New routers supported
[tomato.git] / release / src-rt / linux / linux-2.6 / drivers / usb / host / ehci-sched.c
blobc617f648c483e7c6db243ca029caeb6d92dc97dc
1 /*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 /* this file is part of ehci-hcd.c */
22 /*-------------------------------------------------------------------------*/
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
37 static int ehci_get_frame (struct usb_hcd *hcd);
39 /*-------------------------------------------------------------------------*/
42 * periodic_next_shadow - return "next" pointer on shadow list
43 * @periodic: host pointer to qh/itd/sitd
44 * @tag: hardware tag for type of this record
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 __hc32 tag)
50 switch (hc32_to_cpu(ehci, tag)) {
51 case Q_TYPE_QH:
52 return &periodic->qh->qh_next;
53 case Q_TYPE_FSTN:
54 return &periodic->fstn->fstn_next;
55 case Q_TYPE_ITD:
56 return &periodic->itd->itd_next;
57 // case Q_TYPE_SITD:
58 default:
59 return &periodic->sitd->sitd_next;
63 static __hc32 *
64 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
65 __hc32 tag)
67 switch (hc32_to_cpu(ehci, tag)) {
68 /* our ehci_shadow.qh is actually software part */
69 case Q_TYPE_QH:
70 return &periodic->qh->hw->hw_next;
71 /* others are hw parts */
72 default:
73 return periodic->hw_next;
77 /* caller must hold ehci->lock */
78 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
80 union ehci_shadow *prev_p = &ehci->pshadow[frame];
81 __hc32 *hw_p = &ehci->periodic[frame];
82 union ehci_shadow here = *prev_p;
84 /* find predecessor of "ptr"; hw and shadow lists are in sync */
85 while (here.ptr && here.ptr != ptr) {
86 prev_p = periodic_next_shadow(ehci, prev_p,
87 Q_NEXT_TYPE(ehci, *hw_p));
88 hw_p = shadow_next_periodic(ehci, &here,
89 Q_NEXT_TYPE(ehci, *hw_p));
90 here = *prev_p;
92 /* an interrupt entry (at list end) could have been shared */
93 if (!here.ptr)
94 return;
96 /* update shadow and hardware lists ... the old "next" pointers
97 * from ptr may still be in use, the caller updates them.
99 *prev_p = *periodic_next_shadow(ehci, &here,
100 Q_NEXT_TYPE(ehci, *hw_p));
102 if (!ehci->use_dummy_qh ||
103 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
104 != EHCI_LIST_END(ehci))
105 *hw_p = *shadow_next_periodic(ehci, &here,
106 Q_NEXT_TYPE(ehci, *hw_p));
107 else
108 *hw_p = ehci->dummy->qh_dma;
111 /* how many of the uframe's 125 usecs are allocated? */
112 static unsigned short
113 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
115 __hc32 *hw_p = &ehci->periodic [frame];
116 union ehci_shadow *q = &ehci->pshadow [frame];
117 unsigned usecs = 0;
118 struct ehci_qh_hw *hw;
120 while (q->ptr) {
121 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
122 case Q_TYPE_QH:
123 hw = q->qh->hw;
124 /* is it in the S-mask? */
125 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
126 usecs += q->qh->usecs;
127 /* ... or C-mask? */
128 if (hw->hw_info2 & cpu_to_hc32(ehci,
129 1 << (8 + uframe)))
130 usecs += q->qh->c_usecs;
131 hw_p = &hw->hw_next;
132 q = &q->qh->qh_next;
133 break;
134 // case Q_TYPE_FSTN:
135 default:
136 /* for "save place" FSTNs, count the relevant INTR
137 * bandwidth from the previous frame
139 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
140 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
142 hw_p = &q->fstn->hw_next;
143 q = &q->fstn->fstn_next;
144 break;
145 case Q_TYPE_ITD:
146 if (q->itd->hw_transaction[uframe])
147 usecs += q->itd->stream->usecs;
148 hw_p = &q->itd->hw_next;
149 q = &q->itd->itd_next;
150 break;
151 case Q_TYPE_SITD:
152 /* is it in the S-mask? (count SPLIT, DATA) */
153 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
154 1 << uframe)) {
155 if (q->sitd->hw_fullspeed_ep &
156 cpu_to_hc32(ehci, 1<<31))
157 usecs += q->sitd->stream->usecs;
158 else /* worst case for OUT start-split */
159 usecs += HS_USECS_ISO (188);
162 /* ... C-mask? (count CSPLIT, DATA) */
163 if (q->sitd->hw_uframe &
164 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
165 /* worst case for IN complete-split */
166 usecs += q->sitd->stream->c_usecs;
169 hw_p = &q->sitd->hw_next;
170 q = &q->sitd->sitd_next;
171 break;
174 #ifdef DEBUG
175 if (usecs > 100)
176 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
177 frame * 8 + uframe, usecs);
178 #endif
179 return usecs;
182 /*-------------------------------------------------------------------------*/
184 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
186 if (!dev1->tt || !dev2->tt)
187 return 0;
188 if (dev1->tt != dev2->tt)
189 return 0;
190 if (dev1->tt->multi)
191 return dev1->ttport == dev2->ttport;
192 else
193 return 1;
196 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
198 /* Which uframe does the low/fullspeed transfer start in?
200 * The parameter is the mask of ssplits in "H-frame" terms
201 * and this returns the transfer start uframe in "B-frame" terms,
202 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
203 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
204 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
206 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
208 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
209 if (!smask) {
210 ehci_err(ehci, "invalid empty smask!\n");
211 /* uframe 7 can't have bw so this will indicate failure */
212 return 7;
214 return ffs(smask) - 1;
217 static const unsigned char
218 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 58, 0 };
220 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
221 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
223 int i;
224 for (i=0; i<7; i++) {
225 if (max_tt_usecs[i] < tt_usecs[i]) {
226 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
227 tt_usecs[i] = max_tt_usecs[i];
232 /* How many of the tt's periodic downstream 1000 usecs are allocated?
234 * While this measures the bandwidth in terms of usecs/uframe,
235 * the low/fullspeed bus has no notion of uframes, so any particular
236 * low/fullspeed transfer can "carry over" from one uframe to the next,
237 * since the TT just performs downstream transfers in sequence.
239 * For example two separate 100 usec transfers can start in the same uframe,
240 * and the second one would "carry over" 75 usecs into the next uframe.
242 static void
243 periodic_tt_usecs (
244 struct ehci_hcd *ehci,
245 struct usb_device *dev,
246 unsigned frame,
247 unsigned short tt_usecs[8]
250 __hc32 *hw_p = &ehci->periodic [frame];
251 union ehci_shadow *q = &ehci->pshadow [frame];
252 unsigned char uf;
254 memset(tt_usecs, 0, 16);
256 while (q->ptr) {
257 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
258 case Q_TYPE_ITD:
259 hw_p = &q->itd->hw_next;
260 q = &q->itd->itd_next;
261 continue;
262 case Q_TYPE_QH:
263 if (same_tt(dev, q->qh->dev)) {
264 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
265 tt_usecs[uf] += q->qh->tt_usecs;
267 hw_p = &q->qh->hw->hw_next;
268 q = &q->qh->qh_next;
269 continue;
270 case Q_TYPE_SITD:
271 if (same_tt(dev, q->sitd->urb->dev)) {
272 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
273 tt_usecs[uf] += q->sitd->stream->tt_usecs;
275 hw_p = &q->sitd->hw_next;
276 q = &q->sitd->sitd_next;
277 continue;
278 // case Q_TYPE_FSTN:
279 default:
280 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
281 frame);
282 hw_p = &q->fstn->hw_next;
283 q = &q->fstn->fstn_next;
287 carryover_tt_bandwidth(tt_usecs);
289 if (max_tt_usecs[7] < tt_usecs[7])
290 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
291 frame, tt_usecs[7] - max_tt_usecs[7]);
295 * Return true if the device's tt's downstream bus is available for a
296 * periodic transfer of the specified length (usecs), starting at the
297 * specified frame/uframe. Note that (as summarized in section 11.19
298 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
299 * uframe.
301 * The uframe parameter is when the fullspeed/lowspeed transfer
302 * should be executed in "B-frame" terms, which is the same as the
303 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
304 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
305 * See the EHCI spec sec 4.5 and fig 4.7.
307 * This checks if the full/lowspeed bus, at the specified starting uframe,
308 * has the specified bandwidth available, according to rules listed
309 * in USB 2.0 spec section 11.18.1 fig 11-60.
311 * This does not check if the transfer would exceed the max ssplit
312 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
313 * since proper scheduling limits ssplits to less than 16 per uframe.
315 static int tt_available (
316 struct ehci_hcd *ehci,
317 unsigned period,
318 struct usb_device *dev,
319 unsigned frame,
320 unsigned uframe,
321 u16 usecs
324 if ((period == 0) || (uframe >= 7)) /* error */
325 return 0;
327 for (; frame < ehci->periodic_size; frame += period) {
328 unsigned short tt_usecs[8];
330 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
332 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
333 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
334 frame, usecs, uframe,
335 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
336 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
338 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
339 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
340 frame, uframe);
341 return 0;
344 /* special case for isoc transfers larger than 125us:
345 * the first and each subsequent fully used uframe
346 * must be empty, so as to not illegally delay
347 * already scheduled transactions
349 if (125 < usecs) {
350 int ufs = (usecs / 125);
351 int i;
352 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
353 if (0 < tt_usecs[i]) {
354 ehci_vdbg(ehci,
355 "multi-uframe xfer can't fit "
356 "in frame %d uframe %d\n",
357 frame, i);
358 return 0;
362 tt_usecs[uframe] += usecs;
364 carryover_tt_bandwidth(tt_usecs);
366 /* fail if the carryover pushed bw past the last uframe's limit */
367 if (max_tt_usecs[7] < tt_usecs[7]) {
368 ehci_vdbg(ehci,
369 "tt unavailable usecs %d frame %d uframe %d\n",
370 usecs, frame, uframe);
371 return 0;
375 return 1;
378 #else
380 /* return true iff the device's transaction translator is available
381 * for a periodic transfer starting at the specified frame, using
382 * all the uframes in the mask.
384 static int tt_no_collision (
385 struct ehci_hcd *ehci,
386 unsigned period,
387 struct usb_device *dev,
388 unsigned frame,
389 u32 uf_mask
392 if (period == 0) /* error */
393 return 0;
395 /* note bandwidth wastage: split never follows csplit
396 * (different dev or endpoint) until the next uframe.
397 * calling convention doesn't make that distinction.
399 for (; frame < ehci->periodic_size; frame += period) {
400 union ehci_shadow here;
401 __hc32 type;
402 struct ehci_qh_hw *hw;
404 here = ehci->pshadow [frame];
405 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
406 while (here.ptr) {
407 switch (hc32_to_cpu(ehci, type)) {
408 case Q_TYPE_ITD:
409 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
410 here = here.itd->itd_next;
411 continue;
412 case Q_TYPE_QH:
413 hw = here.qh->hw;
414 if (same_tt (dev, here.qh->dev)) {
415 u32 mask;
417 mask = hc32_to_cpu(ehci,
418 hw->hw_info2);
419 /* "knows" no gap is needed */
420 mask |= mask >> 8;
421 if (mask & uf_mask)
422 break;
424 type = Q_NEXT_TYPE(ehci, hw->hw_next);
425 here = here.qh->qh_next;
426 continue;
427 case Q_TYPE_SITD:
428 if (same_tt (dev, here.sitd->urb->dev)) {
429 u16 mask;
431 mask = hc32_to_cpu(ehci, here.sitd
432 ->hw_uframe);
433 /* FIXME assumes no gap for IN! */
434 mask |= mask >> 8;
435 if (mask & uf_mask)
436 break;
438 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
439 here = here.sitd->sitd_next;
440 continue;
441 // case Q_TYPE_FSTN:
442 default:
443 ehci_dbg (ehci,
444 "periodic frame %d bogus type %d\n",
445 frame, type);
448 /* collision or error */
449 return 0;
453 /* no collision */
454 return 1;
457 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
459 /*-------------------------------------------------------------------------*/
461 static int enable_periodic (struct ehci_hcd *ehci)
463 u32 cmd;
464 int status;
466 if (ehci->periodic_sched++)
467 return 0;
469 /* did clearing PSE did take effect yet?
470 * takes effect only at frame boundaries...
472 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
473 STS_PSS, 0, 9 * 125);
474 if (status)
475 return status;
477 cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
478 ehci_writel(ehci, cmd, &ehci->regs->command);
479 /* posted write ... PSS happens later */
480 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
482 /* make sure ehci_work scans these */
483 ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
484 % (ehci->periodic_size << 3);
485 if (unlikely(ehci->broken_periodic))
486 ehci->last_periodic_enable = ktime_get_real();
487 return 0;
490 static int disable_periodic (struct ehci_hcd *ehci)
492 u32 cmd;
493 int status;
495 if (--ehci->periodic_sched)
496 return 0;
498 if (unlikely(ehci->broken_periodic)) {
499 /* delay experimentally determined */
500 ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000);
501 ktime_t now = ktime_get_real();
502 s64 delay = ktime_us_delta(safe, now);
504 if (unlikely(delay > 0))
505 udelay(delay);
508 /* did setting PSE not take effect yet?
509 * takes effect only at frame boundaries...
511 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
512 STS_PSS, STS_PSS, 9 * 125);
513 if (status)
514 return status;
516 cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
517 ehci_writel(ehci, cmd, &ehci->regs->command);
518 /* posted write ... */
520 free_cached_lists(ehci);
522 ehci->next_uframe = -1;
523 return 0;
526 /*-------------------------------------------------------------------------*/
528 /* periodic schedule slots have iso tds (normal or split) first, then a
529 * sparse tree for active interrupt transfers.
531 * this just links in a qh; caller guarantees uframe masks are set right.
532 * no FSTN support (yet; ehci 0.96+)
534 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
536 unsigned i;
537 unsigned period = qh->period;
539 dev_dbg (&qh->dev->dev,
540 "link qh%d-%04x/%p start %d [%d/%d us]\n",
541 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
542 & (QH_CMASK | QH_SMASK),
543 qh, qh->start, qh->usecs, qh->c_usecs);
545 /* high bandwidth, or otherwise every microframe */
546 if (period == 0)
547 period = 1;
549 for (i = qh->start; i < ehci->periodic_size; i += period) {
550 union ehci_shadow *prev = &ehci->pshadow[i];
551 __hc32 *hw_p = &ehci->periodic[i];
552 union ehci_shadow here = *prev;
553 __hc32 type = 0;
555 /* skip the iso nodes at list head */
556 while (here.ptr) {
557 type = Q_NEXT_TYPE(ehci, *hw_p);
558 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
559 break;
560 prev = periodic_next_shadow(ehci, prev, type);
561 hw_p = shadow_next_periodic(ehci, &here, type);
562 here = *prev;
565 /* sorting each branch by period (slow-->fast)
566 * enables sharing interior tree nodes
568 while (here.ptr && qh != here.qh) {
569 if (qh->period > here.qh->period)
570 break;
571 prev = &here.qh->qh_next;
572 hw_p = &here.qh->hw->hw_next;
573 here = *prev;
575 /* link in this qh, unless some earlier pass did that */
576 if (qh != here.qh) {
577 qh->qh_next = here;
578 if (here.qh)
579 qh->hw->hw_next = *hw_p;
580 wmb ();
581 prev->qh = qh;
582 *hw_p = QH_NEXT (ehci, qh->qh_dma);
585 qh->qh_state = QH_STATE_LINKED;
586 qh->xacterrs = 0;
587 qh_get (qh);
589 /* update per-qh bandwidth for usbfs */
590 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
591 ? ((qh->usecs + qh->c_usecs) / qh->period)
592 : (qh->usecs * 8);
594 /* maybe enable periodic schedule processing */
595 return enable_periodic(ehci);
598 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
600 unsigned i;
601 unsigned period;
603 // FIXME:
604 // IF this isn't high speed
605 // and this qh is active in the current uframe
606 // (and overlay token SplitXstate is false?)
607 // THEN
608 // qh->hw_info1 |= __constant_cpu_to_hc32(1 << 7 /* "ignore" */);
610 /* high bandwidth, or otherwise part of every microframe */
611 if ((period = qh->period) == 0)
612 period = 1;
614 for (i = qh->start; i < ehci->periodic_size; i += period)
615 periodic_unlink (ehci, i, qh);
617 /* update per-qh bandwidth for usbfs */
618 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
619 ? ((qh->usecs + qh->c_usecs) / qh->period)
620 : (qh->usecs * 8);
622 dev_dbg (&qh->dev->dev,
623 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
624 qh->period,
625 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
626 qh, qh->start, qh->usecs, qh->c_usecs);
628 /* qh->qh_next still "live" to HC */
629 qh->qh_state = QH_STATE_UNLINK;
630 qh->qh_next.ptr = NULL;
631 qh_put (qh);
633 /* maybe turn off periodic schedule */
634 return disable_periodic(ehci);
637 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
639 unsigned wait;
640 struct ehci_qh_hw *hw = qh->hw;
641 int rc;
643 /* If the QH isn't linked then there's nothing we can do
644 * unless we were called during a giveback, in which case
645 * qh_completions() has to deal with it.
647 if (qh->qh_state != QH_STATE_LINKED) {
648 if (qh->qh_state == QH_STATE_COMPLETING)
649 qh->needs_rescan = 1;
650 return;
653 qh_unlink_periodic (ehci, qh);
655 /* simple/paranoid: always delay, expecting the HC needs to read
656 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
657 * expect khubd to clean up after any CSPLITs we won't issue.
658 * active high speed queues may need bigger delays...
660 if (list_empty (&qh->qtd_list)
661 || (cpu_to_hc32(ehci, QH_CMASK)
662 & hw->hw_info2) != 0)
663 wait = 2;
664 else
665 wait = 55; /* worst case: 3 * 1024 */
667 udelay (wait);
668 qh->qh_state = QH_STATE_IDLE;
669 hw->hw_next = EHCI_LIST_END(ehci);
670 wmb ();
672 qh_completions(ehci, qh);
674 /* reschedule QH iff another request is queued */
675 if (!list_empty(&qh->qtd_list) &&
676 HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
677 rc = qh_schedule(ehci, qh);
679 /* An error here likely indicates handshake failure
680 * or no space left in the schedule. Neither fault
681 * should happen often ...
683 * FIXME kill the now-dysfunctional queued urbs
685 if (rc != 0)
686 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
687 qh, rc);
691 /*-------------------------------------------------------------------------*/
693 static int check_period (
694 struct ehci_hcd *ehci,
695 unsigned frame,
696 unsigned uframe,
697 unsigned period,
698 unsigned usecs
700 int claimed;
702 /* complete split running into next frame?
703 * given FSTN support, we could sometimes check...
705 if (uframe >= 8)
706 return 0;
709 * 80% periodic == 100 usec/uframe available
710 * convert "usecs we need" to "max already claimed"
712 usecs = 100 - usecs;
714 /* we "know" 2 and 4 uframe intervals were rejected; so
715 * for period 0, check _every_ microframe in the schedule.
717 if (unlikely (period == 0)) {
718 do {
719 for (uframe = 0; uframe < 7; uframe++) {
720 claimed = periodic_usecs (ehci, frame, uframe);
721 if (claimed > usecs)
722 return 0;
724 } while ((frame += 1) < ehci->periodic_size);
726 /* just check the specified uframe, at that period */
727 } else {
728 do {
729 claimed = periodic_usecs (ehci, frame, uframe);
730 if (claimed > usecs)
731 return 0;
732 } while ((frame += period) < ehci->periodic_size);
735 // success!
736 return 1;
739 static int check_intr_schedule (
740 struct ehci_hcd *ehci,
741 unsigned frame,
742 unsigned uframe,
743 const struct ehci_qh *qh,
744 __hc32 *c_maskp
747 int retval = -ENOSPC;
748 u8 mask = 0;
750 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
751 goto done;
753 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
754 goto done;
755 if (!qh->c_usecs) {
756 retval = 0;
757 *c_maskp = 0;
758 goto done;
761 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
762 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
763 qh->tt_usecs)) {
764 unsigned i;
766 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
767 for (i=uframe+1; i<8 && i<uframe+4; i++)
768 if (!check_period (ehci, frame, i,
769 qh->period, qh->c_usecs))
770 goto done;
771 else
772 mask |= 1 << i;
774 retval = 0;
776 *c_maskp = cpu_to_hc32(ehci, mask << 8);
778 #else
779 /* Make sure this tt's buffer is also available for CSPLITs.
780 * We pessimize a bit; probably the typical full speed case
781 * doesn't need the second CSPLIT.
783 * NOTE: both SPLIT and CSPLIT could be checked in just
784 * one smart pass...
786 mask = 0x03 << (uframe + qh->gap_uf);
787 *c_maskp = cpu_to_hc32(ehci, mask << 8);
789 mask |= 1 << uframe;
790 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
791 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
792 qh->period, qh->c_usecs))
793 goto done;
794 if (!check_period (ehci, frame, uframe + qh->gap_uf,
795 qh->period, qh->c_usecs))
796 goto done;
797 retval = 0;
799 #endif
800 done:
801 return retval;
804 /* "first fit" scheduling policy used the first time through,
805 * or when the previous schedule slot can't be re-used.
807 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
809 int status;
810 unsigned uframe;
811 __hc32 c_mask;
812 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
813 struct ehci_qh_hw *hw = qh->hw;
815 qh_refresh(ehci, qh);
816 hw->hw_next = EHCI_LIST_END(ehci);
817 frame = qh->start;
819 /* reuse the previous schedule slots, if we can */
820 if (frame < qh->period) {
821 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
822 status = check_intr_schedule (ehci, frame, --uframe,
823 qh, &c_mask);
824 } else {
825 uframe = 0;
826 c_mask = 0;
827 status = -ENOSPC;
830 /* else scan the schedule to find a group of slots such that all
831 * uframes have enough periodic bandwidth available.
833 if (status) {
834 /* "normal" case, uframing flexible except with splits */
835 if (qh->period) {
836 int i;
838 for (i = qh->period; status && i > 0; --i) {
839 frame = ++ehci->random_frame % qh->period;
840 for (uframe = 0; uframe < 8; uframe++) {
841 status = check_intr_schedule (ehci,
842 frame, uframe, qh,
843 &c_mask);
844 if (status == 0)
845 break;
849 /* qh->period == 0 means every uframe */
850 } else {
851 frame = 0;
852 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
854 if (status)
855 goto done;
856 qh->start = frame;
858 /* reset S-frame and (maybe) C-frame masks */
859 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
860 hw->hw_info2 |= qh->period
861 ? cpu_to_hc32(ehci, 1 << uframe)
862 : cpu_to_hc32(ehci, QH_SMASK);
863 hw->hw_info2 |= c_mask;
864 } else
865 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
867 /* stuff into the periodic schedule */
868 status = qh_link_periodic (ehci, qh);
869 done:
870 return status;
873 static int intr_submit (
874 struct ehci_hcd *ehci,
875 struct urb *urb,
876 struct list_head *qtd_list,
877 gfp_t mem_flags
879 unsigned epnum;
880 unsigned long flags;
881 struct ehci_qh *qh;
882 int status;
883 struct list_head empty;
885 /* get endpoint and transfer/schedule data */
886 epnum = urb->ep->desc.bEndpointAddress;
888 spin_lock_irqsave (&ehci->lock, flags);
890 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
891 &ehci_to_hcd(ehci)->flags))) {
892 status = -ESHUTDOWN;
893 goto done_not_linked;
895 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
896 if (unlikely(status))
897 goto done_not_linked;
899 /* get qh and force any scheduling errors */
900 INIT_LIST_HEAD (&empty);
901 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
902 if (qh == NULL) {
903 status = -ENOMEM;
904 goto done;
906 if (qh->qh_state == QH_STATE_IDLE) {
907 if ((status = qh_schedule (ehci, qh)) != 0)
908 goto done;
911 /* then queue the urb's tds to the qh */
912 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
913 BUG_ON (qh == NULL);
915 /* ... update usbfs periodic stats */
916 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
918 done:
919 if (unlikely(status))
920 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
921 done_not_linked:
922 spin_unlock_irqrestore (&ehci->lock, flags);
923 if (status)
924 qtd_list_free (ehci, urb, qtd_list);
926 return status;
929 /*-------------------------------------------------------------------------*/
931 /* ehci_iso_stream ops work with both ITD and SITD */
933 static struct ehci_iso_stream *
934 iso_stream_alloc (gfp_t mem_flags)
936 struct ehci_iso_stream *stream;
938 stream = kzalloc(sizeof *stream, mem_flags);
939 if (likely (stream != NULL)) {
940 INIT_LIST_HEAD(&stream->td_list);
941 INIT_LIST_HEAD(&stream->free_list);
942 stream->next_uframe = -1;
943 stream->refcount = 1;
945 return stream;
948 static void
949 iso_stream_init (
950 struct ehci_hcd *ehci,
951 struct ehci_iso_stream *stream,
952 struct usb_device *dev,
953 int pipe,
954 unsigned interval
957 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
959 u32 buf1;
960 unsigned epnum, maxp;
961 int is_input;
962 long bandwidth;
965 * this might be a "high bandwidth" highspeed endpoint,
966 * as encoded in the ep descriptor's wMaxPacket field
968 epnum = usb_pipeendpoint (pipe);
969 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
970 maxp = usb_maxpacket(dev, pipe, !is_input);
971 if (is_input) {
972 buf1 = (1 << 11);
973 } else {
974 buf1 = 0;
977 /* knows about ITD vs SITD */
978 if (dev->speed == USB_SPEED_HIGH) {
979 unsigned multi = hb_mult(maxp);
981 stream->highspeed = 1;
983 maxp = max_packet(maxp);
984 buf1 |= maxp;
985 maxp *= multi;
987 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
988 stream->buf1 = cpu_to_hc32(ehci, buf1);
989 stream->buf2 = cpu_to_hc32(ehci, multi);
991 /* usbfs wants to report the average usecs per frame tied up
992 * when transfers on this endpoint are scheduled ...
994 stream->usecs = HS_USECS_ISO (maxp);
995 bandwidth = stream->usecs * 8;
996 bandwidth /= interval;
998 } else {
999 u32 addr;
1000 int think_time;
1001 int hs_transfers;
1003 addr = dev->ttport << 24;
1004 if (!ehci_is_TDI(ehci)
1005 || (dev->tt->hub !=
1006 ehci_to_hcd(ehci)->self.root_hub))
1007 addr |= dev->tt->hub->devnum << 16;
1008 addr |= epnum << 8;
1009 addr |= dev->devnum;
1010 stream->usecs = HS_USECS_ISO (maxp);
1011 think_time = dev->tt ? dev->tt->think_time : 0;
1012 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1013 dev->speed, is_input, 1, maxp));
1014 hs_transfers = max (1u, (maxp + 187) / 188);
1015 if (is_input) {
1016 u32 tmp;
1018 addr |= 1 << 31;
1019 stream->c_usecs = stream->usecs;
1020 stream->usecs = HS_USECS_ISO (1);
1021 stream->raw_mask = 1;
1023 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1024 tmp = (1 << (hs_transfers + 2)) - 1;
1025 stream->raw_mask |= tmp << (8 + 2);
1026 } else
1027 stream->raw_mask = smask_out [hs_transfers - 1];
1028 bandwidth = stream->usecs + stream->c_usecs;
1029 bandwidth /= interval << 3;
1031 /* stream->splits gets created from raw_mask later */
1032 stream->address = cpu_to_hc32(ehci, addr);
1034 stream->bandwidth = bandwidth;
1036 stream->udev = dev;
1038 stream->bEndpointAddress = is_input | epnum;
1039 stream->interval = interval;
1040 stream->maxp = maxp;
1043 static void
1044 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1046 stream->refcount--;
1048 /* free whenever just a dev->ep reference remains.
1049 * not like a QH -- no persistent state (toggle, halt)
1051 if (stream->refcount == 1) {
1052 int is_in;
1054 // BUG_ON (!list_empty(&stream->td_list));
1056 while (!list_empty (&stream->free_list)) {
1057 struct list_head *entry;
1059 entry = stream->free_list.next;
1060 list_del (entry);
1062 /* knows about ITD vs SITD */
1063 if (stream->highspeed) {
1064 struct ehci_itd *itd;
1066 itd = list_entry (entry, struct ehci_itd,
1067 itd_list);
1068 dma_pool_free (ehci->itd_pool, itd,
1069 itd->itd_dma);
1070 } else {
1071 struct ehci_sitd *sitd;
1073 sitd = list_entry (entry, struct ehci_sitd,
1074 sitd_list);
1075 dma_pool_free (ehci->sitd_pool, sitd,
1076 sitd->sitd_dma);
1080 is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1081 stream->bEndpointAddress &= 0x0f;
1082 if (stream->ep)
1083 stream->ep->hcpriv = NULL;
1085 kfree(stream);
1089 static inline struct ehci_iso_stream *
1090 iso_stream_get (struct ehci_iso_stream *stream)
1092 if (likely (stream != NULL))
1093 stream->refcount++;
1094 return stream;
1097 static struct ehci_iso_stream *
1098 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1100 unsigned epnum;
1101 struct ehci_iso_stream *stream;
1102 struct usb_host_endpoint *ep;
1103 unsigned long flags;
1105 epnum = usb_pipeendpoint (urb->pipe);
1106 if (usb_pipein(urb->pipe))
1107 ep = urb->dev->ep_in[epnum];
1108 else
1109 ep = urb->dev->ep_out[epnum];
1111 spin_lock_irqsave (&ehci->lock, flags);
1112 stream = ep->hcpriv;
1114 if (unlikely (stream == NULL)) {
1115 stream = iso_stream_alloc(GFP_ATOMIC);
1116 if (likely (stream != NULL)) {
1117 /* dev->ep owns the initial refcount */
1118 ep->hcpriv = stream;
1119 stream->ep = ep;
1120 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1121 urb->interval);
1124 /* if dev->ep [epnum] is a QH, hw is set */
1125 } else if (unlikely (stream->hw != NULL)) {
1126 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1127 urb->dev->devpath, epnum,
1128 usb_pipein(urb->pipe) ? "in" : "out");
1129 stream = NULL;
1132 /* caller guarantees an eventual matching iso_stream_put */
1133 stream = iso_stream_get (stream);
1135 spin_unlock_irqrestore (&ehci->lock, flags);
1136 return stream;
1139 /*-------------------------------------------------------------------------*/
1141 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1143 static struct ehci_iso_sched *
1144 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1146 struct ehci_iso_sched *iso_sched;
1147 int size = sizeof *iso_sched;
1149 size += packets * sizeof (struct ehci_iso_packet);
1150 iso_sched = kzalloc(size, mem_flags);
1151 if (likely (iso_sched != NULL)) {
1152 INIT_LIST_HEAD (&iso_sched->td_list);
1154 return iso_sched;
1157 static inline void
1158 itd_sched_init(
1159 struct ehci_hcd *ehci,
1160 struct ehci_iso_sched *iso_sched,
1161 struct ehci_iso_stream *stream,
1162 struct urb *urb
1165 unsigned i;
1166 dma_addr_t dma = urb->transfer_dma;
1168 /* how many uframes are needed for these transfers */
1169 iso_sched->span = urb->number_of_packets * stream->interval;
1171 /* figure out per-uframe itd fields that we'll need later
1172 * when we fit new itds into the schedule.
1174 for (i = 0; i < urb->number_of_packets; i++) {
1175 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1176 unsigned length;
1177 dma_addr_t buf;
1178 u32 trans;
1180 length = urb->iso_frame_desc [i].length;
1181 buf = dma + urb->iso_frame_desc [i].offset;
1183 trans = EHCI_ISOC_ACTIVE;
1184 trans |= buf & 0x0fff;
1185 if (unlikely (((i + 1) == urb->number_of_packets))
1186 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1187 trans |= EHCI_ITD_IOC;
1188 trans |= length << 16;
1189 uframe->transaction = cpu_to_hc32(ehci, trans);
1191 /* might need to cross a buffer page within a uframe */
1192 uframe->bufp = (buf & ~(u64)0x0fff);
1193 buf += length;
1194 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1195 uframe->cross = 1;
1199 static void
1200 iso_sched_free (
1201 struct ehci_iso_stream *stream,
1202 struct ehci_iso_sched *iso_sched
1205 if (!iso_sched)
1206 return;
1207 // caller must hold ehci->lock!
1208 list_splice (&iso_sched->td_list, &stream->free_list);
1209 kfree (iso_sched);
1212 static int
1213 itd_urb_transaction (
1214 struct ehci_iso_stream *stream,
1215 struct ehci_hcd *ehci,
1216 struct urb *urb,
1217 gfp_t mem_flags
1220 struct ehci_itd *itd;
1221 dma_addr_t itd_dma;
1222 int i;
1223 unsigned num_itds;
1224 struct ehci_iso_sched *sched;
1225 unsigned long flags;
1227 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1228 if (unlikely (sched == NULL))
1229 return -ENOMEM;
1231 itd_sched_init(ehci, sched, stream, urb);
1233 if (urb->interval < 8)
1234 num_itds = 1 + (sched->span + 7) / 8;
1235 else
1236 num_itds = urb->number_of_packets;
1238 /* allocate/init ITDs */
1239 spin_lock_irqsave (&ehci->lock, flags);
1240 for (i = 0; i < num_itds; i++) {
1242 /* free_list.next might be cache-hot ... but maybe
1243 * the HC caches it too. avoid that issue for now.
1246 /* prefer previously-allocated itds */
1247 if (likely (!list_empty(&stream->free_list))) {
1248 itd = list_entry (stream->free_list.prev,
1249 struct ehci_itd, itd_list);
1250 list_del (&itd->itd_list);
1251 itd_dma = itd->itd_dma;
1252 } else {
1253 spin_unlock_irqrestore (&ehci->lock, flags);
1254 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1255 &itd_dma);
1256 spin_lock_irqsave (&ehci->lock, flags);
1257 if (!itd) {
1258 iso_sched_free(stream, sched);
1259 spin_unlock_irqrestore(&ehci->lock, flags);
1260 return -ENOMEM;
1264 memset (itd, 0, sizeof *itd);
1265 itd->itd_dma = itd_dma;
1266 list_add (&itd->itd_list, &sched->td_list);
1268 spin_unlock_irqrestore (&ehci->lock, flags);
1270 /* temporarily store schedule info in hcpriv */
1271 urb->hcpriv = sched;
1272 urb->error_count = 0;
1273 return 0;
1276 /*-------------------------------------------------------------------------*/
1278 static inline int
1279 itd_slot_ok (
1280 struct ehci_hcd *ehci,
1281 u32 mod,
1282 u32 uframe,
1283 u8 usecs,
1284 u32 period
1287 uframe %= period;
1288 do {
1289 /* can't commit more than 80% periodic == 100 usec */
1290 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1291 > (100 - usecs))
1292 return 0;
1294 /* we know urb->interval is 2^N uframes */
1295 uframe += period;
1296 } while (uframe < mod);
1297 return 1;
1300 static inline int
1301 sitd_slot_ok (
1302 struct ehci_hcd *ehci,
1303 u32 mod,
1304 struct ehci_iso_stream *stream,
1305 u32 uframe,
1306 struct ehci_iso_sched *sched,
1307 u32 period_uframes
1310 u32 mask, tmp;
1311 u32 frame, uf;
1313 mask = stream->raw_mask << (uframe & 7);
1315 /* for IN, don't wrap CSPLIT into the next frame */
1316 if (mask & ~0xffff)
1317 return 0;
1319 /* this multi-pass logic is simple, but performance may
1320 * suffer when the schedule data isn't cached.
1323 /* check bandwidth */
1324 uframe %= period_uframes;
1325 do {
1326 u32 max_used;
1328 frame = uframe >> 3;
1329 uf = uframe & 7;
1331 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1332 /* The tt's fullspeed bus bandwidth must be available.
1333 * tt_available scheduling guarantees 10+% for control/bulk.
1335 if (!tt_available (ehci, period_uframes << 3,
1336 stream->udev, frame, uf, stream->tt_usecs))
1337 return 0;
1338 #else
1339 /* tt must be idle for start(s), any gap, and csplit.
1340 * assume scheduling slop leaves 10+% for control/bulk.
1342 if (!tt_no_collision (ehci, period_uframes << 3,
1343 stream->udev, frame, mask))
1344 return 0;
1345 #endif
1347 /* check starts (OUT uses more than one) */
1348 max_used = 100 - stream->usecs;
1349 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1350 if (periodic_usecs (ehci, frame, uf) > max_used)
1351 return 0;
1354 /* for IN, check CSPLIT */
1355 if (stream->c_usecs) {
1356 uf = uframe & 7;
1357 max_used = 100 - stream->c_usecs;
1358 do {
1359 tmp = 1 << uf;
1360 tmp <<= 8;
1361 if ((stream->raw_mask & tmp) == 0)
1362 continue;
1363 if (periodic_usecs (ehci, frame, uf)
1364 > max_used)
1365 return 0;
1366 } while (++uf < 8);
1369 /* we know urb->interval is 2^N uframes */
1370 uframe += period_uframes;
1371 } while (uframe < mod);
1373 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1374 return 1;
1378 * This scheduler plans almost as far into the future as it has actual
1379 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1380 * "as small as possible" to be cache-friendlier.) That limits the size
1381 * transfers you can stream reliably; avoid more than 64 msec per urb.
1382 * Also avoid queue depths of less than ehci's worst irq latency (affected
1383 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1384 * and other factors); or more than about 230 msec total (for portability,
1385 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1388 #define SCHEDULE_SLOP 80 /* microframes */
1390 static int
1391 iso_stream_schedule (
1392 struct ehci_hcd *ehci,
1393 struct urb *urb,
1394 struct ehci_iso_stream *stream
1397 u32 now, next, start, period, span;
1398 int status;
1399 unsigned mod = ehci->periodic_size << 3;
1400 struct ehci_iso_sched *sched = urb->hcpriv;
1402 period = urb->interval;
1403 span = sched->span;
1404 if (!stream->highspeed) {
1405 period <<= 3;
1406 span <<= 3;
1409 if (span > mod - SCHEDULE_SLOP) {
1410 ehci_dbg (ehci, "iso request %p too long\n", urb);
1411 status = -EFBIG;
1412 goto fail;
1415 now = ehci_readl(ehci, &ehci->regs->frame_index) & (mod - 1);
1417 /* Typical case: reuse current schedule, stream is still active.
1418 * Hopefully there are no gaps from the host falling behind
1419 * (irq delays etc), but if there are we'll take the next
1420 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1422 if (likely (!list_empty (&stream->td_list))) {
1423 u32 excess;
1425 /* For high speed devices, allow scheduling within the
1426 * isochronous scheduling threshold. For full speed devices
1427 * and Intel PCI-based controllers, don't (work around for
1428 * Intel ICH9 bug).
1430 if (!stream->highspeed && ehci->fs_i_thresh)
1431 next = now + ehci->i_thresh;
1432 else
1433 next = now;
1435 /* Fell behind (by up to twice the slop amount)?
1436 * We decide based on the time of the last currently-scheduled
1437 * slot, not the time of the next available slot.
1439 excess = (stream->next_uframe - period - next) & (mod - 1);
1440 if (excess >= mod - 2 * SCHEDULE_SLOP)
1441 start = next + excess - mod + period *
1442 DIV_ROUND_UP(mod - excess, period);
1443 else
1444 start = next + excess + period;
1445 if (start - now >= mod) {
1446 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1447 urb, start - now - period, period,
1448 mod);
1449 status = -EFBIG;
1450 goto fail;
1454 /* need to schedule; when's the next (u)frame we could start?
1455 * this is bigger than ehci->i_thresh allows; scheduling itself
1456 * isn't free, the slop should handle reasonably slow cpus. it
1457 * can also help high bandwidth if the dma and irq loads don't
1458 * jump until after the queue is primed.
1460 else {
1461 start = SCHEDULE_SLOP + (now & ~0x07);
1463 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
1465 /* find a uframe slot with enough bandwidth */
1466 next = start + period;
1467 for (; start < next; start++) {
1469 /* check schedule: enough space? */
1470 if (stream->highspeed) {
1471 if (itd_slot_ok(ehci, mod, start,
1472 stream->usecs, period))
1473 break;
1474 } else {
1475 if ((start % 8) >= 6)
1476 continue;
1477 if (sitd_slot_ok(ehci, mod, stream,
1478 start, sched, period))
1479 break;
1483 /* no room in the schedule */
1484 if (start == next) {
1485 ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1486 urb, now, now + mod);
1487 status = -ENOSPC;
1488 goto fail;
1492 /* Tried to schedule too far into the future? */
1493 if (unlikely(start - now + span - period
1494 >= mod - 2 * SCHEDULE_SLOP)) {
1495 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1496 urb, start - now, span - period,
1497 mod - 2 * SCHEDULE_SLOP);
1498 status = -EFBIG;
1499 goto fail;
1502 stream->next_uframe = start & (mod - 1);
1504 /* report high speed start in uframes; full speed, in frames */
1505 urb->start_frame = stream->next_uframe;
1506 if (!stream->highspeed)
1507 urb->start_frame >>= 3;
1508 return 0;
1510 fail:
1511 iso_sched_free(stream, sched);
1512 urb->hcpriv = NULL;
1513 return status;
1516 /*-------------------------------------------------------------------------*/
1518 static inline void
1519 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1520 struct ehci_itd *itd)
1522 int i;
1524 /* it's been recently zeroed */
1525 itd->hw_next = EHCI_LIST_END(ehci);
1526 itd->hw_bufp [0] = stream->buf0;
1527 itd->hw_bufp [1] = stream->buf1;
1528 itd->hw_bufp [2] = stream->buf2;
1530 for (i = 0; i < 8; i++)
1531 itd->index[i] = -1;
1533 /* All other fields are filled when scheduling */
1536 static inline void
1537 itd_patch(
1538 struct ehci_hcd *ehci,
1539 struct ehci_itd *itd,
1540 struct ehci_iso_sched *iso_sched,
1541 unsigned index,
1542 u16 uframe
1545 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1546 unsigned pg = itd->pg;
1548 // BUG_ON (pg == 6 && uf->cross);
1550 uframe &= 0x07;
1551 itd->index [uframe] = index;
1553 itd->hw_transaction[uframe] = uf->transaction;
1554 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1555 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1556 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1558 /* iso_frame_desc[].offset must be strictly increasing */
1559 if (unlikely (uf->cross)) {
1560 u64 bufp = uf->bufp + 4096;
1562 itd->pg = ++pg;
1563 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1564 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1568 static inline void
1569 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1571 union ehci_shadow *prev = &ehci->pshadow[frame];
1572 __hc32 *hw_p = &ehci->periodic[frame];
1573 union ehci_shadow here = *prev;
1574 __hc32 type = 0;
1576 /* skip any iso nodes which might belong to previous microframes */
1577 while (here.ptr) {
1578 type = Q_NEXT_TYPE(ehci, *hw_p);
1579 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1580 break;
1581 prev = periodic_next_shadow(ehci, prev, type);
1582 hw_p = shadow_next_periodic(ehci, &here, type);
1583 here = *prev;
1586 itd->itd_next = here;
1587 itd->hw_next = *hw_p;
1588 prev->itd = itd;
1589 itd->frame = frame;
1590 wmb ();
1591 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1594 /* fit urb's itds into the selected schedule slot; activate as needed */
1595 static int
1596 itd_link_urb (
1597 struct ehci_hcd *ehci,
1598 struct urb *urb,
1599 unsigned mod,
1600 struct ehci_iso_stream *stream
1603 int packet;
1604 unsigned next_uframe, uframe, frame;
1605 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1606 struct ehci_itd *itd;
1608 next_uframe = stream->next_uframe & (mod - 1);
1610 if (unlikely (list_empty(&stream->td_list))) {
1611 ehci_to_hcd(ehci)->self.bandwidth_allocated
1612 += stream->bandwidth;
1613 ehci_vdbg (ehci,
1614 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1615 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1616 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1617 urb->interval,
1618 next_uframe >> 3, next_uframe & 0x7);
1620 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1622 /* fill iTDs uframe by uframe */
1623 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1624 if (itd == NULL) {
1625 /* ASSERT: we have all necessary itds */
1626 // BUG_ON (list_empty (&iso_sched->td_list));
1628 /* ASSERT: no itds for this endpoint in this uframe */
1630 itd = list_entry (iso_sched->td_list.next,
1631 struct ehci_itd, itd_list);
1632 list_move_tail (&itd->itd_list, &stream->td_list);
1633 itd->stream = iso_stream_get (stream);
1634 itd->urb = urb;
1635 itd_init (ehci, stream, itd);
1638 uframe = next_uframe & 0x07;
1639 frame = next_uframe >> 3;
1641 itd_patch(ehci, itd, iso_sched, packet, uframe);
1643 next_uframe += stream->interval;
1644 next_uframe &= mod - 1;
1645 packet++;
1647 /* link completed itds into the schedule */
1648 if (((next_uframe >> 3) != frame)
1649 || packet == urb->number_of_packets) {
1650 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1651 itd = NULL;
1654 stream->next_uframe = next_uframe;
1656 /* don't need that schedule data any more */
1657 iso_sched_free (stream, iso_sched);
1658 urb->hcpriv = NULL;
1660 timer_action (ehci, TIMER_IO_WATCHDOG);
1661 return enable_periodic(ehci);
1664 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1666 /* Process and recycle a completed ITD. Return true iff its urb completed,
1667 * and hence its completion callback probably added things to the hardware
1668 * schedule.
1670 * Note that we carefully avoid recycling this descriptor until after any
1671 * completion callback runs, so that it won't be reused quickly. That is,
1672 * assuming (a) no more than two urbs per frame on this endpoint, and also
1673 * (b) only this endpoint's completions submit URBs. It seems some silicon
1674 * corrupts things if you reuse completed descriptors very quickly...
1676 static unsigned
1677 itd_complete (
1678 struct ehci_hcd *ehci,
1679 struct ehci_itd *itd
1681 struct urb *urb = itd->urb;
1682 struct usb_iso_packet_descriptor *desc;
1683 u32 t;
1684 unsigned uframe;
1685 int urb_index = -1;
1686 struct ehci_iso_stream *stream = itd->stream;
1687 struct usb_device *dev;
1688 unsigned retval = false;
1690 /* for each uframe with a packet */
1691 for (uframe = 0; uframe < 8; uframe++) {
1692 if (likely (itd->index[uframe] == -1))
1693 continue;
1694 urb_index = itd->index[uframe];
1695 desc = &urb->iso_frame_desc [urb_index];
1697 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1698 itd->hw_transaction [uframe] = 0;
1700 /* report transfer status */
1701 if (unlikely (t & ISO_ERRS)) {
1702 urb->error_count++;
1703 if (t & EHCI_ISOC_BUF_ERR)
1704 desc->status = usb_pipein (urb->pipe)
1705 ? -ENOSR /* hc couldn't read */
1706 : -ECOMM; /* hc couldn't write */
1707 else if (t & EHCI_ISOC_BABBLE)
1708 desc->status = -EOVERFLOW;
1709 else /* (t & EHCI_ISOC_XACTERR) */
1710 desc->status = -EPROTO;
1712 /* HC need not update length with this error */
1713 if (!(t & EHCI_ISOC_BABBLE)) {
1714 desc->actual_length = EHCI_ITD_LENGTH(t);
1715 urb->actual_length += desc->actual_length;
1717 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1718 desc->status = 0;
1719 desc->actual_length = EHCI_ITD_LENGTH(t);
1720 urb->actual_length += desc->actual_length;
1721 } else {
1722 /* URB was too late */
1723 desc->status = -EXDEV;
1727 /* handle completion now? */
1728 if (likely ((urb_index + 1) != urb->number_of_packets))
1729 goto done;
1731 /* ASSERT: it's really the last itd for this urb
1732 list_for_each_entry (itd, &stream->td_list, itd_list)
1733 BUG_ON (itd->urb == urb);
1736 /* give urb back to the driver; completion often (re)submits */
1737 dev = urb->dev;
1738 ehci_urb_done(ehci, urb, 0);
1739 retval = true;
1740 urb = NULL;
1741 (void) disable_periodic(ehci);
1742 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1744 if (unlikely(list_is_singular(&stream->td_list))) {
1745 ehci_to_hcd(ehci)->self.bandwidth_allocated
1746 -= stream->bandwidth;
1747 ehci_vdbg (ehci,
1748 "deschedule devp %s ep%d%s-iso\n",
1749 dev->devpath, stream->bEndpointAddress & 0x0f,
1750 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1752 iso_stream_put (ehci, stream);
1754 done:
1755 itd->urb = NULL;
1756 if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1757 /* OK to recycle this ITD now. */
1758 itd->stream = NULL;
1759 list_move(&itd->itd_list, &stream->free_list);
1760 iso_stream_put(ehci, stream);
1761 } else {
1762 /* HW might remember this ITD, so we can't recycle it yet.
1763 * Move it to a safe place until a new frame starts.
1765 list_move(&itd->itd_list, &ehci->cached_itd_list);
1766 if (stream->refcount == 2) {
1767 /* If iso_stream_put() were called here, stream
1768 * would be freed. Instead, just prevent reuse.
1770 stream->ep->hcpriv = NULL;
1771 stream->ep = NULL;
1774 return retval;
1777 /*-------------------------------------------------------------------------*/
1779 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1780 gfp_t mem_flags)
1782 int status = -EINVAL;
1783 unsigned long flags;
1784 struct ehci_iso_stream *stream;
1786 /* Get iso_stream head */
1787 stream = iso_stream_find (ehci, urb);
1788 if (unlikely (stream == NULL)) {
1789 ehci_dbg (ehci, "can't get iso stream\n");
1790 return -ENOMEM;
1792 if (unlikely (urb->interval != stream->interval)) {
1793 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1794 stream->interval, urb->interval);
1795 goto done;
1798 #ifdef EHCI_URB_TRACE
1799 ehci_dbg (ehci,
1800 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1801 __FUNCTION__, urb->dev->devpath, urb,
1802 usb_pipeendpoint (urb->pipe),
1803 usb_pipein (urb->pipe) ? "in" : "out",
1804 urb->transfer_buffer_length,
1805 urb->number_of_packets, urb->interval,
1806 stream);
1807 #endif
1809 /* allocate ITDs w/o locking anything */
1810 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1811 if (unlikely (status < 0)) {
1812 ehci_dbg (ehci, "can't init itds\n");
1813 goto done;
1816 /* schedule ... need to lock */
1817 spin_lock_irqsave (&ehci->lock, flags);
1818 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1819 &ehci_to_hcd(ehci)->flags))) {
1820 status = -ESHUTDOWN;
1821 goto done_not_linked;
1823 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1824 if (unlikely(status))
1825 goto done_not_linked;
1826 status = iso_stream_schedule(ehci, urb, stream);
1827 if (likely (status == 0))
1828 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1829 else
1830 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1831 done_not_linked:
1832 spin_unlock_irqrestore (&ehci->lock, flags);
1834 done:
1835 if (unlikely (status < 0))
1836 iso_stream_put (ehci, stream);
1837 return status;
1840 /*-------------------------------------------------------------------------*/
1843 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1844 * TTs in USB 2.0 hubs. These need microframe scheduling.
1847 static inline void
1848 sitd_sched_init(
1849 struct ehci_hcd *ehci,
1850 struct ehci_iso_sched *iso_sched,
1851 struct ehci_iso_stream *stream,
1852 struct urb *urb
1855 unsigned i;
1856 dma_addr_t dma = urb->transfer_dma;
1858 /* how many frames are needed for these transfers */
1859 iso_sched->span = urb->number_of_packets * stream->interval;
1861 /* figure out per-frame sitd fields that we'll need later
1862 * when we fit new sitds into the schedule.
1864 for (i = 0; i < urb->number_of_packets; i++) {
1865 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1866 unsigned length;
1867 dma_addr_t buf;
1868 u32 trans;
1870 length = urb->iso_frame_desc [i].length & 0x03ff;
1871 buf = dma + urb->iso_frame_desc [i].offset;
1873 trans = SITD_STS_ACTIVE;
1874 if (((i + 1) == urb->number_of_packets)
1875 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1876 trans |= SITD_IOC;
1877 trans |= length << 16;
1878 packet->transaction = cpu_to_hc32(ehci, trans);
1880 /* might need to cross a buffer page within a td */
1881 packet->bufp = buf;
1882 packet->buf1 = (buf + length) & ~0x0fff;
1883 if (packet->buf1 != (buf & ~(u64)0x0fff))
1884 packet->cross = 1;
1886 /* OUT uses multiple start-splits */
1887 if (stream->bEndpointAddress & USB_DIR_IN)
1888 continue;
1889 length = (length + 187) / 188;
1890 if (length > 1) /* BEGIN vs ALL */
1891 length |= 1 << 3;
1892 packet->buf1 |= length;
1896 static int
1897 sitd_urb_transaction (
1898 struct ehci_iso_stream *stream,
1899 struct ehci_hcd *ehci,
1900 struct urb *urb,
1901 gfp_t mem_flags
1904 struct ehci_sitd *sitd;
1905 dma_addr_t sitd_dma;
1906 int i;
1907 struct ehci_iso_sched *iso_sched;
1908 unsigned long flags;
1910 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1911 if (iso_sched == NULL)
1912 return -ENOMEM;
1914 sitd_sched_init(ehci, iso_sched, stream, urb);
1916 /* allocate/init sITDs */
1917 spin_lock_irqsave (&ehci->lock, flags);
1918 for (i = 0; i < urb->number_of_packets; i++) {
1920 /* NOTE: for now, we don't try to handle wraparound cases
1921 * for IN (using sitd->hw_backpointer, like a FSTN), which
1922 * means we never need two sitds for full speed packets.
1925 /* free_list.next might be cache-hot ... but maybe
1926 * the HC caches it too. avoid that issue for now.
1929 /* prefer previously-allocated sitds */
1930 if (!list_empty(&stream->free_list)) {
1931 sitd = list_entry (stream->free_list.prev,
1932 struct ehci_sitd, sitd_list);
1933 list_del (&sitd->sitd_list);
1934 sitd_dma = sitd->sitd_dma;
1935 } else {
1936 spin_unlock_irqrestore (&ehci->lock, flags);
1937 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1938 &sitd_dma);
1939 spin_lock_irqsave (&ehci->lock, flags);
1940 if (!sitd) {
1941 iso_sched_free(stream, iso_sched);
1942 spin_unlock_irqrestore(&ehci->lock, flags);
1943 return -ENOMEM;
1947 memset (sitd, 0, sizeof *sitd);
1948 sitd->sitd_dma = sitd_dma;
1949 list_add (&sitd->sitd_list, &iso_sched->td_list);
1952 /* temporarily store schedule info in hcpriv */
1953 urb->hcpriv = iso_sched;
1954 urb->error_count = 0;
1956 spin_unlock_irqrestore (&ehci->lock, flags);
1957 return 0;
1960 /*-------------------------------------------------------------------------*/
1962 static inline void
1963 sitd_patch(
1964 struct ehci_hcd *ehci,
1965 struct ehci_iso_stream *stream,
1966 struct ehci_sitd *sitd,
1967 struct ehci_iso_sched *iso_sched,
1968 unsigned index
1971 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1972 u64 bufp = uf->bufp;
1974 sitd->hw_next = EHCI_LIST_END(ehci);
1975 sitd->hw_fullspeed_ep = stream->address;
1976 sitd->hw_uframe = stream->splits;
1977 sitd->hw_results = uf->transaction;
1978 sitd->hw_backpointer = EHCI_LIST_END(ehci);
1980 bufp = uf->bufp;
1981 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1982 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1984 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1985 if (uf->cross)
1986 bufp += 4096;
1987 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1988 sitd->index = index;
1991 static inline void
1992 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1994 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1995 sitd->sitd_next = ehci->pshadow [frame];
1996 sitd->hw_next = ehci->periodic [frame];
1997 ehci->pshadow [frame].sitd = sitd;
1998 sitd->frame = frame;
1999 wmb ();
2000 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2003 /* fit urb's sitds into the selected schedule slot; activate as needed */
2004 static int
2005 sitd_link_urb (
2006 struct ehci_hcd *ehci,
2007 struct urb *urb,
2008 unsigned mod,
2009 struct ehci_iso_stream *stream
2012 int packet;
2013 unsigned next_uframe;
2014 struct ehci_iso_sched *sched = urb->hcpriv;
2015 struct ehci_sitd *sitd;
2017 next_uframe = stream->next_uframe;
2019 if (list_empty(&stream->td_list)) {
2020 /* usbfs ignores TT bandwidth */
2021 ehci_to_hcd(ehci)->self.bandwidth_allocated
2022 += stream->bandwidth;
2023 ehci_vdbg (ehci,
2024 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2025 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2026 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2027 (next_uframe >> 3) & (ehci->periodic_size - 1),
2028 stream->interval, hc32_to_cpu(ehci, stream->splits));
2030 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2032 /* fill sITDs frame by frame */
2033 for (packet = 0, sitd = NULL;
2034 packet < urb->number_of_packets;
2035 packet++) {
2037 /* ASSERT: we have all necessary sitds */
2038 BUG_ON (list_empty (&sched->td_list));
2040 /* ASSERT: no itds for this endpoint in this frame */
2042 sitd = list_entry (sched->td_list.next,
2043 struct ehci_sitd, sitd_list);
2044 list_move_tail (&sitd->sitd_list, &stream->td_list);
2045 sitd->stream = iso_stream_get (stream);
2046 sitd->urb = urb;
2048 sitd_patch(ehci, stream, sitd, sched, packet);
2049 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2050 sitd);
2052 next_uframe += stream->interval << 3;
2054 stream->next_uframe = next_uframe & (mod - 1);
2056 /* don't need that schedule data any more */
2057 iso_sched_free (stream, sched);
2058 urb->hcpriv = NULL;
2060 timer_action (ehci, TIMER_IO_WATCHDOG);
2061 return enable_periodic(ehci);
2064 /*-------------------------------------------------------------------------*/
2066 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2067 | SITD_STS_XACT | SITD_STS_MMF)
2069 /* Process and recycle a completed SITD. Return true iff its urb completed,
2070 * and hence its completion callback probably added things to the hardware
2071 * schedule.
2073 * Note that we carefully avoid recycling this descriptor until after any
2074 * completion callback runs, so that it won't be reused quickly. That is,
2075 * assuming (a) no more than two urbs per frame on this endpoint, and also
2076 * (b) only this endpoint's completions submit URBs. It seems some silicon
2077 * corrupts things if you reuse completed descriptors very quickly...
2079 static unsigned
2080 sitd_complete (
2081 struct ehci_hcd *ehci,
2082 struct ehci_sitd *sitd
2084 struct urb *urb = sitd->urb;
2085 struct usb_iso_packet_descriptor *desc;
2086 u32 t;
2087 int urb_index = -1;
2088 struct ehci_iso_stream *stream = sitd->stream;
2089 struct usb_device *dev;
2090 unsigned retval = false;
2092 urb_index = sitd->index;
2093 desc = &urb->iso_frame_desc [urb_index];
2094 t = hc32_to_cpup(ehci, &sitd->hw_results);
2096 /* report transfer status */
2097 if (t & SITD_ERRS) {
2098 urb->error_count++;
2099 if (t & SITD_STS_DBE)
2100 desc->status = usb_pipein (urb->pipe)
2101 ? -ENOSR /* hc couldn't read */
2102 : -ECOMM; /* hc couldn't write */
2103 else if (t & SITD_STS_BABBLE)
2104 desc->status = -EOVERFLOW;
2105 else /* XACT, MMF, etc */
2106 desc->status = -EPROTO;
2107 } else {
2108 desc->status = 0;
2109 desc->actual_length = desc->length - SITD_LENGTH(t);
2110 urb->actual_length += desc->actual_length;
2113 /* handle completion now? */
2114 if ((urb_index + 1) != urb->number_of_packets)
2115 goto done;
2117 /* ASSERT: it's really the last sitd for this urb
2118 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2119 BUG_ON (sitd->urb == urb);
2122 /* give urb back to the driver; completion often (re)submits */
2123 dev = urb->dev;
2124 ehci_urb_done(ehci, urb, 0);
2125 retval = true;
2126 urb = NULL;
2127 (void) disable_periodic(ehci);
2128 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2130 if (list_is_singular(&stream->td_list)) {
2131 ehci_to_hcd(ehci)->self.bandwidth_allocated
2132 -= stream->bandwidth;
2133 ehci_vdbg (ehci,
2134 "deschedule devp %s ep%d%s-iso\n",
2135 dev->devpath, stream->bEndpointAddress & 0x0f,
2136 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2138 iso_stream_put (ehci, stream);
2140 done:
2141 sitd->urb = NULL;
2142 if (ehci->clock_frame != sitd->frame) {
2143 /* OK to recycle this SITD now. */
2144 sitd->stream = NULL;
2145 list_move(&sitd->sitd_list, &stream->free_list);
2146 iso_stream_put(ehci, stream);
2147 } else {
2148 /* HW might remember this SITD, so we can't recycle it yet.
2149 * Move it to a safe place until a new frame starts.
2151 list_move(&sitd->sitd_list, &ehci->cached_sitd_list);
2152 if (stream->refcount == 2) {
2153 /* If iso_stream_put() were called here, stream
2154 * would be freed. Instead, just prevent reuse.
2156 stream->ep->hcpriv = NULL;
2157 stream->ep = NULL;
2160 return retval;
2164 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2165 gfp_t mem_flags)
2167 int status = -EINVAL;
2168 unsigned long flags;
2169 struct ehci_iso_stream *stream;
2171 /* Get iso_stream head */
2172 stream = iso_stream_find (ehci, urb);
2173 if (stream == NULL) {
2174 ehci_dbg (ehci, "can't get iso stream\n");
2175 return -ENOMEM;
2177 if (urb->interval != stream->interval) {
2178 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2179 stream->interval, urb->interval);
2180 goto done;
2183 #ifdef EHCI_URB_TRACE
2184 ehci_dbg (ehci,
2185 "submit %p dev%s ep%d%s-iso len %d\n",
2186 urb, urb->dev->devpath,
2187 usb_pipeendpoint (urb->pipe),
2188 usb_pipein (urb->pipe) ? "in" : "out",
2189 urb->transfer_buffer_length);
2190 #endif
2192 /* allocate SITDs */
2193 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2194 if (status < 0) {
2195 ehci_dbg (ehci, "can't init sitds\n");
2196 goto done;
2199 /* schedule ... need to lock */
2200 spin_lock_irqsave (&ehci->lock, flags);
2201 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2202 &ehci_to_hcd(ehci)->flags))) {
2203 status = -ESHUTDOWN;
2204 goto done_not_linked;
2206 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2207 if (unlikely(status))
2208 goto done_not_linked;
2209 status = iso_stream_schedule(ehci, urb, stream);
2210 if (status == 0)
2211 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2212 else
2213 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2214 done_not_linked:
2215 spin_unlock_irqrestore (&ehci->lock, flags);
2217 done:
2218 if (status < 0)
2219 iso_stream_put (ehci, stream);
2220 return status;
2223 /*-------------------------------------------------------------------------*/
2225 static void free_cached_lists(struct ehci_hcd *ehci)
2227 struct ehci_itd *itd, *n;
2228 struct ehci_sitd *sitd, *sn;
2230 list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2231 struct ehci_iso_stream *stream = itd->stream;
2232 itd->stream = NULL;
2233 list_move(&itd->itd_list, &stream->free_list);
2234 iso_stream_put(ehci, stream);
2237 list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) {
2238 struct ehci_iso_stream *stream = sitd->stream;
2239 sitd->stream = NULL;
2240 list_move(&sitd->sitd_list, &stream->free_list);
2241 iso_stream_put(ehci, stream);
2245 /*-------------------------------------------------------------------------*/
2247 static void
2248 scan_periodic (struct ehci_hcd *ehci)
2250 unsigned now_uframe, frame, clock, clock_frame, mod;
2251 unsigned modified;
2253 mod = ehci->periodic_size << 3;
2256 * When running, scan from last scan point up to "now"
2257 * else clean up by scanning everything that's left.
2258 * Touches as few pages as possible: cache-friendly.
2260 now_uframe = ehci->next_uframe;
2261 if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2262 clock = ehci_readl(ehci, &ehci->regs->frame_index);
2263 clock_frame = (clock >> 3) & (ehci->periodic_size - 1);
2264 } else {
2265 clock = now_uframe + mod - 1;
2266 clock_frame = -1;
2268 if (ehci->clock_frame != clock_frame) {
2269 free_cached_lists(ehci);
2270 ehci->clock_frame = clock_frame;
2272 clock &= mod - 1;
2273 clock_frame = clock >> 3;
2275 for (;;) {
2276 union ehci_shadow q, *q_p;
2277 __hc32 type, *hw_p;
2278 unsigned incomplete = false;
2280 frame = now_uframe >> 3;
2282 restart:
2283 /* scan each element in frame's queue for completions */
2284 q_p = &ehci->pshadow [frame];
2285 hw_p = &ehci->periodic [frame];
2286 q.ptr = q_p->ptr;
2287 type = Q_NEXT_TYPE(ehci, *hw_p);
2288 modified = 0;
2290 while (q.ptr != NULL) {
2291 unsigned uf;
2292 union ehci_shadow temp;
2293 int live;
2295 live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2296 switch (hc32_to_cpu(ehci, type)) {
2297 case Q_TYPE_QH:
2298 /* handle any completions */
2299 temp.qh = qh_get (q.qh);
2300 type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2301 q = q.qh->qh_next;
2302 modified = qh_completions (ehci, temp.qh);
2303 if (unlikely(list_empty(&temp.qh->qtd_list) ||
2304 temp.qh->needs_rescan))
2305 intr_deschedule (ehci, temp.qh);
2306 qh_put (temp.qh);
2307 break;
2308 case Q_TYPE_FSTN:
2309 /* for "save place" FSTNs, look at QH entries
2310 * in the previous frame for completions.
2312 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2313 dbg ("ignoring completions from FSTNs");
2315 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2316 q = q.fstn->fstn_next;
2317 break;
2318 case Q_TYPE_ITD:
2319 /* If this ITD is still active, leave it for
2320 * later processing ... check the next entry.
2321 * No need to check for activity unless the
2322 * frame is current.
2324 if (frame == clock_frame && live) {
2325 rmb();
2326 for (uf = 0; uf < 8; uf++) {
2327 if (q.itd->hw_transaction[uf] &
2328 ITD_ACTIVE(ehci))
2329 break;
2331 if (uf < 8) {
2332 incomplete = true;
2333 q_p = &q.itd->itd_next;
2334 hw_p = &q.itd->hw_next;
2335 type = Q_NEXT_TYPE(ehci,
2336 q.itd->hw_next);
2337 q = *q_p;
2338 break;
2342 /* Take finished ITDs out of the schedule
2343 * and process them: recycle, maybe report
2344 * URB completion. HC won't cache the
2345 * pointer for much longer, if at all.
2347 *q_p = q.itd->itd_next;
2348 if (!ehci->use_dummy_qh ||
2349 q.itd->hw_next != EHCI_LIST_END(ehci))
2350 *hw_p = q.itd->hw_next;
2351 else
2352 *hw_p = ehci->dummy->qh_dma;
2353 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2354 wmb();
2355 modified = itd_complete (ehci, q.itd);
2356 q = *q_p;
2357 break;
2358 case Q_TYPE_SITD:
2359 /* If this SITD is still active, leave it for
2360 * later processing ... check the next entry.
2361 * No need to check for activity unless the
2362 * frame is current.
2364 if (((frame == clock_frame) ||
2365 (((frame + 1) & (ehci->periodic_size - 1))
2366 == clock_frame))
2367 && live
2368 && (q.sitd->hw_results &
2369 SITD_ACTIVE(ehci))) {
2371 incomplete = true;
2372 q_p = &q.sitd->sitd_next;
2373 hw_p = &q.sitd->hw_next;
2374 type = Q_NEXT_TYPE(ehci,
2375 q.sitd->hw_next);
2376 q = *q_p;
2377 break;
2380 /* Take finished SITDs out of the schedule
2381 * and process them: recycle, maybe report
2382 * URB completion.
2384 *q_p = q.sitd->sitd_next;
2385 if (!ehci->use_dummy_qh ||
2386 q.sitd->hw_next != EHCI_LIST_END(ehci))
2387 *hw_p = q.sitd->hw_next;
2388 else
2389 *hw_p = ehci->dummy->qh_dma;
2390 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2391 wmb();
2392 modified = sitd_complete (ehci, q.sitd);
2393 q = *q_p;
2394 break;
2395 default:
2396 dbg ("corrupt type %d frame %d shadow %p",
2397 type, frame, q.ptr);
2398 // BUG ();
2399 q.ptr = NULL;
2402 /* assume completion callbacks modify the queue */
2403 if (unlikely (modified)) {
2404 if (likely(ehci->periodic_sched > 0))
2405 goto restart;
2406 /* short-circuit this scan */
2407 now_uframe = clock;
2408 break;
2412 /* If we can tell we caught up to the hardware, stop now.
2413 * We can't advance our scan without collecting the ISO
2414 * transfers that are still pending in this frame.
2416 if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2417 ehci->next_uframe = now_uframe;
2418 break;
2421 // FIXME: this assumes we won't get lapped when
2422 // latencies climb; that should be rare, but...
2423 // detect it, and just go all the way around.
2424 // FLR might help detect this case, so long as latencies
2425 // don't exceed periodic_size msec (default 1.024 sec).
2427 // FIXME: likewise assumes HC doesn't halt mid-scan
2429 if (now_uframe == clock) {
2430 unsigned now;
2432 if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2433 || ehci->periodic_sched == 0)
2434 break;
2435 ehci->next_uframe = now_uframe;
2436 now = ehci_readl(ehci, &ehci->regs->frame_index) &
2437 (mod - 1);
2438 if (now_uframe == now)
2439 break;
2441 /* rescan the rest of this frame, then ... */
2442 clock = now;
2443 clock_frame = clock >> 3;
2444 if (ehci->clock_frame != clock_frame) {
2445 free_cached_lists(ehci);
2446 ehci->clock_frame = clock_frame;
2448 } else {
2449 now_uframe++;
2450 now_uframe &= mod - 1;