Kernel 2.6 USB: backport of USB driver (USB serial) from upstream, part 4
[tomato.git] / release / src-rt / linux / linux-2.6 / drivers / usb / core / hcd.c
blobb1ab1c35cb66f55e79517813e51af537a9699548
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <asm/scatterlist.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
43 #include <linux/usb.h>
45 #include "usb.h"
46 #include "hcd.h"
47 #include "hub.h"
50 /*-------------------------------------------------------------------------*/
53 * USB Host Controller Driver framework
55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56 * HCD-specific behaviors/bugs.
58 * This does error checks, tracks devices and urbs, and delegates to a
59 * "hc_driver" only for code (and data) that really needs to know about
60 * hardware differences. That includes root hub registers, i/o queues,
61 * and so on ... but as little else as possible.
63 * Shared code includes most of the "root hub" code (these are emulated,
64 * though each HC's hardware works differently) and PCI glue, plus request
65 * tracking overhead. The HCD code should only block on spinlocks or on
66 * hardware handshaking; blocking on software events (such as other kernel
67 * threads releasing resources, or completing actions) is all generic.
69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71 * only by the hub driver ... and that neither should be seen or used by
72 * usb client device drivers.
74 * Contributors of ideas or unattributed patches include: David Brownell,
75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
77 * HISTORY:
78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
79 * associated cleanup. "usb_hcd" still != "usb_bus".
80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
83 /*-------------------------------------------------------------------------*/
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS 64
95 struct usb_busmap {
96 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
98 static struct usb_busmap busmap;
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
116 static inline int is_root_hub(struct usb_device *udev)
118 return (udev->parent == NULL);
121 /*-------------------------------------------------------------------------*/
124 * Sharable chunks of root hub code.
127 /*-------------------------------------------------------------------------*/
129 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
130 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
132 /* usb 2.0 root hub device descriptor */
133 static const u8 usb2_rh_dev_descriptor [18] = {
134 0x12, /* __u8 bLength; */
135 0x01, /* __u8 bDescriptorType; Device */
136 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
138 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
139 0x00, /* __u8 bDeviceSubClass; */
140 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
141 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
143 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
144 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
145 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
147 0x03, /* __u8 iManufacturer; */
148 0x02, /* __u8 iProduct; */
149 0x01, /* __u8 iSerialNumber; */
150 0x01 /* __u8 bNumConfigurations; */
153 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
155 /* usb 1.1 root hub device descriptor */
156 static const u8 usb11_rh_dev_descriptor [18] = {
157 0x12, /* __u8 bLength; */
158 0x01, /* __u8 bDescriptorType; Device */
159 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
161 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
162 0x00, /* __u8 bDeviceSubClass; */
163 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
164 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
166 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
167 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
168 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
170 0x03, /* __u8 iManufacturer; */
171 0x02, /* __u8 iProduct; */
172 0x01, /* __u8 iSerialNumber; */
173 0x01 /* __u8 bNumConfigurations; */
177 /*-------------------------------------------------------------------------*/
179 /* Configuration descriptors for our root hubs */
181 static const u8 fs_rh_config_descriptor [] = {
183 /* one configuration */
184 0x09, /* __u8 bLength; */
185 0x02, /* __u8 bDescriptorType; Configuration */
186 0x19, 0x00, /* __le16 wTotalLength; */
187 0x01, /* __u8 bNumInterfaces; (1) */
188 0x01, /* __u8 bConfigurationValue; */
189 0x00, /* __u8 iConfiguration; */
190 0xc0, /* __u8 bmAttributes;
191 Bit 7: must be set,
192 6: Self-powered,
193 5: Remote wakeup,
194 4..0: resvd */
195 0x00, /* __u8 MaxPower; */
197 /* USB 1.1:
198 * USB 2.0, single TT organization (mandatory):
199 * one interface, protocol 0
201 * USB 2.0, multiple TT organization (optional):
202 * two interfaces, protocols 1 (like single TT)
203 * and 2 (multiple TT mode) ... config is
204 * sometimes settable
205 * NOT IMPLEMENTED
208 /* one interface */
209 0x09, /* __u8 if_bLength; */
210 0x04, /* __u8 if_bDescriptorType; Interface */
211 0x00, /* __u8 if_bInterfaceNumber; */
212 0x00, /* __u8 if_bAlternateSetting; */
213 0x01, /* __u8 if_bNumEndpoints; */
214 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
215 0x00, /* __u8 if_bInterfaceSubClass; */
216 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
217 0x00, /* __u8 if_iInterface; */
219 /* one endpoint (status change endpoint) */
220 0x07, /* __u8 ep_bLength; */
221 0x05, /* __u8 ep_bDescriptorType; Endpoint */
222 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
223 0x03, /* __u8 ep_bmAttributes; Interrupt */
224 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
225 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
228 static const u8 hs_rh_config_descriptor [] = {
230 /* one configuration */
231 0x09, /* __u8 bLength; */
232 0x02, /* __u8 bDescriptorType; Configuration */
233 0x19, 0x00, /* __le16 wTotalLength; */
234 0x01, /* __u8 bNumInterfaces; (1) */
235 0x01, /* __u8 bConfigurationValue; */
236 0x00, /* __u8 iConfiguration; */
237 0xc0, /* __u8 bmAttributes;
238 Bit 7: must be set,
239 6: Self-powered,
240 5: Remote wakeup,
241 4..0: resvd */
242 0x00, /* __u8 MaxPower; */
244 /* USB 1.1:
245 * USB 2.0, single TT organization (mandatory):
246 * one interface, protocol 0
248 * USB 2.0, multiple TT organization (optional):
249 * two interfaces, protocols 1 (like single TT)
250 * and 2 (multiple TT mode) ... config is
251 * sometimes settable
252 * NOT IMPLEMENTED
255 /* one interface */
256 0x09, /* __u8 if_bLength; */
257 0x04, /* __u8 if_bDescriptorType; Interface */
258 0x00, /* __u8 if_bInterfaceNumber; */
259 0x00, /* __u8 if_bAlternateSetting; */
260 0x01, /* __u8 if_bNumEndpoints; */
261 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
262 0x00, /* __u8 if_bInterfaceSubClass; */
263 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
264 0x00, /* __u8 if_iInterface; */
266 /* one endpoint (status change endpoint) */
267 0x07, /* __u8 ep_bLength; */
268 0x05, /* __u8 ep_bDescriptorType; Endpoint */
269 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
270 0x03, /* __u8 ep_bmAttributes; Interrupt */
271 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
272 * see hub.c:hub_configure() for details. */
273 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
274 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
277 /*-------------------------------------------------------------------------*/
280 * helper routine for returning string descriptors in UTF-16LE
281 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
283 static unsigned ascii2utf(char *s, u8 *utf, int utfmax)
285 unsigned retval;
287 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
288 *utf++ = *s++;
289 *utf++ = 0;
291 if (utfmax > 0) {
292 *utf = *s;
293 ++retval;
295 return retval;
299 * rh_string - provides manufacturer, product and serial strings for root hub
300 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
301 * @hcd: the host controller for this root hub
302 * @data: return packet in UTF-16 LE
303 * @len: length of the return packet
305 * Produces either a manufacturer, product or serial number string for the
306 * virtual root hub device.
308 static unsigned rh_string(int id, struct usb_hcd *hcd, u8 *data, unsigned len)
310 char buf [100];
312 // language ids
313 if (id == 0) {
314 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
315 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
316 len = min_t(unsigned, len, 4);
317 memcpy (data, buf, len);
318 return len;
320 // serial number
321 } else if (id == 1) {
322 strlcpy (buf, hcd->self.bus_name, sizeof buf);
324 // product description
325 } else if (id == 2) {
326 strlcpy (buf, hcd->product_desc, sizeof buf);
328 // id 3 == vendor description
329 } else if (id == 3) {
330 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
331 init_utsname()->release, hcd->driver->description);
334 switch (len) { /* All cases fall through */
335 default:
336 len = 2 + ascii2utf (buf, data + 2, len - 2);
337 case 2:
338 data [1] = 3; /* type == string */
339 case 1:
340 data [0] = 2 * (strlen (buf) + 1);
341 case 0:
342 ; /* Compiler wants a statement here */
344 return len;
348 /* Root hub control transfers execute synchronously */
349 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
351 struct usb_ctrlrequest *cmd;
352 u16 typeReq, wValue, wIndex, wLength;
353 u8 *ubuf = urb->transfer_buffer;
354 u8 tbuf [sizeof (struct usb_hub_descriptor)]
355 __attribute__((aligned(4)));
356 const u8 *bufp = tbuf;
357 unsigned len = 0;
358 int status;
359 u8 patch_wakeup = 0;
360 u8 patch_protocol = 0;
362 might_sleep();
364 spin_lock_irq(&hcd_root_hub_lock);
365 status = usb_hcd_link_urb_to_ep(hcd, urb);
366 spin_unlock_irq(&hcd_root_hub_lock);
367 if (status)
368 return status;
369 urb->hcpriv = hcd; /* Indicate it's queued */
371 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
372 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
373 wValue = le16_to_cpu (cmd->wValue);
374 wIndex = le16_to_cpu (cmd->wIndex);
375 wLength = le16_to_cpu (cmd->wLength);
377 if (wLength > urb->transfer_buffer_length)
378 goto error;
380 urb->actual_length = 0;
381 switch (typeReq) {
383 /* DEVICE REQUESTS */
385 /* The root hub's remote wakeup enable bit is implemented using
386 * driver model wakeup flags. If this system supports wakeup
387 * through USB, userspace may change the default "allow wakeup"
388 * policy through sysfs or these calls.
390 * Most root hubs support wakeup from downstream devices, for
391 * runtime power management (disabling USB clocks and reducing
392 * VBUS power usage). However, not all of them do so; silicon,
393 * board, and BIOS bugs here are not uncommon, so these can't
394 * be treated quite like external hubs.
396 * Likewise, not all root hubs will pass wakeup events upstream,
397 * to wake up the whole system. So don't assume root hub and
398 * controller capabilities are identical.
401 case DeviceRequest | USB_REQ_GET_STATUS:
402 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
403 << USB_DEVICE_REMOTE_WAKEUP)
404 | (1 << USB_DEVICE_SELF_POWERED);
405 tbuf [1] = 0;
406 len = 2;
407 break;
408 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
409 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
410 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
411 else
412 goto error;
413 break;
414 case DeviceOutRequest | USB_REQ_SET_FEATURE:
415 if (device_can_wakeup(&hcd->self.root_hub->dev)
416 && wValue == USB_DEVICE_REMOTE_WAKEUP)
417 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
418 else
419 goto error;
420 break;
421 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
422 tbuf [0] = 1;
423 len = 1;
424 /* FALLTHROUGH */
425 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
426 break;
427 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
428 switch (wValue & 0xff00) {
429 case USB_DT_DEVICE << 8:
430 if (hcd->driver->flags & HCD_USB2)
431 bufp = usb2_rh_dev_descriptor;
432 else if (hcd->driver->flags & HCD_USB11)
433 bufp = usb11_rh_dev_descriptor;
434 else
435 goto error;
436 len = 18;
437 if (hcd->has_tt)
438 patch_protocol = 1;
439 break;
440 case USB_DT_CONFIG << 8:
441 if (hcd->driver->flags & HCD_USB2) {
442 bufp = hs_rh_config_descriptor;
443 len = sizeof hs_rh_config_descriptor;
444 } else {
445 bufp = fs_rh_config_descriptor;
446 len = sizeof fs_rh_config_descriptor;
448 if (device_can_wakeup(&hcd->self.root_hub->dev))
449 patch_wakeup = 1;
450 break;
451 case USB_DT_STRING << 8:
452 if ((wValue & 0xff) < 4)
453 urb->actual_length = rh_string(wValue & 0xff,
454 hcd, ubuf, wLength);
455 else /* unsupported IDs --> "protocol stall" */
456 goto error;
457 break;
458 default:
459 goto error;
461 break;
462 case DeviceRequest | USB_REQ_GET_INTERFACE:
463 tbuf [0] = 0;
464 len = 1;
465 /* FALLTHROUGH */
466 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
467 break;
468 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
469 // wValue == urb->dev->devaddr
470 dev_dbg (hcd->self.controller, "root hub device address %d\n",
471 wValue);
472 break;
474 /* INTERFACE REQUESTS (no defined feature/status flags) */
476 /* ENDPOINT REQUESTS */
478 case EndpointRequest | USB_REQ_GET_STATUS:
479 // ENDPOINT_HALT flag
480 tbuf [0] = 0;
481 tbuf [1] = 0;
482 len = 2;
483 /* FALLTHROUGH */
484 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
485 case EndpointOutRequest | USB_REQ_SET_FEATURE:
486 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
487 break;
489 /* CLASS REQUESTS (and errors) */
491 default:
492 /* non-generic request */
493 switch (typeReq) {
494 case GetHubStatus:
495 case GetPortStatus:
496 len = 4;
497 break;
498 case GetHubDescriptor:
499 len = sizeof (struct usb_hub_descriptor);
500 break;
502 status = hcd->driver->hub_control (hcd,
503 typeReq, wValue, wIndex,
504 tbuf, wLength);
505 break;
506 error:
507 /* "protocol stall" on error */
508 status = -EPIPE;
511 if (status) {
512 len = 0;
513 if (status != -EPIPE) {
514 dev_dbg (hcd->self.controller,
515 "CTRL: TypeReq=0x%x val=0x%x "
516 "idx=0x%x len=%d ==> %d\n",
517 typeReq, wValue, wIndex,
518 wLength, status);
521 if (len) {
522 if (urb->transfer_buffer_length < len)
523 len = urb->transfer_buffer_length;
524 urb->actual_length = len;
525 // always USB_DIR_IN, toward host
526 memcpy (ubuf, bufp, len);
528 /* report whether RH hardware supports remote wakeup */
529 if (patch_wakeup &&
530 len > offsetof (struct usb_config_descriptor,
531 bmAttributes))
532 ((struct usb_config_descriptor *)ubuf)->bmAttributes
533 |= USB_CONFIG_ATT_WAKEUP;
535 /* report whether RH hardware has an integrated TT */
536 if (patch_protocol &&
537 len > offsetof(struct usb_device_descriptor,
538 bDeviceProtocol))
539 ((struct usb_device_descriptor *) ubuf)->
540 bDeviceProtocol = 1;
543 /* any errors get returned through the urb completion */
544 spin_lock_irq(&hcd_root_hub_lock);
545 usb_hcd_unlink_urb_from_ep(hcd, urb);
547 /* This peculiar use of spinlocks echoes what real HC drivers do.
548 * Avoiding calls to local_irq_disable/enable makes the code
549 * RT-friendly.
551 spin_unlock(&hcd_root_hub_lock);
552 usb_hcd_giveback_urb(hcd, urb, status);
553 spin_lock(&hcd_root_hub_lock);
555 spin_unlock_irq(&hcd_root_hub_lock);
556 return 0;
559 /*-------------------------------------------------------------------------*/
562 * Root Hub interrupt transfers are polled using a timer if the
563 * driver requests it; otherwise the driver is responsible for
564 * calling usb_hcd_poll_rh_status() when an event occurs.
566 * Completions are called in_interrupt(), but they may or may not
567 * be in_irq().
569 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
571 struct urb *urb;
572 int length;
573 unsigned long flags;
574 char buffer[4]; /* Any root hubs with > 31 ports? */
576 if (unlikely(!hcd->rh_registered))
577 return;
578 if (!hcd->uses_new_polling && !hcd->status_urb)
579 return;
581 length = hcd->driver->hub_status_data(hcd, buffer);
582 if (length > 0) {
584 /* try to complete the status urb */
585 spin_lock_irqsave(&hcd_root_hub_lock, flags);
586 urb = hcd->status_urb;
587 if (urb) {
588 hcd->poll_pending = 0;
589 hcd->status_urb = NULL;
590 urb->actual_length = length;
591 memcpy(urb->transfer_buffer, buffer, length);
593 usb_hcd_unlink_urb_from_ep(hcd, urb);
594 spin_unlock(&hcd_root_hub_lock);
595 usb_hcd_giveback_urb(hcd, urb, 0);
596 spin_lock(&hcd_root_hub_lock);
597 } else {
598 length = 0;
599 hcd->poll_pending = 1;
601 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
604 /* The USB 2.0 spec says 256 ms. This is close enough and won't
605 * exceed that limit if HZ is 100. The math is more clunky than
606 * maybe expected, this is to make sure that all timers for USB devices
607 * fire at the same time to give the CPU a break inbetween */
608 if (hcd->uses_new_polling ? hcd->poll_rh :
609 (length == 0 && hcd->status_urb != NULL))
610 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
612 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
614 /* timer callback */
615 static void rh_timer_func (unsigned long _hcd)
617 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
620 /*-------------------------------------------------------------------------*/
622 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
624 int retval;
625 unsigned long flags;
626 unsigned len = 1 + (urb->dev->maxchild / 8);
628 spin_lock_irqsave (&hcd_root_hub_lock, flags);
629 if (hcd->status_urb || urb->transfer_buffer_length < len) {
630 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
631 retval = -EINVAL;
632 goto done;
635 retval = usb_hcd_link_urb_to_ep(hcd, urb);
636 if (retval)
637 goto done;
639 hcd->status_urb = urb;
640 urb->hcpriv = hcd; /* indicate it's queued */
641 if (!hcd->uses_new_polling)
642 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
644 /* If a status change has already occurred, report it ASAP */
645 else if (hcd->poll_pending)
646 mod_timer(&hcd->rh_timer, jiffies);
647 retval = 0;
648 done:
649 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
650 return retval;
653 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
655 if (usb_endpoint_xfer_int(&urb->ep->desc))
656 return rh_queue_status (hcd, urb);
657 if (usb_endpoint_xfer_control(&urb->ep->desc))
658 return rh_call_control (hcd, urb);
659 return -EINVAL;
662 /*-------------------------------------------------------------------------*/
664 /* Unlinks of root-hub control URBs are legal, but they don't do anything
665 * since these URBs always execute synchronously.
667 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
669 unsigned long flags;
670 int rc;
672 spin_lock_irqsave(&hcd_root_hub_lock, flags);
673 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
674 if (rc)
675 goto done;
677 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
678 ; /* Do nothing */
680 } else { /* Status URB */
681 if (!hcd->uses_new_polling)
682 del_timer (&hcd->rh_timer);
683 if (urb == hcd->status_urb) {
684 hcd->status_urb = NULL;
685 usb_hcd_unlink_urb_from_ep(hcd, urb);
687 spin_unlock(&hcd_root_hub_lock);
688 usb_hcd_giveback_urb(hcd, urb, status);
689 spin_lock(&hcd_root_hub_lock);
692 done:
693 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
694 return rc;
697 /*-------------------------------------------------------------------------*/
699 static struct class *usb_host_class;
701 int usb_host_init(void)
703 int retval = 0;
705 usb_host_class = class_create(THIS_MODULE, "usb_host");
706 if (IS_ERR(usb_host_class))
707 retval = PTR_ERR(usb_host_class);
708 return retval;
711 void usb_host_cleanup(void)
713 class_destroy(usb_host_class);
717 * usb_bus_init - shared initialization code
718 * @bus: the bus structure being initialized
720 * This code is used to initialize a usb_bus structure, memory for which is
721 * separately managed.
723 static void usb_bus_init (struct usb_bus *bus)
725 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
727 bus->devnum_next = 1;
729 bus->root_hub = NULL;
730 bus->busnum = -1;
731 bus->bandwidth_allocated = 0;
732 bus->bandwidth_int_reqs = 0;
733 bus->bandwidth_isoc_reqs = 0;
735 INIT_LIST_HEAD (&bus->bus_list);
738 /*-------------------------------------------------------------------------*/
741 * usb_register_bus - registers the USB host controller with the usb core
742 * @bus: pointer to the bus to register
743 * Context: !in_interrupt()
745 * Assigns a bus number, and links the controller into usbcore data
746 * structures so that it can be seen by scanning the bus list.
748 static int usb_register_bus(struct usb_bus *bus)
750 int result = -E2BIG;
751 int busnum;
753 mutex_lock(&usb_bus_list_lock);
754 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
755 if (busnum >= USB_MAXBUS) {
756 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
757 goto error_find_busnum;
759 set_bit (busnum, busmap.busmap);
760 bus->busnum = busnum;
762 bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
763 "usb_host%d", busnum);
764 result = PTR_ERR(bus->dev);
765 if (IS_ERR(bus->dev))
766 goto error_create_class_dev;
767 dev_set_drvdata(bus->dev, bus);
769 /* Add it to the local list of buses */
770 list_add (&bus->bus_list, &usb_bus_list);
771 mutex_unlock(&usb_bus_list_lock);
773 usb_notify_add_bus(bus);
775 dev_info (bus->controller, "new USB bus registered, assigned bus "
776 "number %d\n", bus->busnum);
777 return 0;
779 error_create_class_dev:
780 clear_bit(busnum, busmap.busmap);
781 error_find_busnum:
782 mutex_unlock(&usb_bus_list_lock);
783 return result;
787 * usb_deregister_bus - deregisters the USB host controller
788 * @bus: pointer to the bus to deregister
789 * Context: !in_interrupt()
791 * Recycles the bus number, and unlinks the controller from usbcore data
792 * structures so that it won't be seen by scanning the bus list.
794 static void usb_deregister_bus (struct usb_bus *bus)
796 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
799 * NOTE: make sure that all the devices are removed by the
800 * controller code, as well as having it call this when cleaning
801 * itself up
803 mutex_lock(&usb_bus_list_lock);
804 list_del (&bus->bus_list);
805 mutex_unlock(&usb_bus_list_lock);
807 usb_notify_remove_bus(bus);
809 clear_bit (bus->busnum, busmap.busmap);
811 device_unregister(bus->dev);
815 * register_root_hub - called by usb_add_hcd() to register a root hub
816 * @hcd: host controller for this root hub
818 * This function registers the root hub with the USB subsystem. It sets up
819 * the device properly in the device tree and then calls usb_new_device()
820 * to register the usb device. It also assigns the root hub's USB address
821 * (always 1).
823 static int register_root_hub(struct usb_hcd *hcd)
825 struct device *parent_dev = hcd->self.controller;
826 struct usb_device *usb_dev = hcd->self.root_hub;
827 const int devnum = 1;
828 int retval;
830 usb_dev->devnum = devnum;
831 usb_dev->bus->devnum_next = devnum + 1;
832 memset (&usb_dev->bus->devmap.devicemap, 0,
833 sizeof usb_dev->bus->devmap.devicemap);
834 set_bit (devnum, usb_dev->bus->devmap.devicemap);
835 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
837 mutex_lock(&usb_bus_list_lock);
839 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
840 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
841 if (retval != sizeof usb_dev->descriptor) {
842 mutex_unlock(&usb_bus_list_lock);
843 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
844 usb_dev->dev.bus_id, retval);
845 return (retval < 0) ? retval : -EMSGSIZE;
848 retval = usb_new_device (usb_dev);
849 if (retval) {
850 dev_err (parent_dev, "can't register root hub for %s, %d\n",
851 usb_dev->dev.bus_id, retval);
853 mutex_unlock(&usb_bus_list_lock);
855 if (retval == 0) {
856 spin_lock_irq (&hcd_root_hub_lock);
857 hcd->rh_registered = 1;
858 spin_unlock_irq (&hcd_root_hub_lock);
860 /* Did the HC die before the root hub was registered? */
861 if (hcd->state == HC_STATE_HALT)
862 usb_hc_died (hcd); /* This time clean up */
865 return retval;
868 void usb_enable_root_hub_irq (struct usb_bus *bus)
870 struct usb_hcd *hcd;
872 hcd = container_of (bus, struct usb_hcd, self);
873 if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT)
874 hcd->driver->hub_irq_enable (hcd);
878 /*-------------------------------------------------------------------------*/
881 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
882 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
883 * @is_input: true iff the transaction sends data to the host
884 * @isoc: true for isochronous transactions, false for interrupt ones
885 * @bytecount: how many bytes in the transaction.
887 * Returns approximate bus time in nanoseconds for a periodic transaction.
888 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
889 * scheduled in software, this function is only used for such scheduling.
891 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
893 unsigned long tmp;
895 switch (speed) {
896 case USB_SPEED_LOW: /* INTR only */
897 if (is_input) {
898 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
899 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
900 } else {
901 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
902 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
904 case USB_SPEED_FULL: /* ISOC or INTR */
905 if (isoc) {
906 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
907 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
908 } else {
909 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
910 return (9107L + BW_HOST_DELAY + tmp);
912 case USB_SPEED_HIGH: /* ISOC or INTR */
913 // FIXME adjust for input vs output
914 if (isoc)
915 tmp = HS_NSECS_ISO (bytecount);
916 else
917 tmp = HS_NSECS (bytecount);
918 return tmp;
919 default:
920 pr_debug ("%s: bogus device speed!\n", usbcore_name);
921 return -1;
924 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
927 /*-------------------------------------------------------------------------*/
930 * Generic HC operations.
933 /*-------------------------------------------------------------------------*/
936 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
937 * @hcd: host controller to which @urb was submitted
938 * @urb: URB being submitted
940 * Host controller drivers should call this routine in their enqueue()
941 * method. The HCD's private spinlock must be held and interrupts must
942 * be disabled. The actions carried out here are required for URB
943 * submission, as well as for endpoint shutdown and for usb_kill_urb.
945 * Returns 0 for no error, otherwise a negative error code (in which case
946 * the enqueue() method must fail). If no error occurs but enqueue() fails
947 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
948 * the private spinlock and returning.
950 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
952 int rc = 0;
954 spin_lock(&hcd_urb_list_lock);
956 /* Check that the URB isn't being killed */
957 if (unlikely(atomic_read(&urb->reject))) {
958 rc = -EPERM;
959 goto done;
962 if (unlikely(!urb->ep->enabled)) {
963 rc = -ENOENT;
964 goto done;
967 if (unlikely(!urb->dev->can_submit)) {
968 rc = -EHOSTUNREACH;
969 goto done;
973 * Check the host controller's state and add the URB to the
974 * endpoint's queue.
976 switch (hcd->state) {
977 case HC_STATE_RUNNING:
978 case HC_STATE_RESUMING:
979 urb->unlinked = 0;
980 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
981 break;
982 default:
983 rc = -ESHUTDOWN;
984 goto done;
986 done:
987 spin_unlock(&hcd_urb_list_lock);
988 return rc;
990 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
993 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
994 * @hcd: host controller to which @urb was submitted
995 * @urb: URB being checked for unlinkability
996 * @status: error code to store in @urb if the unlink succeeds
998 * Host controller drivers should call this routine in their dequeue()
999 * method. The HCD's private spinlock must be held and interrupts must
1000 * be disabled. The actions carried out here are required for making
1001 * sure than an unlink is valid.
1003 * Returns 0 for no error, otherwise a negative error code (in which case
1004 * the dequeue() method must fail). The possible error codes are:
1006 * -EIDRM: @urb was not submitted or has already completed.
1007 * The completion function may not have been called yet.
1009 * -EBUSY: @urb has already been unlinked.
1011 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1012 int status)
1014 struct list_head *tmp;
1016 /* insist the urb is still queued */
1017 list_for_each(tmp, &urb->ep->urb_list) {
1018 if (tmp == &urb->urb_list)
1019 break;
1021 if (tmp != &urb->urb_list)
1022 return -EIDRM;
1024 /* Any status except -EINPROGRESS means something already started to
1025 * unlink this URB from the hardware. So there's no more work to do.
1027 if (urb->unlinked)
1028 return -EBUSY;
1029 urb->unlinked = status;
1031 /* IRQ setup can easily be broken so that USB controllers
1032 * never get completion IRQs ... maybe even the ones we need to
1033 * finish unlinking the initial failed usb_set_address()
1034 * or device descriptor fetch.
1036 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1037 !is_root_hub(urb->dev)) {
1038 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1039 "Controller is probably using the wrong IRQ.\n");
1040 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1043 return 0;
1045 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1048 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1049 * @hcd: host controller to which @urb was submitted
1050 * @urb: URB being unlinked
1052 * Host controller drivers should call this routine before calling
1053 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1054 * interrupts must be disabled. The actions carried out here are required
1055 * for URB completion.
1057 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1059 /* clear all state linking urb to this dev (and hcd) */
1060 spin_lock(&hcd_urb_list_lock);
1061 list_del_init(&urb->urb_list);
1062 spin_unlock(&hcd_urb_list_lock);
1064 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1067 * Some usb host controllers can only perform dma using a small SRAM area.
1068 * The usb core itself is however optimized for host controllers that can dma
1069 * using regular system memory - like pci devices doing bus mastering.
1071 * To support host controllers with limited dma capabilites we provide dma
1072 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1073 * For this to work properly the host controller code must first use the
1074 * function dma_declare_coherent_memory() to point out which memory area
1075 * that should be used for dma allocations.
1077 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1078 * dma using dma_alloc_coherent() which in turn allocates from the memory
1079 * area pointed out with dma_declare_coherent_memory().
1081 * So, to summarize...
1083 * - We need "local" memory, canonical example being
1084 * a small SRAM on a discrete controller being the
1085 * only memory that the controller can read ...
1086 * (a) "normal" kernel memory is no good, and
1087 * (b) there's not enough to share
1089 * - The only *portable* hook for such stuff in the
1090 * DMA framework is dma_declare_coherent_memory()
1092 * - So we use that, even though the primary requirement
1093 * is that the memory be "local" (hence addressible
1094 * by that device), not "coherent".
1098 static int hcd_alloc_coherent(struct usb_bus *bus,
1099 gfp_t mem_flags, dma_addr_t *dma_handle,
1100 void **vaddr_handle, size_t size,
1101 enum dma_data_direction dir)
1103 unsigned char *vaddr;
1105 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1106 mem_flags, dma_handle);
1107 if (!vaddr)
1108 return -ENOMEM;
1111 * Store the virtual address of the buffer at the end
1112 * of the allocated dma buffer. The size of the buffer
1113 * may be uneven so use unaligned functions instead
1114 * of just rounding up. It makes sense to optimize for
1115 * memory footprint over access speed since the amount
1116 * of memory available for dma may be limited.
1118 put_unaligned((unsigned long)*vaddr_handle,
1119 (unsigned long *)(vaddr + size));
1121 if (dir == DMA_TO_DEVICE)
1122 memcpy(vaddr, *vaddr_handle, size);
1124 *vaddr_handle = vaddr;
1125 return 0;
1128 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1129 void **vaddr_handle, size_t size,
1130 enum dma_data_direction dir)
1132 unsigned char *vaddr = *vaddr_handle;
1134 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1136 if (dir == DMA_FROM_DEVICE)
1137 memcpy(vaddr, *vaddr_handle, size);
1139 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1141 *vaddr_handle = vaddr;
1142 *dma_handle = 0;
1145 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1146 gfp_t mem_flags)
1148 enum dma_data_direction dir;
1149 int ret = 0;
1151 /* Map the URB's buffers for DMA access.
1152 * Lower level HCD code should use *_dma exclusively,
1153 * unless it uses pio or talks to another transport.
1155 if (is_root_hub(urb->dev))
1156 return 0;
1158 if (usb_endpoint_xfer_control(&urb->ep->desc)
1159 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1160 if (hcd->self.uses_dma)
1161 urb->setup_dma = dma_map_single(
1162 hcd->self.controller,
1163 urb->setup_packet,
1164 sizeof(struct usb_ctrlrequest),
1165 DMA_TO_DEVICE);
1166 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1167 ret = hcd_alloc_coherent(
1168 urb->dev->bus, mem_flags,
1169 &urb->setup_dma,
1170 (void **)&urb->setup_packet,
1171 sizeof(struct usb_ctrlrequest),
1172 DMA_TO_DEVICE);
1175 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1176 if (ret == 0 && urb->transfer_buffer_length != 0
1177 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1178 if (hcd->self.uses_dma)
1179 urb->transfer_dma = dma_map_single (
1180 hcd->self.controller,
1181 urb->transfer_buffer,
1182 urb->transfer_buffer_length,
1183 dir);
1184 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1185 ret = hcd_alloc_coherent(
1186 urb->dev->bus, mem_flags,
1187 &urb->transfer_dma,
1188 &urb->transfer_buffer,
1189 urb->transfer_buffer_length,
1190 dir);
1192 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1193 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1194 hcd_free_coherent(urb->dev->bus,
1195 &urb->setup_dma,
1196 (void **)&urb->setup_packet,
1197 sizeof(struct usb_ctrlrequest),
1198 DMA_TO_DEVICE);
1201 return ret;
1204 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1206 enum dma_data_direction dir;
1208 if (is_root_hub(urb->dev))
1209 return;
1211 if (usb_endpoint_xfer_control(&urb->ep->desc)
1212 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1213 if (hcd->self.uses_dma)
1214 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1215 sizeof(struct usb_ctrlrequest),
1216 DMA_TO_DEVICE);
1217 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1218 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1219 (void **)&urb->setup_packet,
1220 sizeof(struct usb_ctrlrequest),
1221 DMA_TO_DEVICE);
1224 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1225 if (urb->transfer_buffer_length != 0
1226 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1227 if (hcd->self.uses_dma)
1228 dma_unmap_single(hcd->self.controller,
1229 urb->transfer_dma,
1230 urb->transfer_buffer_length,
1231 dir);
1232 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1233 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1234 &urb->transfer_buffer,
1235 urb->transfer_buffer_length,
1236 dir);
1240 /*-------------------------------------------------------------------------*/
1242 /* may be called in any context with a valid urb->dev usecount
1243 * caller surrenders "ownership" of urb
1244 * expects usb_submit_urb() to have sanity checked and conditioned all
1245 * inputs in the urb
1247 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1249 int status;
1250 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1252 /* increment urb's reference count as part of giving it to the HCD
1253 * (which will control it). HCD guarantees that it either returns
1254 * an error or calls giveback(), but not both.
1256 usb_get_urb(urb);
1257 atomic_inc(&urb->use_count);
1258 atomic_inc(&urb->dev->urbnum);
1259 usbmon_urb_submit(&hcd->self, urb);
1261 /* NOTE requirements on root-hub callers (usbfs and the hub
1262 * driver, for now): URBs' urb->transfer_buffer must be
1263 * valid and usb_buffer_{sync,unmap}() not be needed, since
1264 * they could clobber root hub response data. Also, control
1265 * URBs must be submitted in process context with interrupts
1266 * enabled.
1268 status = map_urb_for_dma(hcd, urb, mem_flags);
1269 if (unlikely(status)) {
1270 usbmon_urb_submit_error(&hcd->self, urb, status);
1271 goto error;
1274 if (is_root_hub(urb->dev))
1275 status = rh_urb_enqueue(hcd, urb);
1276 else
1277 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1279 if (unlikely(status)) {
1280 usbmon_urb_submit_error(&hcd->self, urb, status);
1281 unmap_urb_for_dma(hcd, urb);
1282 error:
1283 urb->hcpriv = NULL;
1284 INIT_LIST_HEAD(&urb->urb_list);
1285 atomic_dec(&urb->use_count);
1286 atomic_dec(&urb->dev->urbnum);
1287 if (atomic_read(&urb->reject))
1288 wake_up(&usb_kill_urb_queue);
1289 usb_put_urb(urb);
1291 return status;
1294 /*-------------------------------------------------------------------------*/
1296 /* this makes the hcd giveback() the urb more quickly, by kicking it
1297 * off hardware queues (which may take a while) and returning it as
1298 * soon as practical. we've already set up the urb's return status,
1299 * but we can't know if the callback completed already.
1301 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1303 int value;
1305 if (is_root_hub(urb->dev))
1306 value = usb_rh_urb_dequeue(hcd, urb, status);
1307 else {
1309 /* The only reason an HCD might fail this call is if
1310 * it has not yet fully queued the urb to begin with.
1311 * Such failures should be harmless. */
1312 value = hcd->driver->urb_dequeue(hcd, urb, status);
1314 return value;
1318 * called in any context
1320 * caller guarantees urb won't be recycled till both unlink()
1321 * and the urb's completion function return
1323 int usb_hcd_unlink_urb (struct urb *urb, int status)
1325 struct usb_hcd *hcd;
1326 int retval = -EIDRM;
1327 unsigned long flags;
1329 /* Prevent the device and bus from going away while
1330 * the unlink is carried out. If they are already gone
1331 * then urb->use_count must be 0, since disconnected
1332 * devices can't have any active URBs.
1334 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1335 if (atomic_read(&urb->use_count) > 0) {
1336 retval = 0;
1337 usb_get_dev(urb->dev);
1339 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1340 if (retval == 0) {
1341 hcd = bus_to_hcd(urb->dev->bus);
1342 retval = unlink1(hcd, urb, status);
1343 usb_put_dev(urb->dev);
1346 if (retval == 0)
1347 retval = -EINPROGRESS;
1348 else if (retval != -EIDRM && retval != -EBUSY)
1349 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1350 urb, retval);
1351 return retval;
1354 /*-------------------------------------------------------------------------*/
1357 * usb_hcd_giveback_urb - return URB from HCD to device driver
1358 * @hcd: host controller returning the URB
1359 * @urb: urb being returned to the USB device driver.
1360 * @status: completion status code for the URB.
1361 * Context: in_interrupt()
1363 * This hands the URB from HCD to its USB device driver, using its
1364 * completion function. The HCD has freed all per-urb resources
1365 * (and is done using urb->hcpriv). It also released all HCD locks;
1366 * the device driver won't cause problems if it frees, modifies,
1367 * or resubmits this URB.
1369 * If @urb was unlinked, the value of @status will be overridden by
1370 * @urb->unlinked. Erroneous short transfers are detected in case
1371 * the HCD hasn't checked for them.
1373 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1375 urb->hcpriv = NULL;
1376 if (unlikely(urb->unlinked))
1377 status = urb->unlinked;
1378 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1379 urb->actual_length < urb->transfer_buffer_length &&
1380 !status))
1381 status = -EREMOTEIO;
1383 unmap_urb_for_dma(hcd, urb);
1384 usbmon_urb_complete(&hcd->self, urb, status);
1385 usb_unanchor_urb(urb);
1387 /* pass ownership to the completion handler */
1388 urb->status = status;
1389 urb->complete (urb);
1390 atomic_dec (&urb->use_count);
1391 if (unlikely(atomic_read(&urb->reject)))
1392 wake_up (&usb_kill_urb_queue);
1393 usb_put_urb (urb);
1395 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1397 /*-------------------------------------------------------------------------*/
1399 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1400 * queue to drain completely. The caller must first insure that no more
1401 * URBs can be submitted for this endpoint.
1403 void usb_hcd_flush_endpoint(struct usb_device *udev,
1404 struct usb_host_endpoint *ep)
1406 struct usb_hcd *hcd;
1407 struct urb *urb;
1409 if (!ep)
1410 return;
1411 might_sleep();
1412 hcd = bus_to_hcd(udev->bus);
1414 /* No more submits can occur */
1415 spin_lock_irq(&hcd_urb_list_lock);
1416 rescan:
1417 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1418 int is_in;
1420 if (urb->unlinked)
1421 continue;
1422 usb_get_urb (urb);
1423 is_in = usb_urb_dir_in(urb);
1424 spin_unlock(&hcd_urb_list_lock);
1426 /* kick hcd */
1427 unlink1(hcd, urb, -ESHUTDOWN);
1428 dev_dbg (hcd->self.controller,
1429 "shutdown urb %p ep%d%s%s\n",
1430 urb, usb_endpoint_num(&ep->desc),
1431 is_in ? "in" : "out",
1432 ({ char *s;
1434 switch (usb_endpoint_type(&ep->desc)) {
1435 case USB_ENDPOINT_XFER_CONTROL:
1436 s = ""; break;
1437 case USB_ENDPOINT_XFER_BULK:
1438 s = "-bulk"; break;
1439 case USB_ENDPOINT_XFER_INT:
1440 s = "-intr"; break;
1441 default:
1442 s = "-iso"; break;
1445 }));
1446 usb_put_urb (urb);
1448 /* list contents may have changed */
1449 spin_lock(&hcd_urb_list_lock);
1450 goto rescan;
1452 spin_unlock_irq(&hcd_urb_list_lock);
1454 /* Wait until the endpoint queue is completely empty */
1455 while (!list_empty (&ep->urb_list)) {
1456 spin_lock_irq(&hcd_urb_list_lock);
1458 /* The list may have changed while we acquired the spinlock */
1459 urb = NULL;
1460 if (!list_empty (&ep->urb_list)) {
1461 urb = list_entry (ep->urb_list.prev, struct urb,
1462 urb_list);
1463 usb_get_urb (urb);
1465 spin_unlock_irq(&hcd_urb_list_lock);
1467 if (urb) {
1468 usb_kill_urb (urb);
1469 usb_put_urb (urb);
1474 /* Disables the endpoint: synchronizes with the hcd to make sure all
1475 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1476 * have been called previously. Use for set_configuration, set_interface,
1477 * driver removal, physical disconnect.
1479 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1480 * type, maxpacket size, toggle, halt status, and scheduling.
1482 void usb_hcd_disable_endpoint(struct usb_device *udev,
1483 struct usb_host_endpoint *ep)
1485 struct usb_hcd *hcd;
1487 might_sleep();
1488 hcd = bus_to_hcd(udev->bus);
1489 if (hcd->driver->endpoint_disable)
1490 hcd->driver->endpoint_disable(hcd, ep);
1493 /* Protect against drivers that try to unlink URBs after the device
1494 * is gone, by waiting until all unlinks for @udev are finished.
1495 * Since we don't currently track URBs by device, simply wait until
1496 * nothing is running in the locked region of usb_hcd_unlink_urb().
1498 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1500 spin_lock_irq(&hcd_urb_unlink_lock);
1501 spin_unlock_irq(&hcd_urb_unlink_lock);
1504 /*-------------------------------------------------------------------------*/
1506 /* called in any context */
1507 int usb_hcd_get_frame_number (struct usb_device *udev)
1509 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1511 if (!HC_IS_RUNNING (hcd->state))
1512 return -ESHUTDOWN;
1513 return hcd->driver->get_frame_number (hcd);
1516 /*-------------------------------------------------------------------------*/
1518 #ifdef CONFIG_PM
1520 int hcd_bus_suspend(struct usb_device *rhdev)
1522 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1523 int status;
1524 int old_state = hcd->state;
1526 dev_dbg(&rhdev->dev, "bus %s%s\n",
1527 rhdev->auto_pm ? "auto-" : "", "suspend");
1528 if (!hcd->driver->bus_suspend) {
1529 status = -ENOENT;
1530 } else {
1531 hcd->state = HC_STATE_QUIESCING;
1532 status = hcd->driver->bus_suspend(hcd);
1534 if (status == 0) {
1535 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1536 hcd->state = HC_STATE_SUSPENDED;
1537 } else {
1538 hcd->state = old_state;
1539 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1540 "suspend", status);
1542 return status;
1545 int hcd_bus_resume(struct usb_device *rhdev)
1547 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1548 int status;
1549 int old_state = hcd->state;
1551 dev_dbg(&rhdev->dev, "usb %s%s\n",
1552 rhdev->auto_pm ? "auto-" : "", "resume");
1553 if (!hcd->driver->bus_resume)
1554 return -ENOENT;
1555 if (hcd->state == HC_STATE_RUNNING)
1556 return 0;
1558 hcd->state = HC_STATE_RESUMING;
1559 status = hcd->driver->bus_resume(hcd);
1560 if (status == 0) {
1561 /* TRSMRCY = 10 msec */
1562 msleep(10);
1563 usb_set_device_state(rhdev, rhdev->actconfig
1564 ? USB_STATE_CONFIGURED
1565 : USB_STATE_ADDRESS);
1566 hcd->state = HC_STATE_RUNNING;
1567 } else {
1568 hcd->state = old_state;
1569 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1570 "resume", status);
1571 if (status != -ESHUTDOWN)
1572 usb_hc_died(hcd);
1574 return status;
1577 /* Workqueue routine for root-hub remote wakeup */
1578 static void hcd_resume_work(struct work_struct *work)
1580 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1581 struct usb_device *udev = hcd->self.root_hub;
1583 usb_lock_device(udev);
1584 usb_mark_last_busy(udev);
1585 usb_external_resume_device(udev);
1586 usb_unlock_device(udev);
1590 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1591 * @hcd: host controller for this root hub
1593 * The USB host controller calls this function when its root hub is
1594 * suspended (with the remote wakeup feature enabled) and a remote
1595 * wakeup request is received. The routine submits a workqueue request
1596 * to resume the root hub (that is, manage its downstream ports again).
1598 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1600 unsigned long flags;
1602 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1603 if (hcd->rh_registered)
1604 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1605 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1607 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1609 #endif
1611 /*-------------------------------------------------------------------------*/
1613 #ifdef CONFIG_USB_OTG
1616 * usb_bus_start_enum - start immediate enumeration (for OTG)
1617 * @bus: the bus (must use hcd framework)
1618 * @port_num: 1-based number of port; usually bus->otg_port
1619 * Context: in_interrupt()
1621 * Starts enumeration, with an immediate reset followed later by
1622 * khubd identifying and possibly configuring the device.
1623 * This is needed by OTG controller drivers, where it helps meet
1624 * HNP protocol timing requirements for starting a port reset.
1626 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1628 struct usb_hcd *hcd;
1629 int status = -EOPNOTSUPP;
1631 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1632 * boards with root hubs hooked up to internal devices (instead of
1633 * just the OTG port) may need more attention to resetting...
1635 hcd = container_of (bus, struct usb_hcd, self);
1636 if (port_num && hcd->driver->start_port_reset)
1637 status = hcd->driver->start_port_reset(hcd, port_num);
1639 /* run khubd shortly after (first) root port reset finishes;
1640 * it may issue others, until at least 50 msecs have passed.
1642 if (status == 0)
1643 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1644 return status;
1646 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1648 #endif
1650 /*-------------------------------------------------------------------------*/
1653 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1654 * @irq: the IRQ being raised
1655 * @__hcd: pointer to the HCD whose IRQ is being signaled
1657 * If the controller isn't HALTed, calls the driver's irq handler.
1658 * Checks whether the controller is now dead.
1660 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1662 struct usb_hcd *hcd = __hcd;
1663 unsigned long flags;
1664 irqreturn_t rc;
1666 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1667 * when the first handler doesn't use it. So let's just
1668 * assume it's never used.
1670 local_irq_save(flags);
1672 if (unlikely(hcd->state == HC_STATE_HALT ||
1673 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1674 rc = IRQ_NONE;
1675 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1676 rc = IRQ_NONE;
1677 } else {
1678 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1680 if (unlikely(hcd->state == HC_STATE_HALT))
1681 usb_hc_died(hcd);
1682 rc = IRQ_HANDLED;
1685 local_irq_restore(flags);
1686 return rc;
1689 /*-------------------------------------------------------------------------*/
1692 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1693 * @hcd: pointer to the HCD representing the controller
1695 * This is called by bus glue to report a USB host controller that died
1696 * while operations may still have been pending. It's called automatically
1697 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1699 void usb_hc_died (struct usb_hcd *hcd)
1701 unsigned long flags;
1703 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1705 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1706 if (hcd->rh_registered) {
1707 hcd->poll_rh = 0;
1709 /* make khubd clean up old urbs and devices */
1710 usb_set_device_state (hcd->self.root_hub,
1711 USB_STATE_NOTATTACHED);
1712 usb_kick_khubd (hcd->self.root_hub);
1714 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1716 EXPORT_SYMBOL_GPL (usb_hc_died);
1718 /*-------------------------------------------------------------------------*/
1721 * usb_create_hcd - create and initialize an HCD structure
1722 * @driver: HC driver that will use this hcd
1723 * @dev: device for this HC, stored in hcd->self.controller
1724 * @bus_name: value to store in hcd->self.bus_name
1725 * Context: !in_interrupt()
1727 * Allocate a struct usb_hcd, with extra space at the end for the
1728 * HC driver's private data. Initialize the generic members of the
1729 * hcd structure.
1731 * If memory is unavailable, returns NULL.
1733 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1734 struct device *dev, char *bus_name)
1736 struct usb_hcd *hcd;
1738 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1739 if (!hcd) {
1740 dev_dbg (dev, "hcd alloc failed\n");
1741 return NULL;
1743 dev_set_drvdata(dev, hcd);
1744 kref_init(&hcd->kref);
1746 usb_bus_init(&hcd->self);
1747 hcd->self.controller = dev;
1748 hcd->self.bus_name = bus_name;
1749 hcd->self.uses_dma = (dev->dma_mask != NULL);
1751 init_timer(&hcd->rh_timer);
1752 hcd->rh_timer.function = rh_timer_func;
1753 hcd->rh_timer.data = (unsigned long) hcd;
1754 #ifdef CONFIG_PM
1755 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1756 #endif
1758 hcd->driver = driver;
1759 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1760 "USB Host Controller";
1762 return hcd;
1764 EXPORT_SYMBOL_GPL(usb_create_hcd);
1766 static void hcd_release (struct kref *kref)
1768 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1770 kfree(hcd);
1773 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1775 if (hcd)
1776 kref_get (&hcd->kref);
1777 return hcd;
1779 EXPORT_SYMBOL_GPL(usb_get_hcd);
1781 void usb_put_hcd (struct usb_hcd *hcd)
1783 if (hcd)
1784 kref_put (&hcd->kref, hcd_release);
1786 EXPORT_SYMBOL_GPL(usb_put_hcd);
1789 * usb_add_hcd - finish generic HCD structure initialization and register
1790 * @hcd: the usb_hcd structure to initialize
1791 * @irqnum: Interrupt line to allocate
1792 * @irqflags: Interrupt type flags
1794 * Finish the remaining parts of generic HCD initialization: allocate the
1795 * buffers of consistent memory, register the bus, request the IRQ line,
1796 * and call the driver's reset() and start() routines.
1798 int usb_add_hcd(struct usb_hcd *hcd,
1799 unsigned int irqnum, unsigned long irqflags)
1801 int retval;
1802 struct usb_device *rhdev;
1804 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1806 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1808 /* HC is in reset state, but accessible. Now do the one-time init,
1809 * bottom up so that hcds can customize the root hubs before khubd
1810 * starts talking to them. (Note, bus id is assigned early too.)
1812 if ((retval = hcd_buffer_create(hcd)) != 0) {
1813 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1814 return retval;
1817 if ((retval = usb_register_bus(&hcd->self)) < 0)
1818 goto err_register_bus;
1820 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1821 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1822 retval = -ENOMEM;
1823 goto err_allocate_root_hub;
1825 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1826 USB_SPEED_FULL;
1827 hcd->self.root_hub = rhdev;
1829 /* wakeup flag init defaults to "everything works" for root hubs,
1830 * but drivers can override it in reset() if needed, along with
1831 * recording the overall controller's system wakeup capability.
1833 device_init_wakeup(&rhdev->dev, 1);
1835 /* "reset" is misnamed; its role is now one-time init. the controller
1836 * should already have been reset (and boot firmware kicked off etc).
1838 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1839 dev_err(hcd->self.controller, "can't setup\n");
1840 goto err_hcd_driver_setup;
1843 /* NOTE: root hub and controller capabilities may not be the same */
1844 if (device_can_wakeup(hcd->self.controller)
1845 && device_can_wakeup(&hcd->self.root_hub->dev))
1846 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1848 /* enable irqs just before we start the controller */
1849 if (hcd->driver->irq) {
1851 /* IRQF_DISABLED doesn't work as advertised when used together
1852 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1853 * interrupts we can remove it here.
1855 if (irqflags & IRQF_SHARED)
1856 irqflags &= ~IRQF_DISABLED;
1858 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1859 hcd->driver->description, hcd->self.busnum);
1860 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1861 hcd->irq_descr, hcd)) != 0) {
1862 dev_err(hcd->self.controller,
1863 "request interrupt %d failed\n", irqnum);
1864 goto err_request_irq;
1866 hcd->irq = irqnum;
1867 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1868 (hcd->driver->flags & HCD_MEMORY) ?
1869 "io mem" : "io base",
1870 (unsigned long long)hcd->rsrc_start);
1871 } else {
1872 hcd->irq = -1;
1873 if (hcd->rsrc_start)
1874 dev_info(hcd->self.controller, "%s 0x%08llx\n",
1875 (hcd->driver->flags & HCD_MEMORY) ?
1876 "io mem" : "io base",
1877 (unsigned long long)hcd->rsrc_start);
1880 if ((retval = hcd->driver->start(hcd)) < 0) {
1881 dev_err(hcd->self.controller, "startup error %d\n", retval);
1882 goto err_hcd_driver_start;
1885 /* starting here, usbcore will pay attention to this root hub */
1886 rhdev->bus_mA = min(500u, hcd->power_budget);
1887 if ((retval = register_root_hub(hcd)) != 0)
1888 goto err_register_root_hub;
1890 if (hcd->uses_new_polling && hcd->poll_rh)
1891 usb_hcd_poll_rh_status(hcd);
1892 return retval;
1894 err_register_root_hub:
1895 hcd->driver->stop(hcd);
1896 err_hcd_driver_start:
1897 if (hcd->irq >= 0)
1898 free_irq(irqnum, hcd);
1899 err_request_irq:
1900 err_hcd_driver_setup:
1901 hcd->self.root_hub = NULL;
1902 usb_put_dev(rhdev);
1903 err_allocate_root_hub:
1904 usb_deregister_bus(&hcd->self);
1905 err_register_bus:
1906 hcd_buffer_destroy(hcd);
1907 return retval;
1909 EXPORT_SYMBOL_GPL(usb_add_hcd);
1912 * usb_remove_hcd - shutdown processing for generic HCDs
1913 * @hcd: the usb_hcd structure to remove
1914 * Context: !in_interrupt()
1916 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1917 * invoking the HCD's stop() method.
1919 void usb_remove_hcd(struct usb_hcd *hcd)
1921 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1923 if (HC_IS_RUNNING (hcd->state))
1924 hcd->state = HC_STATE_QUIESCING;
1926 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1927 spin_lock_irq (&hcd_root_hub_lock);
1928 hcd->rh_registered = 0;
1929 spin_unlock_irq (&hcd_root_hub_lock);
1931 #ifdef CONFIG_PM
1932 cancel_work_sync(&hcd->wakeup_work);
1933 #endif
1935 mutex_lock(&usb_bus_list_lock);
1936 usb_disconnect(&hcd->self.root_hub);
1937 mutex_unlock(&usb_bus_list_lock);
1939 hcd->driver->stop(hcd);
1940 hcd->state = HC_STATE_HALT;
1942 hcd->poll_rh = 0;
1943 del_timer_sync(&hcd->rh_timer);
1945 if (hcd->irq >= 0)
1946 free_irq(hcd->irq, hcd);
1947 usb_deregister_bus(&hcd->self);
1948 hcd_buffer_destroy(hcd);
1950 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1952 void
1953 usb_hcd_platform_shutdown(struct platform_device* dev)
1955 struct usb_hcd *hcd = platform_get_drvdata(dev);
1957 if (hcd->driver->shutdown)
1958 hcd->driver->shutdown(hcd);
1960 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
1962 /*-------------------------------------------------------------------------*/
1964 #if defined(CONFIG_USB_MON)
1966 struct usb_mon_operations *mon_ops;
1969 * The registration is unlocked.
1970 * We do it this way because we do not want to lock in hot paths.
1972 * Notice that the code is minimally error-proof. Because usbmon needs
1973 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
1976 int usb_mon_register (struct usb_mon_operations *ops)
1979 if (mon_ops)
1980 return -EBUSY;
1982 mon_ops = ops;
1983 mb();
1984 return 0;
1986 EXPORT_SYMBOL_GPL (usb_mon_register);
1988 void usb_mon_deregister (void)
1991 if (mon_ops == NULL) {
1992 printk(KERN_ERR "USB: monitor was not registered\n");
1993 return;
1995 mon_ops = NULL;
1996 mb();
1998 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2000 #endif /* CONFIG_USB_MON */