sock_flag(sk, SOCK_DEAD))
4079 sk->sk_data_ready(sk, 0);
4084 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4086 struct tcp_sock *tp = tcp_sk(sk);
4087 int chunk = skb->len - hlen;
4088 int err;
4090 local_bh_enable();
4091 if (skb_csum_unnecessary(skb))
4092 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4093 else
4094 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4095 tp->ucopy.iov);
4097 if (!err) {
4098 tp->ucopy.len -= chunk;
4099 tp->copied_seq += chunk;
4100 tcp_rcv_space_adjust(sk);
4103 local_bh_disable();
4104 return err;
4107 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4109 __sum16 result;
4111 if (sock_owned_by_user(sk)) {
4112 local_bh_enable();
4113 result = __tcp_checksum_complete(skb);
4114 local_bh_disable();
4115 } else {
4116 result = __tcp_checksum_complete(skb);
4118 return result;
4121 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4123 return !skb_csum_unnecessary(skb) &&
4124 __tcp_checksum_complete_user(sk, skb);
4127 #ifdef CONFIG_NET_DMA
4128 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4130 struct tcp_sock *tp = tcp_sk(sk);
4131 int chunk = skb->len - hlen;
4132 int dma_cookie;
4133 int copied_early = 0;
4135 if (tp->ucopy.wakeup)
4136 return 0;
4138 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4139 tp->ucopy.dma_chan = get_softnet_dma();
4141 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4143 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4144 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4146 if (dma_cookie < 0)
4147 goto out;
4149 tp->ucopy.dma_cookie = dma_cookie;
4150 copied_early = 1;
4152 tp->ucopy.len -= chunk;
4153 tp->copied_seq += chunk;
4154 tcp_rcv_space_adjust(sk);
4156 if ((tp->ucopy.len == 0) ||
4157 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4158 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4159 tp->ucopy.wakeup = 1;
4160 sk->sk_data_ready(sk, 0);
4162 } else if (chunk > 0) {
4163 tp->ucopy.wakeup = 1;
4164 sk->sk_data_ready(sk, 0);
4166 out:
4167 return copied_early;
4169 #endif /* CONFIG_NET_DMA */
4172 * TCP receive function for the ESTABLISHED state.
4174 * It is split into a fast path and a slow path. The fast path is
4175 * disabled when:
4176 * - A zero window was announced from us - zero window probing
4177 * is only handled properly in the slow path.
4178 * - Out of order segments arrived.
4179 * - Urgent data is expected.
4180 * - There is no buffer space left
4181 * - Unexpected TCP flags/window values/header lengths are received
4182 * (detected by checking the TCP header against pred_flags)
4183 * - Data is sent in both directions. Fast path only supports pure senders
4184 * or pure receivers (this means either the sequence number or the ack
4185 * value must stay constant)
4186 * - Unexpected TCP option.
4188 * When these conditions are not satisfied it drops into a standard
4189 * receive procedure patterned after RFC793 to handle all cases.
4190 * The first three cases are guaranteed by proper pred_flags setting,
4191 * the rest is checked inline. Fast processing is turned on in
4192 * tcp_data_queue when everything is OK.
4194 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4195 struct tcphdr *th, unsigned len)
4197 struct tcp_sock *tp = tcp_sk(sk);
4200 * Header prediction.
4201 * The code loosely follows the one in the famous
4202 * "30 instruction TCP receive" Van Jacobson mail.
4204 * Van's trick is to deposit buffers into socket queue
4205 * on a device interrupt, to call tcp_recv function
4206 * on the receive process context and checksum and copy
4207 * the buffer to user space. smart...
4209 * Our current scheme is not silly either but we take the
4210 * extra cost of the net_bh soft interrupt processing...
4211 * We do checksum and copy also but from device to kernel.
4214 tp->rx_opt.saw_tstamp = 0;
4216 /* pred_flags is 0xS?10 << 16 + snd_wnd
4217 * if header_prediction is to be made
4218 * 'S' will always be tp->tcp_header_len >> 2
4219 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4220 * turn it off (when there are holes in the receive
4221 * space for instance)
4222 * PSH flag is ignored.
4225 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4226 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4227 int tcp_header_len = tp->tcp_header_len;
4229 /* Timestamp header prediction: tcp_header_len
4230 * is automatically equal to th->doff*4 due to pred_flags
4231 * match.
4234 /* Check timestamp */
4235 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4236 __be32 *ptr = (__be32 *)(th + 1);
4238 /* No? Slow path! */
4239 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4240 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4241 goto slow_path;
4243 tp->rx_opt.saw_tstamp = 1;
4244 ++ptr;
4245 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4246 ++ptr;
4247 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4249 /* If PAWS failed, check it more carefully in slow path */
4250 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4251 goto slow_path;
4253 /* DO NOT update ts_recent here, if checksum fails
4254 * and timestamp was corrupted part, it will result
4255 * in a hung connection since we will drop all
4256 * future packets due to the PAWS test.
4260 if (len <= tcp_header_len) {
4261 /* Bulk data transfer: sender */
4262 if (len == tcp_header_len) {
4263 /* Predicted packet is in window by definition.
4264 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4265 * Hence, check seq<=rcv_wup reduces to:
4267 if (tcp_header_len ==
4268 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4269 tp->rcv_nxt == tp->rcv_wup)
4270 tcp_store_ts_recent(tp);
4272 /* We know that such packets are checksummed
4273 * on entry.
4275 tcp_ack(sk, skb, 0);
4276 __kfree_skb(skb);
4277 tcp_data_snd_check(sk);
4278 return 0;
4279 } else { /* Header too small */
4280 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4281 goto discard;
4283 } else {
4284 int eaten = 0;
4285 int copied_early = 0;
4287 if (tp->copied_seq == tp->rcv_nxt &&
4288 len - tcp_header_len <= tp->ucopy.len) {
4289 #ifdef CONFIG_NET_DMA
4290 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4291 copied_early = 1;
4292 eaten = 1;
4294 #endif
4295 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4296 __set_current_state(TASK_RUNNING);
4298 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4299 eaten = 1;
4301 if (eaten) {
4302 /* Predicted packet is in window by definition.
4303 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4304 * Hence, check seq<=rcv_wup reduces to:
4306 if (tcp_header_len ==
4307 (sizeof(struct tcphdr) +
4308 TCPOLEN_TSTAMP_ALIGNED) &&
4309 tp->rcv_nxt == tp->rcv_wup)
4310 tcp_store_ts_recent(tp);
4312 tcp_rcv_rtt_measure_ts(sk, skb);
4314 __skb_pull(skb, tcp_header_len);
4315 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4316 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4318 if (copied_early)
4319 tcp_cleanup_rbuf(sk, skb->len);
4321 if (!eaten) {
4322 if (tcp_checksum_complete_user(sk, skb))
4323 goto csum_error;
4325 /* Predicted packet is in window by definition.
4326 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4327 * Hence, check seq<=rcv_wup reduces to:
4329 if (tcp_header_len ==
4330 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4331 tp->rcv_nxt == tp->rcv_wup)
4332 tcp_store_ts_recent(tp);
4334 tcp_rcv_rtt_measure_ts(sk, skb);
4336 if ((int)skb->truesize > sk->sk_forward_alloc)
4337 goto step5;
4339 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4341 /* Bulk data transfer: receiver */
4342 __skb_pull(skb,tcp_header_len);
4343 __skb_queue_tail(&sk->sk_receive_queue, skb);
4344 sk_stream_set_owner_r(skb, sk);
4345 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4348 tcp_event_data_recv(sk, skb);
4350 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4351 /* Well, only one small jumplet in fast path... */
4352 tcp_ack(sk, skb, FLAG_DATA);
4353 tcp_data_snd_check(sk);
4354 if (!inet_csk_ack_scheduled(sk))
4355 goto no_ack;
4358 __tcp_ack_snd_check(sk, 0);
4359 no_ack:
4360 #ifdef CONFIG_NET_DMA
4361 if (copied_early)
4362 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4363 else
4364 #endif
4365 if (eaten)
4366 __kfree_skb(skb);
4367 else
4368 sk->sk_data_ready(sk, 0);
4369 return 0;
4373 slow_path:
4374 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4375 goto csum_error;
4378 * RFC1323: H1. Apply PAWS check first.
4380 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4381 tcp_paws_discard(sk, skb)) {
4382 if (!th->rst) {
4383 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4384 tcp_send_dupack(sk, skb);
4385 goto discard;
4387 /* Resets are accepted even if PAWS failed.
4389 ts_recent update must be made after we are sure
4390 that the packet is in window.
4395 * Standard slow path.
4398 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4399 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4400 * (RST) segments are validated by checking their SEQ-fields."
4401 * And page 69: "If an incoming segment is not acceptable,
4402 * an acknowledgment should be sent in reply (unless the RST bit
4403 * is set, if so drop the segment and return)".
4405 if (!th->rst)
4406 tcp_send_dupack(sk, skb);
4407 goto discard;
4410 if (th->rst) {
4411 tcp_reset(sk);
4412 goto discard;
4415 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4417 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4418 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4419 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4420 tcp_reset(sk);
4421 return 1;
4424 step5:
4425 if (th->ack)
4426 tcp_ack(sk, skb, FLAG_SLOWPATH);
4428 tcp_rcv_rtt_measure_ts(sk, skb);
4430 /* Process urgent data. */
4431 tcp_urg(sk, skb, th);
4433 /* step 7: process the segment text */
4434 tcp_data_queue(sk, skb);
4436 tcp_data_snd_check(sk);
4437 tcp_ack_snd_check(sk);
4438 return 0;
4440 csum_error:
4441 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4443 discard:
4444 __kfree_skb(skb);
4445 return 0;
4448 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4449 struct tcphdr *th, unsigned len)
4451 struct tcp_sock *tp = tcp_sk(sk);
4452 struct inet_connection_sock *icsk = inet_csk(sk);
4453 int saved_clamp = tp->rx_opt.mss_clamp;
4455 tcp_parse_options(skb, &tp->rx_opt, 0);
4457 if (th->ack) {
4458 /* rfc793:
4459 * "If the state is SYN-SENT then
4460 * first check the ACK bit
4461 * If the ACK bit is set
4462 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4463 * a reset (unless the RST bit is set, if so drop
4464 * the segment and return)"
4466 * We do not send data with SYN, so that RFC-correct
4467 * test reduces to:
4469 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4470 goto reset_and_undo;
4472 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4473 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4474 tcp_time_stamp)) {
4475 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4476 goto reset_and_undo;
4479 /* Now ACK is acceptable.
4481 * "If the RST bit is set
4482 * If the ACK was acceptable then signal the user "error:
4483 * connection reset", drop the segment, enter CLOSED state,
4484 * delete TCB, and return."
4487 if (th->rst) {
4488 tcp_reset(sk);
4489 goto discard;
4492 /* rfc793:
4493 * "fifth, if neither of the SYN or RST bits is set then
4494 * drop the segment and return."
4496 * See note below!
4497 * --ANK(990513)
4499 if (!th->syn)
4500 goto discard_and_undo;
4502 /* rfc793:
4503 * "If the SYN bit is on ...
4504 * are acceptable then ...
4505 * (our SYN has been ACKed), change the connection
4506 * state to ESTABLISHED..."
4509 TCP_ECN_rcv_synack(tp, th);
4511 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4512 tcp_ack(sk, skb, FLAG_SLOWPATH);
4514 /* Ok.. it's good. Set up sequence numbers and
4515 * move to established.
4517 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4518 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4520 /* RFC1323: The window in SYN & SYN/ACK segments is
4521 * never scaled.
4523 tp->snd_wnd = ntohs(th->window);
4524 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4526 if (!tp->rx_opt.wscale_ok) {
4527 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4528 tp->window_clamp = min(tp->window_clamp, 65535U);
4531 if (tp->rx_opt.saw_tstamp) {
4532 tp->rx_opt.tstamp_ok = 1;
4533 tp->tcp_header_len =
4534 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4535 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4536 tcp_store_ts_recent(tp);
4537 } else {
4538 tp->tcp_header_len = sizeof(struct tcphdr);
4541 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4542 tp->rx_opt.sack_ok |= 2;
4544 tcp_mtup_init(sk);
4545 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4546 tcp_initialize_rcv_mss(sk);
4548 /* Remember, tcp_poll() does not lock socket!
4549 * Change state from SYN-SENT only after copied_seq
4550 * is initialized. */
4551 tp->copied_seq = tp->rcv_nxt;
4552 smp_mb();
4553 tcp_set_state(sk, TCP_ESTABLISHED);
4555 security_inet_conn_established(sk, skb);
4557 /* Make sure socket is routed, for correct metrics. */
4558 icsk->icsk_af_ops->rebuild_header(sk);
4560 tcp_init_metrics(sk);
4562 tcp_init_congestion_control(sk);
4564 /* Prevent spurious tcp_cwnd_restart() on first data
4565 * packet.
4567 tp->lsndtime = tcp_time_stamp;
4569 tcp_init_buffer_space(sk);
4571 if (sock_flag(sk, SOCK_KEEPOPEN))
4572 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4574 if (!tp->rx_opt.snd_wscale)
4575 __tcp_fast_path_on(tp, tp->snd_wnd);
4576 else
4577 tp->pred_flags = 0;
4579 if (!sock_flag(sk, SOCK_DEAD)) {
4580 sk->sk_state_change(sk);
4581 sk_wake_async(sk, 0, POLL_OUT);
4584 if (sk->sk_write_pending ||
4585 icsk->icsk_accept_queue.rskq_defer_accept ||
4586 icsk->icsk_ack.pingpong) {
4587 /* Save one ACK. Data will be ready after
4588 * several ticks, if write_pending is set.
4590 * It may be deleted, but with this feature tcpdumps
4591 * look so _wonderfully_ clever, that I was not able
4592 * to stand against the temptation 8) --ANK
4594 inet_csk_schedule_ack(sk);
4595 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4596 icsk->icsk_ack.ato = TCP_ATO_MIN;
4597 tcp_incr_quickack(sk);
4598 tcp_enter_quickack_mode(sk);
4599 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4600 TCP_DELACK_MAX, TCP_RTO_MAX);
4602 discard:
4603 __kfree_skb(skb);
4604 return 0;
4605 } else {
4606 tcp_send_ack(sk);
4608 return -1;
4611 /* No ACK in the segment */
4613 if (th->rst) {
4614 /* rfc793:
4615 * "If the RST bit is set
4617 * Otherwise (no ACK) drop the segment and return."
4620 goto discard_and_undo;
4623 /* PAWS check. */
4624 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
4625 tcp_paws_reject(&tp->rx_opt, 0))
4626 goto discard_and_undo;
4628 if (th->syn) {
4629 /* We see SYN without ACK. It is attempt of
4630 * simultaneous connect with crossed SYNs.
4631 * Particularly, it can be connect to self.
4633 tcp_set_state(sk, TCP_SYN_RECV);
4635 if (tp->rx_opt.saw_tstamp) {
4636 tp->rx_opt.tstamp_ok = 1;
4637 tcp_store_ts_recent(tp);
4638 tp->tcp_header_len =
4639 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4640 } else {
4641 tp->tcp_header_len = sizeof(struct tcphdr);
4644 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4645 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4647 /* RFC1323: The window in SYN & SYN/ACK segments is
4648 * never scaled.
4650 tp->snd_wnd = ntohs(th->window);
4651 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4652 tp->max_window = tp->snd_wnd;
4654 TCP_ECN_rcv_syn(tp, th);
4656 tcp_mtup_init(sk);
4657 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4658 tcp_initialize_rcv_mss(sk);
4661 tcp_send_synack(sk);
4662 #if 0
4663 /* Note, we could accept data and URG from this segment.
4664 * There are no obstacles to make this.
4666 * However, if we ignore data in ACKless segments sometimes,
4667 * we have no reasons to accept it sometimes.
4668 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4669 * is not flawless. So, discard packet for sanity.
4670 * Uncomment this return to process the data.
4672 return -1;
4673 #else
4674 goto discard;
4675 #endif
4677 /* "fifth, if neither of the SYN or RST bits is set then
4678 * drop the segment and return."
4681 discard_and_undo:
4682 tcp_clear_options(&tp->rx_opt);
4683 tp->rx_opt.mss_clamp = saved_clamp;
4684 goto discard;
4686 reset_and_undo:
4687 tcp_clear_options(&tp->rx_opt);
4688 tp->rx_opt.mss_clamp = saved_clamp;
4689 return 1;
4694 * This function implements the receiving procedure of RFC 793 for
4695 * all states except ESTABLISHED and TIME_WAIT.
4696 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4697 * address independent.
4700 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4701 struct tcphdr *th, unsigned len)
4703 struct tcp_sock *tp = tcp_sk(sk);
4704 struct inet_connection_sock *icsk = inet_csk(sk);
4705 int queued = 0;
4707 tp->rx_opt.saw_tstamp = 0;
4709 switch (sk->sk_state) {
4710 case TCP_CLOSE:
4711 goto discard;
4713 case TCP_LISTEN:
4714 if (th->ack)
4715 return 1;
4717 if (th->rst)
4718 goto discard;
4720 if (th->syn) {
4721 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4722 return 1;
4724 /* Now we have several options: In theory there is
4725 * nothing else in the frame. KA9Q has an option to
4726 * send data with the syn, BSD accepts data with the
4727 * syn up to the [to be] advertised window and
4728 * Solaris 2.1 gives you a protocol error. For now
4729 * we just ignore it, that fits the spec precisely
4730 * and avoids incompatibilities. It would be nice in
4731 * future to drop through and process the data.
4733 * Now that TTCP is starting to be used we ought to
4734 * queue this data.
4735 * But, this leaves one open to an easy denial of
4736 * service attack, and SYN cookies can't defend
4737 * against this problem. So, we drop the data
4738 * in the interest of security over speed unless
4739 * it's still in use.
4741 kfree_skb(skb);
4742 return 0;
4744 goto discard;
4746 case TCP_SYN_SENT:
4747 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4748 if (queued >= 0)
4749 return queued;
4751 /* Do step6 onward by hand. */
4752 tcp_urg(sk, skb, th);
4753 __kfree_skb(skb);
4754 tcp_data_snd_check(sk);
4755 return 0;
4758 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4759 tcp_paws_discard(sk, skb)) {
4760 if (!th->rst) {
4761 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4762 tcp_send_dupack(sk, skb);
4763 goto discard;
4765 /* Reset is accepted even if it did not pass PAWS. */
4768 /* step 1: check sequence number */
4769 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4770 if (!th->rst)
4771 tcp_send_dupack(sk, skb);
4772 goto discard;
4775 /* step 2: check RST bit */
4776 if (th->rst) {
4777 tcp_reset(sk);
4778 goto discard;
4781 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4783 /* step 3: check security and precedence [ignored] */
4785 /* step 4:
4787 * Check for a SYN in window.
4789 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4790 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4791 tcp_reset(sk);
4792 return 1;
4795 /* step 5: check the ACK field */
4796 if (th->ack) {
4797 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4799 switch (sk->sk_state) {
4800 case TCP_SYN_RECV:
4801 if (acceptable) {
4802 tp->copied_seq = tp->rcv_nxt;
4803 smp_mb();
4804 tcp_set_state(sk, TCP_ESTABLISHED);
4805 sk->sk_state_change(sk);
4807 /* Note, that this wakeup is only for marginal
4808 * crossed SYN case. Passively open sockets
4809 * are not waked up, because sk->sk_sleep ==
4810 * NULL and sk->sk_socket == NULL.
4812 if (sk->sk_socket) {
4813 sk_wake_async(sk,0,POLL_OUT);
4816 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4817 tp->snd_wnd = ntohs(th->window) <<
4818 tp->rx_opt.snd_wscale;
4819 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4820 TCP_SKB_CB(skb)->seq);
4822 /* tcp_ack considers this ACK as duplicate
4823 * and does not calculate rtt.
4824 * Fix it at least with timestamps.
4826 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4827 !tp->srtt)
4828 tcp_ack_saw_tstamp(sk, 0);
4830 if (tp->rx_opt.tstamp_ok)
4831 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4833 /* Make sure socket is routed, for
4834 * correct metrics.
4836 icsk->icsk_af_ops->rebuild_header(sk);
4838 tcp_init_metrics(sk);
4840 tcp_init_congestion_control(sk);
4842 /* Prevent spurious tcp_cwnd_restart() on
4843 * first data packet.
4845 tp->lsndtime = tcp_time_stamp;
4847 tcp_mtup_init(sk);
4848 tcp_initialize_rcv_mss(sk);
4849 tcp_init_buffer_space(sk);
4850 tcp_fast_path_on(tp);
4851 } else {
4852 return 1;
4854 break;
4856 case TCP_FIN_WAIT1:
4857 if (tp->snd_una == tp->write_seq) {
4858 tcp_set_state(sk, TCP_FIN_WAIT2);
4859 sk->sk_shutdown |= SEND_SHUTDOWN;
4860 dst_confirm(sk->sk_dst_cache);
4862 if (!sock_flag(sk, SOCK_DEAD))
4863 /* Wake up lingering close() */
4864 sk->sk_state_change(sk);
4865 else {
4866 int tmo;
4868 if (tp->linger2 < 0 ||
4869 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4870 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4871 tcp_done(sk);
4872 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4873 return 1;
4876 tmo = tcp_fin_time(sk);
4877 if (tmo > TCP_TIMEWAIT_LEN) {
4878 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4879 } else if (th->fin || sock_owned_by_user(sk)) {
4880 /* Bad case. We could lose such FIN otherwise.
4881 * It is not a big problem, but it looks confusing
4882 * and not so rare event. We still can lose it now,
4883 * if it spins in bh_lock_sock(), but it is really
4884 * marginal case.
4886 inet_csk_reset_keepalive_timer(sk, tmo);
4887 } else {
4888 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4889 goto discard;
4893 break;
4895 case TCP_CLOSING:
4896 if (tp->snd_una == tp->write_seq) {
4897 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4898 goto discard;
4900 break;
4902 case TCP_LAST_ACK:
4903 if (tp->snd_una == tp->write_seq) {
4904 tcp_update_metrics(sk);
4905 tcp_done(sk);
4906 goto discard;
4908 break;
4910 } else
4911 goto discard;
4913 /* step 6: check the URG bit */
4914 tcp_urg(sk, skb, th);
4916 /* step 7: process the segment text */
4917 switch (sk->sk_state) {
4918 case TCP_CLOSE_WAIT:
4919 case TCP_CLOSING:
4920 case TCP_LAST_ACK:
4921 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4922 break;
4923 case TCP_FIN_WAIT1:
4924 case TCP_FIN_WAIT2:
4925 /* RFC 793 says to queue data in these states,
4926 * RFC 1122 says we MUST send a reset.
4927 * BSD 4.4 also does reset.
4929 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4930 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4931 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4932 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4933 tcp_reset(sk);
4934 return 1;
4937 /* Fall through */
4938 case TCP_ESTABLISHED:
4939 tcp_data_queue(sk, skb);
4940 queued = 1;
4941 break;
4944 /* tcp_data could move socket to TIME-WAIT */
4945 if (sk->sk_state != TCP_CLOSE) {
4946 tcp_data_snd_check(sk);
4947 tcp_ack_snd_check(sk);
4950 if (!queued) {
4951 discard:
4952 __kfree_skb(skb);
4954 return 0;
4957 EXPORT_SYMBOL(sysctl_tcp_ecn);
4958 EXPORT_SYMBOL(sysctl_tcp_reordering);
4959 EXPORT_SYMBOL(tcp_parse_options);
4960 EXPORT_SYMBOL(tcp_rcv_established);
4961 EXPORT_SYMBOL(tcp_rcv_state_process);
4962 EXPORT_SYMBOL(tcp_initialize_rcv_mss);